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Abstract. The Rapid Mass Movements Simulator (RAMMS) is an avalanche dynamics software tool for research and fore-

casting. Since the model’s conception, the sensitivity of inputs on simulation results has been well-documented. Here, we

introduce a new method for initializing RAMMS that can be easily operationalized for avalanche forecasting using high reso-

lution LiDAR data. As a demonstration, hypothetical avalanche simulations were performed while incrementally incorporating

semi-automated LiDAR-derived values for snow depth, interface topography, and vegetative cover from field-collected LiDAR5

data. Results show considerable variation in the calculated runout extent, flow volume, pressure, and velocity of the simulated

avalanches when incorporating these LiDAR-derived values.

1 Introduction

The Rapid Mass Movements Simulator (RAMMS) is a unique avalanche simulation toolbox, which models flow depth, veloc-

ity, impact pressure, and run-out distance based on a depth-averaged hydrodynamic system of equations with a Voellmy-Salm10

friction relation (Christen et al., 2010b; Salm, 1993). In a typical application of RAMMS, a user will 1) input a digital eleva-

tion model (DEM) of the underlying ground surface, 2) assign an avalanche start-zone based on local expertise or a GIS-based

terrain analysis (Maggioni and Gruber, 2003), 3) provide an estimate of start-zone snow depth using in situ and/or automated

weather station observations, and 4) delineate vegetated areas if necessary, typically from photographs or a separate database.

Additional parameters such as snow density, Coloumb friction, and viscous resistance can be assigned as well. Once ingested15

into RAMMS, the fine-tuning of these inputs is imperative in obtaining a realistic result, as first noted by Christen et al.

(2010b). For instance, Bühler et al. (2011) demonstrated significantly different outputs from RAMMS by simply varying the

spatial resolution of the input DEM, while Fischer et al. (2012) noted that centrifugal forces arising from the curvature of the

local terrain can also have significant impacts on the simulated acceleration of the avalanche and the frictional response.

Here, we introduce a new method for initializing RAMMS for operational avalanche forecasting using high-spatial resolution20

LiDAR data. With these data, common DEM’s are replaced with surface models from LiDAR data point clouds gathered from

either the bare ground or a previously exposed snow surface. Provided that repeat LiDAR scans were conducted throughout

the winter period of snow accumulation, this allows avalanche forecasters the capability of choosing a sliding surface that

can be either the snow-ground or a snow-snow interface of concern, perhaps due to the presence of a known weak layer.

With this approach, the topography of the snow-snow interface can be accounted for, which can vary substantially depending25
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on meteorological conditions or previous avalanche activity. Once the sliding surface has been chosen, any of the following

LiDAR scans can be used as the input for snow depth, accounting for both the spatial variability in snow depth and the actual

vegetative cover emergent from the sliding layer with a high degree of precision. Thus, with a minimum of two sequential

LiDAR scans, the typically assumed or generic inputs used for RAMMS (i.e. the DEM, snow depth, and vegetative cover)

can be replaced with actual observations of high spatial and temporal resolution, potentially creating a more realistic RAMMS30

simulation for guiding avalanche forecasting and mitigation efforts.

2 Background

When evaluating previous studies using RAMMS for avalanche forecasting applications (Bühler et al., 2011; Christen et al.,

2010a; Harvey et al., 2018), it was found that users would commonly assign a uniform snow depth to an avalanche starting

zone, neglecting to account for the spatial variability in snow depth atop the sliding surface, which can dramatically alter35

release volume (Deems et al., 2015). Given that there always exists some spatial variability in snow depth in natural snow

covers (e.g., Seligman et al., 1936; Birkeland et al., 1995; Schweizer et al., 2008), particularly in wind-affected mountainous

regions (Hiemstra et al., 2002), it is expected that this would produce error in the simulation. For instance, in Maggioni et al.

(2012), where the accuracy of RAMMS was evaluated from real avalanche events, the authors used a single observation of

new snow depth as their uniform start-zone snow depth, but noted considerable variability in the subsequent avalanche crown40

height. Similarly, although Christen et al. (2010a) accounted for this variability in their observed avalanche back-calculation, by

adding or subtracting snow depth from a central value based on slope aspect and observations of wind speed and direction, this

is simply not practical in a more operational environment. Furthermore, there also exists spatial variability in terrain curvature

and interface topography (i.e. snow-snow vs. snow-ground interface topography) as observed in Veitinger and Sovilla (2016).

They showed that snow surfaces tend to have fewer fine-scale irregularities than their underlying ground surface. Based on45

these previous studies, it is reasonable to expect the slope angle and curvature at a given snow-snow interface to also be

spatially variable and perhaps not representative of the underlying ground surface, further affecting the accuracy of RAMMS

calculations if only using a ground-based DEM for the sliding surface topography. Towards accounting for both the spatial

variability in snow depth and interface topography, LiDAR has demonstrated capacity in generating high-spatial resolution

maps of both surface elevation and snow depth, be it total snow depth or new snow accumulation atop older layers of snow50

(Deems et al., 2015; Painter et al., 2016). Therefore, due to the well-documented importance of spatial variability for avalanche

release (Schweizer et al., 2008), LiDAR presents itself as a logical alternative for assigning sliding topography and snow

depth in RAMMS, as opposed to using uniform snow depth estimates derived from meteorological observations or point

measurements.

In addition to accounting for snow deposition, LiDAR also has the capacity to delineate vegetation relevant to avalanche55

modelling in a precise manner. As mentioned above, vegetated areas are typically identified from photography, local knowl-

edge, or an external dataset, then manually assigned to RAMMS as an input. However, vegetation completely buried beneath

the sliding interface is irrelevant to the flow dynamics above the interface, such that it may not always be necessary to include.
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A LiDAR scan of a future sliding interface prior to burial can yield detailed data on emergent, and thus obstructive, vegetation.

When generating a DEM from a LiDAR point cloud, points coincident with vegetation need to be delineated and excluded60

prior to interpolation in order to produce an accurate depiction of the ground (or snow layer) surface. Several techniques to

achieve this delineation already exist for LiDAR, like the Riegl RiScan spatial vegetation filter used in this study. Therefore,

high-spatial resolution maps of emergent vegetation from a buried interface can be extracted and transferred to RAMMS as an

input, better accounting for spatial and temporal variability and removing the need for manual assignment.

3 Simulations65

Four sets of four parallel RAMMS simulations were conducted using LiDAR data collected from avalanche terrain at the Yel-

lowstone Club Ski Resort (YC), near Big Sky, MT, USA, during the 2019-2020 winter period. LiDAR scans were sequentially

collected using a Riegl VZ-6000 terrestrial laser scanning LiDAR on four different outings, resulting in a ground scan (i.e.

snow-off) and two on-snow scans, each with a varying depth, termed low-snow and high-snow, all of which are available at

https://doi.org/10.5061/dryad.z8w9ghx9z. The actual average snow depths for these cases were 0.13 and 1.35 m, respectively.70

Figure 1 shows an example of the variable snow depth measured via LiDAR on 12 March 2020.

Figure 1. A map of total snow depth at the YC from 12 March 2020. The inset region shows considerable spatial variability in snow depth.

Spatial resolution is 1 m.

Using our LiDAR datasets from the YC, a hypothetical avalanche event was simulated, where the topography of the low-

snow layer was used as the sliding surface for an avalanche from the high-snow depth layer. Avalanche simulations were run

at two different locations within the scans, one featuring ravines and gullies compared to another with relatively open slopes,
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termed upper and lower (in reference to their location on the ridgeline), respectively. Point clouds were aligned by using75

reflectors as tie points in Riegl’s RiScan software. To create the required inputs for RAMMS, DEMs were generated for all

three scans with a spatial resolution of 1 m in ESRI’s ArcMap 10.7.1, and then the low-snow layer subtracted from the high-

snow layer to delineate the spatial variability in snow depth atop the low-snow layer interface. It should be noted that this 1 m

resolution used for the simulations was the average of multiple LiDAR returns within a square meter, such that our simulations

account for fine-scale irregularities in both ground and snow surface topography. Four simulations were then performed with80

additional LiDAR-derived data incorporated incrementally.

In Simulation 1, “traditional” inputs were used, assigning a ground DEM as the sliding layer, a uniform snow depth across the

entire start-zone, and a vegetated area delineated manually from photographs. The uniform snow depth applied was calculated

as the average snow depth atop the low-snow layer, which was 1.31 and 1.27 meters at the upper and lower sites, respectively.

In Simulation 2, the exact same parameters were used as in Simulation 1, but the low-snow layer was used as the sliding85

interface, accounting for topographic variation due to variable snow deposition. In Simulation 3, a non-uniform snow depth

was incorporated, accounting for the actual spatial variability in snow depth. Whereas in Simulation 4, the same parameters as

in Simulation 3 were used, but the high-resolution emergent vegetation was mapped as well, instead of manually assigning this

from photographs. As shown in Figure 2, for the set of Simulations 1-4 on the upper site, it can be clearly discerned how the

incorporation of high-resolution LiDAR data into RAMMS can affect the initial conditions of the simulation. All other input90

parameters were held constant across all simulations, including the snow density (300 kg/m3) and the momentum threshold

stopping criteria (5 percent). Friction coefficients were calculated using the automated workflow in RAMMS. Release volume,

maximum velocity, maximum flow height, and maximum pressure were then tabulated from each simulation. The resulting

simulations produced avalanches where the runout distance exceeded the LiDAR field-of-view, and thus we duplicated our

efforts with increased friction coefficient values that were manually assigned, as well as a stopping threshold criteria of 1095

percent, to allow for observations of runout extent as it varied with the incorporation of LiDAR data. The increased friction

coefficients were calculated by simply adding a constant value of 0.4 to the table of automatically generated values.
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Figure 2. Comparison of RAMMS inputs between Simulations 1-4 at the upper site (a – d, respectively).

4 Results

Quantitative results are given in Table 1, where U1-U4 and L1-L4 are the results for the upper and lower sites, respectively.

Simulations with an asterisk (e.g. U1∗) refer to simulations where manually increased friction coefficient values were used to100

observe the runout extent. Animated simulations are also available for download at the repository mentioned in Section 3. Of

interest in these results, is that although the release volume did not change significantly in Simulations 2-4, when compared to

Simulation 1, the maximum velocity, flow height, and pressure varied substantially. Trends were reasonably similar between

sites; the introduction of the sliding layer DEM tended to decrease maximum velocity and pressure, while incorporating emer-

gent vegetation from LiDAR data had the opposite effect. Runout distance also varied substantially in the simulations with105

increased friction coefficients. For instance, the maximum runout distance in U4 was 28 meters longer than that of U1, as

shown in Figure 3.

5 Discussion

The hypothetical avalanche simulations presented here demonstrate the considerable effect that model inputs have on RAMMS

simulation outputs, as originally noted by Christen et al. (2010b). However, we show that with high-spatial resolution LiDAR110

data, more realistic inputs for RAMMS can be derived in a semi-automated manner. Consistent with the findings of Bühler

et al. (2011), we found that subtle variations in DEM topography can drastically impact simulation results, suggesting that

5

https://doi.org/10.5194/tc-2020-368
Preprint. Discussion started: 11 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Simulation

Release

Volume

(m3)

∆

(%)

Max

Velocity

(ms−1)

∆

(%)

Max Flow

Height

(m)

∆

(%)

Max

Pressure

(kPa)

∆

(%)

Runout

Distance

(m)

∆

(%)

U1 5699 – 34.7 – 5.9 – 362 – –

U2 5683 -0.3 25.6 -26.2 8.5 44.1 196 -45.9 – –

U3 5515 -3.2 28.2 -18.7 8.3 40.7 238 -34.3 – –

U4 5515 -3.2 33.1 -4.6 8.3 40.7 329 -9.1 – –

U1∗ – – 14.9 – 5.0 – 67 – 129 –

U2∗ – – 13.6 -8.7 5.6 12.0 52 -22.4 130 0.8

U3∗ – – 12.3 -17.4 4.9 -2.0 45 -32.8 135 4.4

U4∗ – – 13.0 -12.8 4.9 -2.0 51 -23.9 157 17.8

L1 2304 – 19.8 – 2.3 – 118 – – –

L2 2317 0.6 17.7 -10.6 3.3 30.3 94 -20.3 – –

L3 2285 -0.8 17.6 -11.1 3.2 28.1 93 -21.2 – –

L4 2286 -0.8 20.7 4.4 2.9 20.7 128 7.8 – –

L1∗ – – 7.1 – 1.8 – 15 – 131 –

L2∗ – – 7.1 0.0 2.3 21.7 15 0.0 146 10.3

L3∗ – – 7.1 0.0 2.5 28.0 15 0.0 147 10.9

L4∗ – – 7.6 6.6 2.5 28.0 17 11.8 156 16.0

Table 1. Quantitative results from RAMMS simulations, showing percent change when compared to traditional inputs used in Simulation

1. U1-U4 and L1-L4 designate the upper and lower site simulations, respectively. Asterisks denote simulations with a manually increased

friction coefficient to observe runout distance.

accounting for the topography of the snow-snow interface is likely also important when avalanches slide above the base of

the snowpack. This is illustrated in the data shown in Table 1, where a decrease in the maximum velocity was observed for

simulations that included the snow surface as the sliding surface (U2-U4, L2-L4), as opposed to the ground surface (U1, L1)115

in nearly all cases. Although somewhat counterintuitive, we note that in the upper site case, this is due to the subtle decrease

in the slope angle (≈ 5◦) of the sliding surface above the point of the maximum recorded velocity, which typically occurred

in the couloir-like feature at mid-slope in the images shown in Figure 2. While it might be expected that a snow cover would

provide a smoother and thus faster surface for avalanche flow, we observe here that a more smooth surface is not the only

relevant factor that snow surfaces can contribute towards the input DEM; slope angle and curvature can be altered as well,120

which are both fundamental to the resultant output of RAMMS. As has been noted in Veitinger and Sovilla (2016), variable

snow accumulation and redistribution can reshape topography in site-specific ways, which is observed here.
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Figure 3. Final deposition height and runout extent of U1 (a), U4 (b), L1 (c), and L4 (d) with manually increased friction coefficients.

Although our results did not demonstrate significant variation in simulation outputs after the introduction of variable snow

depth relative to a uniform snow depth in the start-zone, this is most likely due to the fact that we used the LiDAR-derived

mean snow depth for assigning the uniform snow depth. In doing this, we indirectly accounted for the spatial variability in snow125

depth, adequately representing the total snow volume as an averaged value. However, without the LiDAR data to begin with,

this would not have been possible. Accounting for vegetation that was emergent from an interface of interest and disregarding

flora buried beneath also proved to be a relevant consideration, where an increase in maximum velocity, runout distance, and

pressure was observed at both simulation sites.

As shown in previous work (Stoffel et al., 2018), it was determined that the operational implementation of RAMMS would130

require further study and potential modifications prior to being broadly implemented as an avalanche forecasting tool, while

perhaps providing preliminary guidance in the interim. Based on the results shown here, we suggest that LiDAR data ini-

tialization holds the potential to dramatically improve the performance of RAMMS, although further investigation would be

required before being implemented in an operational setting. In working towards operationalization for avalanche forecasting

efforts, we suggest that if LiDAR data can be collected sequentially throughout a winter season, then LiDAR-derived DEMs135

corresponding to potential weak layers may be available for later RAMMS simulations to be executed upon. This would also

allow for high-spatial resolution mapping of snow depth atop various snow-snow interfaces throughout the season. Similarly,
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maps of emergent vegetation could also be generated after each snowfall event, further supporting later avalanche simulation

and forecasting efforts by neglecting the effects of vegetation that has become buried.

In future work, we suggest that back-calculations of well-documented avalanche events that are coincident with LiDAR data140

collected throughout the winter season be performed, such that known bed surfaces and weak layers can be used for initializing

RAMMS and comparing to field observations. Such a study would help discern whether or not LiDAR data initialization is truly

of benefit to RAMMS, or conversely, if it is the further development of RAMMS that is necessary to make use of such detailed

data inputs. Regardless, our results suggest that further research on the topic is merited, which would ultimately also be to the

benefit of any other depth-averaged avalanche dynamics and flow models that are developed in the future. For instance, Li et al.145

(2020) have recently demonstrated the capability of simulating various avalanche flow regimes in their dynamic avalanche

flow model (Gaume et al., 2019), as well as showing a dependency of avalanche flow and deposition behavior on the runout

angle. Should models such as these ever be implemented operationally at the hillslope scale, we suggest that the utility of these

models also be investigated with LiDAR-derived inputs as well.
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