Articles | Volume 20, issue 1
https://doi.org/10.5194/tc-20-595-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-20-595-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermobarokinetics of ice: constitutive formulation for the coupled effect of temperature, stress, and strain rate in ice
Faranak Sahragard
Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, K1S5B6, Ottawa, Ontario, Canada
Mehdi Pouragha
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, K1S5B6, Ottawa, Ontario, Canada
Mohammad Rayhani
Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, K1S5B6, Ottawa, Ontario, Canada
Cited articles
Alaei, E., Marks, B., and Einav, I.: A hydrodynamic-plastic formulation for modelling sand using a minimal set of parameters, J. Mech. Phys. Solids, 151, 104388, https://doi.org/10.1016/j.jmps.2021.104388, 2021. a
Alley, R. B.: Fabrics in polar ice sheets: development and prediction, Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. a
Azuma, N.: A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sc. Lett., 128, 601–614, https://doi.org/10.1016/0012-821x(94)90173-2, 1994. a
Azuma, N.: A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation, Cold Reg. Sci. Technol., 23, 137–147, https://doi.org/10.1016/0165-232X(94)00011-L, 1995. a
Bahaloo, H., Eidevåg, T., Gren, P., Casselgren, J., Forsberg, F., Abrahamsson, P., and Sjödahl, M.: Ice sintering: Dependence of sintering force on temperature, load, duration, and particle size, J. Appl. Phys., 131, https://doi.org/10.1063/5.0073824, 2022. a
Balendran, B. and Nemat-Nasser, S.: Double sliding model for cyclic deformation of granular materials, including dilatancy effects, J. Mech. Phys. Solids, 41, 573–612, https://doi.org/10.1016/0022-5096(93)90049-l, 1993. a
Barnes, P., Tabor, D., and Walker, J.: The friction and creep of polycrystalline ice, Proc. R. Soc. London, Ser. A. Mathematical and Physical Sciences, 324, 127–155, https://doi.org/10.1098/rspa.1971.0132, 1971. a
Barrette, P. D. and Jordaan, I. J.: Compressive behaviour of confined polycrystalline ice, Distributed through the NRC Centre of Ice-Structure Interaction, Canadian Hydraulic Centre, https://doi.org/10.4224/12340921, 2001. a
Barrette, P. D. and Jordaan, I. J.: Pressure–temperature effects on the compressive behavior of laboratory-grown and iceberg ice, Cold Reg. Sci. Technol., 36, 25–36, https://doi.org/10.1016/s0165-232x(02)00077-0, 2003. a
Blackford, J. R.: Sintering and microstructure of ice: a review, J. Phys. D: Appl. Phys., 40, R355, https://doi.org/10.1088/0022-3727/40/21/r02, 2007. a
Brodeau, L., Rampal, P., Ólason, E., and Dansereau, V.: Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic, Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, 2024. a
Chaboche, J.: Continuum damage mechanics: Present state and future trends, Eng. Fract. Mech., 105, 19–33, https://doi.org/10.1016/0029-5493(87)90225-1, 1987. a, b
Cole, D.: On the physical basis for the creep of ice: the high temperature regime, J. Glaciol., 66, 401–414, https://doi.org/10.1017/jog.2020.15, 2020. a, b
Cole, D. M.: A model for the anelastic straining of saline ice subjected to cyclic loading, Philos. Mag. A, 72, 231–248, https://doi.org/10.1080/01418619508239592, 1995. a
Cole, D. M.: Modeling the cyclic loading response of sea ice, Int. J. Solids Struct., 35, 4067–4075, https://doi.org/10.1016/s0020-7683(97)00301-6, 1998. a
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G., and Waller, R. I.: The empirical basis for modelling glacial erosion rates, Nat. commun., 11, 759, https://doi.org/10.1038/s41467-020-14583-8, 2020. a
Dansereau, V., Weiss, J., Saramito, P., Lattes, P., and Coche, E.: Ice bridges and ridges in the Maxwell-EB sea ice rheology, The Cryosphere, 11, 2033–2058, https://doi.org/10.5194/tc-11-2033-2017, 2017. a
Demmenie, M., Kolpakov, P., Nagata, Y., Woutersen, S., and Bonn, D.: Scratch-healing behavior of ice by local sublimation and condensation, J. Phys. Chem. C, 126, 2179–2183, https://doi.org/10.1021/acs.jpcc.1c09590.s001, 2022. a
Derradji-Aouat, A.: A unified failure envelope for isotropic fresh water ice and iceberg ice, in: Proceedings of ETCE/OMAE joint conference energy for the new millenium, https://nrc-publications.canada.ca/eng/view/object/?id=6a7637d6-4d6a-49c5-af9f-54a651b61e65 (last access: 4 July 2025), 2000. a, b, c
Derradji-Aouat, A.: Multi-surface failure criterion for saline ice in the brittle regime, Cold Reg. Sci. Technol., 36, 47–70, https://doi.org/10.1016/s0165-232x(02)00093-9, 2003. a
Duddu, R. and Waisman, H.: A temperature dependent creep damage model for polycrystalline ice, Mech. Mater., 46, 23–41, https://doi.org/10.1016/j.mechmat.2011.11.007, 2012. a
Durham, W., Heard, H., and Kirby, S. H.: Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results, J. Geophys. Res.-Sol. Ea., 88, B377–B392, https://doi.org/10.1029/jb088is01p0b377, 1983. a, b
Duval, P., Montagnat, M., Grennerat, F., Weiss, J., Meyssonnier, J., and Philip, A.: Creep and plasticity of glacier ice: a material science perspective, J. Glaciol., 56, 1059–1068, 2010. a
Fish, A. M.: Combined Creep and Yield Model of Ice under Multiaxial Stress, in: Proceedings of the 2nd International Offshore and Polar Engineering Conference, ISOPE–I–92–205, San Francisco, California, USA, 1992. a
Goldsby, D. and Kohlstedt, D. L.: Superplastic deformation of ice: Experimental observations, J. Geophys. Res.: Solid Earth, 106, 11017–11030, https://doi.org/10.1029/2000JB900336, 2001. a
Gratz, E. and Schulson, E.: Brittle failure of columnar saline ice under triaxial compression, J. Geophys. Res.-Sol. Ea., 102, 5091–5107, https://doi.org/10.1029/96JB03738, 1997. a
Herman, A.: Granular effects in sea ice rheology in the marginal ice zone, Philos. T. Roy. Soc. A, 380, 20210260, https://doi.org/10.1098/rsta.2021.0260, 2022. a
Herman, F., Beyssac, O., Brughelli, M., Lane, S. N., Leprince, S., Adatte, T., Lin, J. Y., Avouac, J.-P., and Cox, S. C.: Erosion by an Alpine glacier, Science, 350, 193–195, https://doi.org/10.1126/science.aab2386, 2015. a
Herman, F., De Doncker, F., Delaney, I., Prasicek, G., and Koppes, M.: The impact of glaciers on mountain erosion, Nat. Rev. Earth Environ., 2, 422–435, https://doi.org/10.1038/s43017-021-00165-9, 2021. a
Hutter, K.: Fundamental Glaciology: Modeling Thermomechanical Processes of Ice in the Geophysical Environment, Engineering and Materials Sciences, International Glaciological Society, Cambridge, UK, ISBN 9780946417988, https://doi.org/10.1017/jog.2021.69, 2020. a
Jones, S. J. and Chew, H. A.: Creep of ice as a function of hydrostatic pressure, J. Phys. Chem., 87, 4064–4066, https://doi.org/10.1021/j100244a013, 1983. a, b
Jordaan, I. J., Matskevitch, D. G., and Meglis, I. L.: Disintegration of ice under fast compressive loading, Int. J. Fract., 97, 279–300, https://doi.org/10.1023/A:1018605517923, 1999. a
Kalifa, P., Ouillon, G., and Duval, P.: Microcracking and the failure of polycrystalline ice under triaxial compression, J. Glaciol., 38, 65–76, https://doi.org/10.3189/s0022143000009606, 1992. a, b
Karr, D. G. and Choi, K.: A three-dimensional constitutive damage model for polycrystalline ice, Mech. Mater., 8, 55–66, https://doi.org/10.1016/0167-6636(89)90005-7, 1989. a
Langleben, M. P. and Pounder, E. R.: Elastic parameters of sea ice, Ice and snow; properties, processes, and applications: proceedingsof a conference held at the Massachusetts Institute of Technology, 12–16 February 1962, 69–78 pp., Cambridge, Mass, M.I.T. Press, 1963. a
Lemaitre, J. and Chaboche, J.-L.: Mechanics of solid materials, Cambridge University Press, ISBN 9780521328530, 1994. a
Marigo, J.-J.: Étude numérique de l'endommagement, EDF – Bulletin de la Direction des Études et Recherches, Série C: Mathématiques, Informatique, pp. 27–48, ISSN 0013-4511, 1982. a
Meglis, I., Melanson, P., and Jordaan, I.: Microstructural change in ice: II. Creep behavior under triaxial stress conditions, J. Glaciol., 45, 438–448, https://doi.org/10.3189/s0022143000001295, 1999. a, b
Mellor, M. and Cole, D. M.: Deformation and failure of ice under constant stress or constant strain-rate, Cold Reg. Sci. Technol., 5, 201–219, https://doi.org/10.1016/0165-232x(82)90015-5, 1982. a
Miao, S., Wang, M. L., and Schreyer, H. L.: Constitutive models for healing of materials with application to compaction of crushed rock salt, J. Eng. Mech., 121, 1122–1129, https://doi.org/10.1016/0148-9062(96)85045-5, 1995. a
Michel, B.: A mechanical model of creep of polycrystalline ice, Can. Geotech. J., 15, 155–170, https://doi.org/10.1139/t78-016, 1978. a
Mizuno, Y.: Effect of hydrostatic confining pressure on the failure mode and compressive strength of polycrystalline ice, J. Phys. Chem. B, 102, 376–381, https://doi.org/10.1021/jp963163b, 1998. a, b
Morgan, V.: High-temperature ice creep tests, Cold Reg. Sci. Technol., 19, 295–300, https://doi.org/10.1016/0165-232x(91)90044-h, 1991. a
Murdza, A., Schulson, E. M., Renshaw, C. E., and Polojärvi, A.: Rapid healing of thermal cracks in ice, Geophys. Res. Lett., 49, e2022GL099771, https://doi.org/10.1029/2022gl099771, 2022. a, b, c
Murrell, S. A. F., Sammonds, P. R., and Rist, M. A.: Strength and Failure Modes of Pure Ice and Multi-Year Sea Ice under Triaxial Loading, in: Ice-Structure Interaction: IUTAM/IAHR Symposium, St. John’s, Newfoundland, Canada, 1989, pp. 339–361, Springer, https://doi.org/10.1007/978-3-642-84100-2_17, 1991. a, b, c
Nadreau, J.-P. and Michel, B.: Yield and failure envelope for ice under multiaxial compressive stresses, Cold Reg. Sci. Technol., 13, 75–82, https://doi.org/10.1016/0165-232x(86)90009-1, 1986. a
Nadreau, J. P., Nawwar, A. M., and Wang, Y. S.: Triaxial testing of freshwater ice at low confining pressures, J. Offshore Mech. Arct., 113, https://doi.org/10.1115/1.2919929, 1991. a
Nye, J. F.: The distribution of stress and velocity in glaciers and ice-sheets, P. Roy. Soc. A. Math. Phy., 239, 113–133, https://doi.org/10.1098/rspa.1957.0026, 1957. a, b
Olason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz, M., Dansereau, V., and Samaké, A.: A new brittle rheology and numerical framework for large-scale sea-ice models, J. Adv. Model. Earth Sy., 14, e2021MS002 685, https://doi.org/10.1002/essoar.10507977.2, 2022. a
Paterson, W.: Secondary and tertiary creep of glacier ice as measured by borehole closure rates, Rev. Geophys., 15, 47–55, https://doi.org/10.1029/rg015i001p00047, 1977. a, b
Pralong, A., Hutter, K., and Funk, M.: Anisotropic damage mechanics for viscoelastic ice, Continuum Mech. Thermodyn., 17, 387–408, https://doi.org/10.1007/s00161-005-0002-5, 2006. a
Ren, Y., Cai, F., Yang, Q., and Su, Z.: Contact-dependent inertial number and μ (I) rheology for dry rock-ice granular materials, Eng. Geol., p. 107995, https://doi.org/10.1016/j.enggeo.2025.107995, 2025. a
Sammonds, P., Murrell, S., and Rist, M.: Fracture of multiyear sea ice, J. Geophys. Res.-Oceans, 103, 21795–21815, https://doi.org/10.1029/98JC01260, 1998. a
Schapery, R.: Models for the deformation behavior of viscoelastic media with distributed damage and their applicability to ice, in: Ice-Structure Interaction: IUTAM/IAHR Symposium, St. John’s, Newfoundland Canada, 1989, pp. 191–230, 1991. a
Scherer, G. W. and Garino, T.: Viscous sintering on a rigid substrate, J. Am. Ceram. Soc., 68, 216–220, https://doi.org/10.1111/j.1151-2916.1985.tb15300.x, 1985. a
Schulson, E. M.: The brittle compressive fracture of ice, Acta Metall. Mater., 38, 1963–1976, https://doi.org/10.1016/0956-7151(90)90308-4, 1990. a
Schulson, E. M., Nodder, S. T., and Renshaw, C. E.: On the restoration of strength through stress-driven healing of faults in ice, Acta Mater., 117, 306–310, https://doi.org/10.1016/j.actamat.2016.06.046, 2016. a
Simo, J. and Ju, J.: Strain- and stress-based continuum damage models—I. Formulation, Int. J. Solids. Struct., 23, 821–840, https://doi.org/10.1016/0895-7177(89)90117-9, 1987. a
Sinha, N. K.: Rheology of columnar-grained ice: Phenomenological viscoelasticity of columnar-grained ice has been experimentally investigated and analyzed in an effort to explain many apparent peculiarities of the deformation behavior of polycrystalline ice, Exp. Mech., 18, 464–470, https://doi.org/10.1007/bf02324282, 1978. a
Sinha, N. K.: Elasticity of natural types of polycrystalline ice, Cold Reg. Sci. Technol., 17, 127–135, https://doi.org/10.1016/s0165-232x(89)80003-5, 1989. a, b
Sinha, N. K., Zhan, C., and Evgin, E.: Uniaxial Constant Compressive Stress Creep Tests on Sea Ice, J. Offshore Mech. Arct., 117, 283–289, https://doi.org/10.1115/1.2827235, 1995. a
Szabo, D. and Schneebeli, M.: Subsecond sintering of ice, Appl. Phys. Lett., 90, https://doi.org/10.1063/1.2721391, 2007. a
Tremblay, L. B. and Mysak, L.: Modeling sea ice as a granular material, including the dilatancy effect, J. Phys. Oceanogr., 27, 2342–2360, https://doi.org/10.1175/1520-0485(1997)027<2342:msiaag>2.0.co;2, 1997. a
Treverrow, A., Budd, W. F., Jacka, T. H., and Warner, R. C.: The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain-rate enhancement, J. Glaciol., 58, 301–314, https://doi.org/10.3189/2012jog11j149, 2012. a, b
Vasseur, J., Wadsworth, F. B., Lavallée, Y., Hess, K.-U., and Dingwell, D. B.: Volcanic sintering: timescales of viscous densification and strength recovery, Geophys. Res. Lett., 40, 5658–5664, https://doi.org/10.1002/2013gl058105, 2013. a
Voyiadjis, G. Z. and Abed, F. H.: A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals, Int. J. Plasticity, 22, 1398–1431, https://doi.org/10.1016/j.ijplas.2005.10.005, 2006. a
Weertman, J.: Creep deformation of ice, Annu. Rev. Earth Pl. Sci., 11, 215, https://doi.org/10.1146/annurev.ea.11.050183.001243, 1983. a
Wilchinsky, A. V. and Feltham, D. L.: Anisotropic model for granulated sea ice dynamics, J. Mech. Phys. Solids, 54, 1147–1185, https://doi.org/10.1016/j.jmps.2005.12.006, 2006. a
Xiao, J. and Jordaan, I.: Application of damage mechanics to ice failure in compression, Cold Reg. Sci. Technol., 24, 305–322, https://doi.org/10.1016/0165-232x(95)00014-3, 1996. a, b
Xu, Y., Hu, Z., Ringsberg, J. W., and Chen, G.: Nonlinear viscoelastic-plastic material modelling for the behaviour of ice in ice-structure interactions, Ocean Eng., 173, 284–297, https://doi.org/10.1016/j.oceaneng.2018.12.050, 2019. a
Zeitz, M., Levermann, A., and Winkelmann, R.: Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry, The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, 2020. a
Short summary
This study introduces a new model to better predict how ice responds to changing temperature, pressure, and how quickly it is deformed. The model explains how ice can crack, weaken, and even heal over time. Developed based on experimental data, it helps us understand the long-term behavior of ice, which is important for studying climate change, frozen ground, and structures built in cold regions.
This study introduces a new model to better predict how ice responds to changing temperature,...