Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6791-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-6791-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinetic grain growth in firn induced by meltwater infiltration on the Greenland Ice Sheet
Kirsten L. Gehl
CORRESPONDING AUTHOR
Department of Geosciences, University of Montana, Missoula, MT 59801, USA
Joel T. Harper
Department of Geosciences, University of Montana, Missoula, MT 59801, USA
Neil F. Humphrey
Department of Geology & Geophysics, University of Wyoming, Laramie, WY 82071, USA
Related authors
No articles found.
Joel M. Brown and Joel T. Harper
EGUsphere, https://doi.org/10.5194/egusphere-2025-4971, https://doi.org/10.5194/egusphere-2025-4971, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present daily analysis of a 72-year snowpack evolution model driven by climate reanalysis data over a large Columbia River headwaters basin. Trends in cold content and total capillary retention reveal decreasing capacity to buffer against rain-on-snow flood events with the largest changes occurring during the last 5 weeks of the accumulation period. We demonstrate that seasonality of changes in factors related to snowpack buffering capacity is important when assessing rain-on-snow flood risk.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
The Cryosphere, 19, 6077–6102, https://doi.org/10.5194/tc-19-6077-2025, https://doi.org/10.5194/tc-19-6077-2025, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising new tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
The Cryosphere, 19, 4237–4258, https://doi.org/10.5194/tc-19-4237-2025, https://doi.org/10.5194/tc-19-4237-2025, 2025
Short summary
Short summary
We used L-band observations from the Soil Moisture Active Passive (SMAP) mission to quantify the surface and subsurface liquid water amounts (LWAs) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across the Greenland ice sheet (GrIS), which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Joel Harper, Toby Meierbachtol, Neil Humphrey, Jun Saito, and Aidan Stansberry
The Cryosphere, 15, 5409–5421, https://doi.org/10.5194/tc-15-5409-2021, https://doi.org/10.5194/tc-15-5409-2021, 2021
Short summary
Short summary
We use surface and borehole measurements to investigate the generation and fate of basal meltwater in the ablation zone of western Greenland. The rate of basal meltwater generation at borehole study sites increases by up to 20 % over the winter period. Accommodation of all basal meltwater by expansion of isolated subglacial cavities is implausible. Other sinks for water do not likely balance basal meltwater generation, implying water evacuation through a connected drainage system in winter.
Ian E. McDowell, Neil F. Humphrey, Joel T. Harper, and Toby W. Meierbachtol
The Cryosphere, 15, 897–907, https://doi.org/10.5194/tc-15-897-2021, https://doi.org/10.5194/tc-15-897-2021, 2021
Short summary
Short summary
Ice temperature controls rates of internal deformation and the onset of basal sliding. To identify heat transfer mechanisms and englacial heat sources within Greenland's ablation zone, we examine a 2–3-year continuous temperature record from nine full-depth boreholes. Thermal decay after basal crevasses release heat in the near-basal ice likely produces the observed cooling. Basal crevasses in Greenland can affect the basal ice rheology and indicate a potentially complex basal hydrologic system.
Cited articles
Adolph, A. C. and Albert, M. R.: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties, The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, 2014.
Akitaya, E.: Studies on Depth Hoar, Contributions from the Institute of Low Temperature Science, 26, 1–67, 1974.
Albert, M. R., Shuman, C., Courville, Z., Bauer, R., Fahnestock, M., and Scambos, T.: Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a low-accumulation glazed site on the East Antarctic plateau, Ann. Glaciol., 39, 73–78, 2004.
Alley, R. B., Saltzman, E. S., Cuffey, K. M., and Fitzpatrick, J. J.: Summertime formation of Depth Hoar in central Greenland, Geophys. Res. Lett., 17, 2393–2396, 1990.
Anderson, D. L. and Benson, C. S.: The densification and diagenesisof snow, in: Ice and Snow: Properties, Processes, and Applications, edited by: Kingery, W. D., MIT Press, Cambridge, MA, 391–411, 1963.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Benson, C. S.: Stratigraphic studies in the snow and firn of the Greenland ice sheet, CRREL, No. RR70, 1962.
Calonne, N., Milliancourt, L., Burr, A., Philip, A., Martin, C. L., Flin, F., and Geindreau, C.: Thermal Conductivity of Snow, Firn, and Porous Ice From 3-D Image-Based Computations, Geophys. Res. Lett., 46, 13079–13089, https://doi.org/10.1029/2019GL085228, 2019.
Colbeck, S. C.: A Theory of Water Percolation in Snow, J. Glaciol., 11, 369–385, https://doi.org/10.3189/s0022143000022346, 1972.
Colbeck, S. C.: A Study of Glacier Flow for an Open-Pit Mine: An Exercise in Applied Glaciology, J. Glaciology, 13, 401–414, https://doi.org/10.3189/s0022143000023182, 1974.
Colbeck, S. C.: Thermodynamics of snow metamorphism due to variations in curvature, J. Glaciology, 26, 291–301, https://doi.org/10.3189/s0022143000010832, 1980.
Colbeck, S. C.: An overview of seasonal snow metamorphism, Rev. Geophys. Space GE, 20, 45–61, https://doi.org/10.1029/RG020i001p00045, 1982a.
Colbeck, S. C.: Growth of faceted crystals in a snow cover, CRREL, Report 82-29, https://apps.dtic.mil/sti/html/tr/ADA122792/ (last access: 1 March 2024), 1982b.
Colbeck, S. C.: Theory of metamorphism of dry snow, J. Geophys. Res., 88, 5475–5482, https://doi.org/10.1029/JC088iC09p05475, 1983.
Colbeck, S. C.: A review of the metamorphism and classification of seasonal snow cover crystals, in: Avalanche Formation, Movement and Effects, edited by: Salm, B. and Gubler, H., IAHS Publication No. 162, Davos, Wallingford, Oxfordshire, UK, 3–34, ISBN: 0947571965, 1987.
Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn., Elsevier, Inc., ISBN: 9780080919126, 2010.
Davis, R. E., Arons, E. M., and Albert, M. R.: Metamorphism of Polar Firn: Significance of Microstructure in Energy, Mass, and Chemical Species Transfer, in: Chemical Exchange Between the Atmosphere and Polar Snow, vol. 43, edited by: Wolff, E. W. and Bales, R. C., Springer, Heidelberg, Germany, ISBN: 3540612807, 1996.
Dick, O., Viallon-Galinier, L., Tuzet, F., Hagenmuller, P., Fructus, M., Reuter, B., Lafaysse, M., and Dumont, M.: Can Saharan dust deposition impact snowpack stability in the French Alps?, The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023, 2023.
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., Macferrin, M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis, C., and Braithwaite, R. J.: A snow density dataset for improving surface boundary conditions in Greenland ice sheet firn modelling, Front. Earth Sci., 6, https://doi.org/10.3389/feart.2018.00051, 2018.
Fierz, C. and Baunach, T.: Quantifying grain-shape changes in snow subjected to large temperature gradients, Ann. Glaciol., 31, 439–442, https://doi.org/10.3189/172756400781820516, 2000.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: Appendix A: Grain Shape Classification, in: The international classification for seasonal snow on the ground, IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP, Paris, https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 3 June 2024), 2009.
Finsterwalder, R.: Expédition Glaciologique Internationale Au Groenland 1957–60 (E. G. I. G.), J. Glaciol., 3, 542–546, https://doi.org/10.3189/s0022143000017299, 1959.
Fourteau, K., Freitag, J., Malinen, M., and Löwe, H.: Microstructure-based simulations of the viscous densification of snow and firn, The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024, 2024.
Gergely, M.: Snow Characterization by Optical Properties, PhD, University of Heidelberg, Heidelberg, Germany, 107 pp., 2011.
Gergely, M., Wolfsperger, F., and Schneebeli, M.: Simulation and validation of the infraSnow: An instrument to measure snow optically equivalent grain size, IEEE T. Geosci. Remote, 52, 4236–4247, https://doi.org/10.1109/TGRS.2013.2280502, 2014.
Giddings, J. C. and LaChapelle, E.: The formation rate of depth hoar, J. Geophys. Res., 67, 2377–2383, https://doi.org/10.1029/jz067i006p02377, 1962.
Gow, A. J.: Deep core studies of the accumulation and densification of snow at Byrd Station and Little America V, Antarctica, CRREL, RR-197, AD0669248, https://apps.dtic.mil/sti/html/tr/AD0669248/index.html (last access: 8 December 2025), 1968.
Grootes, P. M. and Steig, E. J.: Taylor Dome ice-core study, Antarct. J., 25, 57–58, 1992.
Hagenmuller, P., Chambon, G., and Naaim, M.: Microstructure-based modeling of snow mechanics: a discrete element approach, The Cryosphere, 9, 1969–1982, https://doi.org/10.5194/tc-9-1969-2015, 2015.
Hammonds, K., Lieb-Lappen, R., Baker, I., and Wang, X.: Investigating the thermophysical properties of the ice–snow interface under a controlled temperature gradient: Part I: Experiments & Observations, Cold Reg. Sci. Technol., 120, 157–167, https://doi.org/10.1016/j.coldregions.2015.09.006, 2015.
Harper, J. and Humphrey, N.: Firn core density and ice content at sites along the lower Expéditions Glaciologiques Internationales au Groenland (EGIG) line, Western Greenland, 2023, Arctic Data Center [data set], https://doi.org/10.18739/A2DB7VR82, 2023.
Harper, J. and Humphrey, N.: Firn density and ice content at two sites along the west Expéditions Glaciologiques Internationales au Groenland (EGIG) line, Greenland, 2024, Arctic Data Center [data set], https://doi.org/10.18739/A2J38KK4S, 2024a.
Harper, J. and Humphrey, N.: Firn temperature-time series to 25 m depth at two sites along the west Expéditions Glaciologiques Internationales au Groenland (EGIG) line, Greenland 2022–2023, Arctic Data Center [data set], https://doi.org/10.18739/A2DB7VS0N, 2024b.
Harper, J. and Humphrey, N.: Firn temperature-time series to 25 or 32 m depth at sites along the west Expéditions Glaciologiques Internationales au Groenland (EGIG) line, Greenland 2023–2024, Arctic Data Center [data set], https://doi.org/10.18739/A28K74Z5S, 2024c.
Harper, J. and Humphrey, N.: Firn temperature-time series to 30 m depth at five sites along the west Expéditions Glaciologiques Internationales au Groenland (EGIG) line, Greenland summer of 2019, Arctic Data Center [data set], https://doi.org/10.18739/A2JM23H8X, 2024d.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.: Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566, 2012.
Harper, J., Saito, J., and Humphrey, N.: Cold Season Rain Event Has Impact on Greenland's Firn Layer Comparable to Entire Summer Melt Season, Geophys. Res. Lett., 50, https://doi.org/10.1029/2023GL103654, 2023.
Herron, M. M. and Langway, C. C.: Firn Densification: An Empirical Model, J. Glaciology, 25, 373–385, https://doi.org/10.3189/s0022143000015239, 1980.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirashima, H., Abe, O., and Sato, A.: Parameterization of the shear strength of faceted crystals during equi-temperature metamorphism, Ann. Glaciol., 52, 111–118, https://doi.org/10.3189/172756411797252310, 2011.
Howat, I. M.: Temporal variability in snow accumulation and density at Summit Camp, Greenland ice sheet, J. Glaciol., 68, 1076–1084, https://doi.org/10.1017/jog.2022.21, 2022.
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal tracking of meltwater retention in Greenland's accumulation area, J. Geophys. Res. Earth Surf., 117, https://doi.org/10.1029/2011JF002083, 2012.
Jafari, M. and Lehning, M.: Convection of snow: when and why does it happen?, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1167760, 2023.
Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., Rossman, L., Maass, N., Nicolaus, M., and Lehning, M.: The impact of diffusive water vapor transport on snow profiles in deep and shallow snow covers and on sea ice, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00249, 2020.
Jafari, M., Lehning, M., and Sharma, V.: Convection of water vapor in snowpacks, J. Fluid Mech., 394, A38, https://doi.org/10.1017/jfm.2021.1146, 2022.
Jamieson, B.: Formation of refrozen snowpack layers and their role in slab avalanche release, Rev. Geophys., 44, https://doi.org/10.1029/2005RG000176, 2006.
Jamieson, B. and Fierz, C.: Heat flow from wet to dry snowpack layers and associated faceting, Ann. Glaciol., 38, 187–194, 2004.
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido Univ. Press, 121–140, ISBN-13: 9784832902824, 2000.
Kamata, Y., Sokratov, S. A., and Sato, A.: Temperature and temperature gradient dependence of snow recrystallization in depth hoar snow, in: Lecture Notes in Physics, 395–402, https://doi.org/10.1007/bfb0104197, 1999.
LaChapelle, E. R. and Armstrong, R. L.: Temperature patterns in an alpine snow cover and their influence on snow metamorphism, U.S. Army Research Office, Inst. Arct. Alp. Res., Univ. Colo., Boulder, CO, ADA040169, https://apps.dtic.mil/sti/citations/ADA040169 (last access: 8 December 2025), 1977.
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, 2002.
Linow, S., Hörhold, M. W., and Freitag, J.: Grain-size evolution of polar firn: A new empirical grain growth parameterization based on X-ray microcomputer tomography measurements, J. Glaciol., 58, 1245–1252, https://doi.org/10.3189/2012JoG11J256, 2012.
Marbouty, D.: An Experimental Study of Temperature-Gradient Metamorphism, J. Glaciol., 26, 303–312, https://doi.org/10.3189/s0022143000010844, 1980.
Marsh, P. and Woo, M. K.: Wetting front advance and freezing of meltwater within a snow cover: 1. Observations in the Canadian Arctic, Water Resour. Res., 20, 1853–1864, https://doi.org/10.1029/WR020i012p01853, 1984a.
Marsh, P. and Woo, M. K.: Wetting front advance and freezing of meltwater within a snow cover: 2. A simulation model, Water Resour. Res., 20, 1865–1874, https://doi.org/10.1029/WR020i012p01865, 1984b.
McDowell, I. E., Keegan, K. M., Wever, N., Osterberg, E. C., Hawley, R. L., and Marshall, H. P.: Firn Core Evidence of Two-Way Feedback Mechanisms Between Meltwater Infiltration and Firn Microstructure From the Western Percolation Zone of the Greenland Ice Sheet, J. Geophys. Res. Earth Surf., 128, https://doi.org/10.1029/2022JF006752, 2023.
Montpetit, B., Royer, A., Langlois, A., Chum, M., Cliche, P., Roy, A., Champollion, N., Picard, G., Dominé, F., and Obbard, R.: In-situ Measurements for Snow Grain Size and Shape Characterization Using Optical Methods, in: 68th Eastern Snow Conference, edited by: Langlois, A., McGill Univ., Montreal, Quebec, Canada, ISBN-13: 9780920081334, 2011.
Moon, T., Harper, J., Colliander, A., Hossan, A., and Humphrey, N.: L-band radiometric measurement of liquid water in Greenland's firn: Comparative analysis with in situ measurements and modeling, Ann. Glacio., 66, e15, 1–9, https://doi.org/10.1017/aog.2025.10012, 2025.
Moser, D. E., Thomas, E. R., Nehrbass-Ahles, C., Eichler, A., and Wolff, E.: Review article: Melt-affected ice cores for polar research in a warming world, The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, 2024.
Moure, A., Jones, N., Pawlak, J., Meyer, C., and Fu, X.: A Thermodynamic Nonequilibrium Model for Preferential Infiltration and Refreezing of Melt in Snow, Water Resour. Res., 59, https://doi.org/10.1029/2022WR034035, 2023.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Nghiem, S. V., Steffen, K., Neumann, G., and Huf, R.: Mapping of ice layer extent and snow accumulation in the percolation zone of the Greenland ice sheet, J. Geophys. Res. Earth Surf., 110, https://doi.org/10.1029/2004JF000234, 2005.
Noël, B. P.: Rapid ablation zone expansion amplifies north Greenland mass loss: modelled (RACMO2) and observed (MODIS) data sets, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.904428, 2019.
Perla, R. and Ommanney, C. S. L.: Snow in strong or weak temperature gradients. Part I: Experiments and qualitative observations., Cold Reg. Sci. Technol., 11, 23–35, 1985.
Pfeffer, W. T. and Humphrey, N. F.: Determination of timing and location of water movement and ice-layer formation by temperature measurements in sub-freezing snow, J. Glaciol., 42, 292–304, https://doi.org/10.3189/s0022143000004159, 1996.
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography, The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012.
Saito, J., Harper, J., and Humphrey, N.: Uptake and Transfer of Heat Within the Firn Layer of Greenland Ice Sheet's Percolation Zone, J. Geophys. Res. Earth Surf., 129, https://doi.org/10.1029/2024JF007667, 2024.
Salamatin, A. N., Lipenkov, V. Y., Barnola, J. M., Hori, A., Duval, P., and Hondoh, T.: Snow/firn densification in polar ice sheets, in: Physics of Ice Core Records II: Papers Collected After the 2nd International Workshop on Physics of Ice Core Records, Sapporo, Japan, 2–6 February 2007 (Low Temperature Science; 68(Suppl.)), edited by: Hondoh, T., Institute of Low Temperature Science, Hokkaido University, Sapporo, 195–222, 2009.
Steffen, K., Abdalati, W., and Sherjal, I.: Faceted crystal formation in the northeast Greenland low-accumulation region, J. Glaciol., 45, 63–68, 1999.
Steffen, K., Vandecrux, B., Houtz, D., Abdalati, W., Bayou, N., Box, J. E., Colgan, W. T., Espona Pernas, L., Griessinger, N., Haas-Artho, D., Heilig, A., Hubert, A., Iosifescu Enescu, I., Johnson-Amin, N., Karlsson, N. B., Kurup Buchholz, R., McGrath, D., Cullen, N. J., Naderpour, R., Molotch, N. P., Pedersen, A. Ø., Perren, B., Philipps, T., Plattner, G. K., Proksch, M., Revheim, M. K., Særrelse, M., Schneebli, M., Sampson, K., Starkweather, S., Steffen, S., Stroeve, J., Watler, B., Winton, Ø. A., Zwally, J., and Ahlstrøm, A.: GC-Net Level 1 historical automated weather station data, Version V8, GEUS Dataverse [data set], https://doi.org/10.22008/FK2/VVXGUT, 2022.
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., Munneke, P. K., Lehning, M., Lhermitte, S., Ligtenberg, S. R. M., Miège, C., and Noël, B. P. Y.: Firn meltwater retention on the greenland ice sheet: A model comparison, Front. Earth Sci., 5, https://doi.org/10.3389/feart.2017.00003, 2017.
Sturm, M. and Benson, C. S.: Vapor transport, grain growth and depth-hoar development in the subarctic snow, J. Glaciol., 43, 42–58, https://doi.org/10.3189/s0022143000002793, 1997.
The Firn Symposium Team: Firn on ice sheets, Nat. Rev. Earth. Environ., 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9, 2024.
Vandecrux, B., Box, J. E., Wehrlé, A., Kokhanovsky, A. A., Picard, G., Niwano, M., Hörhold, M., Faber, A. K., and Steen-Larsen, H. C.: The Determination of the Snow Optical Grain Diameter and Snowmelt Area on the Greenland Ice Sheet Using Spaceborne Optical Observations, Remote Sens., 14, 932, https://doi.org/10.3390/rs14040932, 2022.
Watanabe, O., Shimada, W., Narita, H., Miyamoto, A., Tayukj, K., Hondoh, T., Kawamura, T., Fujita, S., Shoji, H., Enomoto, H., Kameoa, T., Kawada, K., and Yokoyama, K.: Preliminary discussion of physical properties of the Dome Fuji shallow ice core in 1993, Antarctica, Proc. NIPR Symp. Polar Meteorol. Glaciol, 11, 1–8, 1997.
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015.
Wever, N., Würzer, S., Fierz, C., and Lehning, M.: Simulating ice layer formation under the presence of preferential flow in layered snowpacks, The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, 2016.
Yosida, Z.: Physical Studies on Deposited Snow. 1. Thermal Properties, Contributions from the Institute of Low Temperature Science, 7, 19–74, 1955.
Zermatten, E., Schneebeli, M., Arakawa, H., and Steinfeld, A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements, Cold Reg. Sci. Technol., 97, 33–40, https://doi.org/10.1016/j.coldregions.2013.09.013, 2014.
Short summary
The geometric form of snow grains governs snow compaction and the movement of air and water within the snow. We observed unexpectedly thick and deep layers of faceted snow grains in cores drilled along the flanks of the Greenland Ice Sheet. Based on field measurements and modeling, we find that meltwater infiltration and refreezing in the cold snow generates these grains. As more of the ice sheet is affected by melting, subsurface faceting of snow crystals may become increasingly important.
The geometric form of snow grains governs snow compaction and the movement of air and water...