Articles | Volume 9, issue 2
https://doi.org/10.5194/tc-9-541-2015
https://doi.org/10.5194/tc-9-541-2015
Research article
 | 
17 Mar 2015
Research article |  | 17 Mar 2015

Influence of freshwater input on the skill of decadal forecast of sea ice in the Southern Ocean

V. Zunz and H. Goosse

Related authors

Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014,https://doi.org/10.5194/tc-8-453-2014, 2014
How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent?
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013,https://doi.org/10.5194/tc-7-451-2013, 2013

Related subject area

Antarctic
A facet-based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025,https://doi.org/10.5194/tc-19-1937-2025, 2025
Short summary
How do extreme ENSO events affect Antarctic surface mass balance?
Jessica M. A. Macha, Andrew N. Mackintosh, Felicity S. McCormack, Benjamin J. Henley, Helen V. McGregor, Christiaan T. van Dalum, and Ariaan Purich
The Cryosphere, 19, 1915–1935, https://doi.org/10.5194/tc-19-1915-2025,https://doi.org/10.5194/tc-19-1915-2025, 2025
Short summary
Current reversal leads to regime change in the Amery Ice Shelf cavity in the 21st century
Jing Jin, Antony J. Payne, and Christopher Y. S. Bull
The Cryosphere, 19, 1873–1896, https://doi.org/10.5194/tc-19-1873-2025,https://doi.org/10.5194/tc-19-1873-2025, 2025
Short summary
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith, and Kohler region of West Antarctica
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025,https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
The Cryosphere, 19, 1641–1674, https://doi.org/10.5194/tc-19-1641-2025,https://doi.org/10.5194/tc-19-1641-2025, 2025
Short summary

Cited articles

Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., and Katsman, C. A.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nat. Geosci., 6, 376–379, 2013.
Bitz, C. M. and Polvani, L. M.: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model, Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393, 2012.
Bitz, C. M., Gent, P. R., Woodgate, R. A., Holland, M. M., and Lindsay, R.: The Influence of Sea Ice on Ocean Heat Uptake in Response to Increasing CO2, J. Climate, 19, 2437–2450, 2006.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16, 86-1–86-20, https://doi.org/10.1029/2001GB001662, 2002.
Download
Share