Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-6341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revealing firn structure at Dome A region in East Antarctica using cultural seismic noise
Zhengyi Song
School of Earth and Space Science and Technology, Wuhan University, Wuhan, 430079, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
School of Earth and Space Science and Technology, Wuhan University, Wuhan, 430079, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
Jiangtao Li
School of Earth and Space Science and Technology, Wuhan University, Wuhan, 430079, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
Hongrui Peng
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA
Yiming Wang
School of Earth and Space Science and Technology, Wuhan University, Wuhan, 430079, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
Yuande Yang
Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, 430079, China
Key Laboratory of Polar Environment Monitoring and Public Governance, Ministry of Education, Wuhan University, Wuhan, 430079, China
Kai Lu
Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China
Xueyuan Tang
Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China
School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200230, China
Xiaohong Zhang
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, 430079, China
Key Laboratory of Polar Environment Monitoring and Public Governance, Ministry of Education, Wuhan University, Wuhan, 430079, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China
Related authors
No articles found.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative working together on these archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica and how this is being used to reconstruct past and to predict future ice and climate behaviour.
Haifeng Huo, Hui Xu, Jixiu Wu, Tao Li, Jingjin Liu, Enzhao Xiao, and Xueyuan Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4768, https://doi.org/10.5194/egusphere-2025-4768, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Through a series of direct shear tests, this study analyzes the variation of shear strength parameters (cohesion and internal friction angle) in compacted snow under different conditions of density, sintering time, and temperature. A Genetic Algorithm-Back Propagation neural network model was subsequently developed to establish systematic benchmark values for these parameters. This work provides essential data and a predictive framework for the reliable design of snow structures in cold regions.
Shaoxia Liu, Xueyuan Tang, Shuhu Yang, and Lijuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3092, https://doi.org/10.5194/egusphere-2025-3092, 2025
Short summary
Short summary
1. We have used a computer model to understand the distribution of heat from the Earth's interior across the Antarctic continent. 2. The findings show that heat flow is generally lower in East Antarctica, while it is higher in West Antarctica in coastal and mountainous areas. 3. These differences affect the movement and melting of glaciers and help us to predict changes in sea level due to climate change.
Kai Lu and Yuqing Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-646, https://doi.org/10.5194/egusphere-2025-646, 2025
Short summary
Short summary
This study provides theoretical support for the active seismic study at Lake Qilin through wavefield simulation, data processing, and acquisition system evaluation. Simulations show that multiples and guided waves are prominent, which will introduce false layers in data processing. Furthermore, full-coverage acquisition system is the optimal approach for this exploration. Data from Thwaites Glacier corroborates the presence of free surface multiples and guided waves observed in our simulation.
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024, https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Z. Xu, F. Zhu, and X. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1161–1168, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1161-2023, 2023
Y. Zhang, F. Zhu, and X. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1179–1184, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1179-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1179-2023, 2023
Cited articles
Amory, C., Buizert, C., Buzzard, S., Case, E., Clerx, N., Culberg, R., Datta, R. T., Dey, R., Drews, R., Dunmire, D., Eayrs, C., Hansen, N., Humbert, A., Kaitheri, A., Keegan, K., Kuipers Munneke, P., Lenaerts, J. T. M., Lhermitte, S., Mair, D., McDowell, I., Mejia, J., Meyer, C. R., Morris, E., Moser, D., Oraschewski, F. M., Pearce, E., de Roda Husman, S., Schlegel, N. J., Schultz, T., Simonsen, S. B., Stevens, C. M., Thomas, E. R., Thompson-Munson, M., Wever, N., and Wouters, B.: Firn on ice sheets, Nat. Rev. Earth Environ., 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9, 2024.
Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, A., Anandakrishnan, S., Huerta, A., Winberry, J. P., Wilson, T., and Rowe, C.: The seismic noise environment of Antarctica, Seismol. Res. Lett., 86, 89–100, https://doi.org/10.1785/0220140109, 2015.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x, 2007.
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316, 2012.
Chaput, J., Aster, R., Karplus, M., and Nakata, N.: Ambient high-frequency seismic surface waves in the firn column of central west Antarctica, J. Glaciol., 68, 785–798, https://doi.org/10.1017/jog.2021.135, 2022.
Chaput, J., Aster, R., Karplus, M., Nakata, N., Gerstoft, P., Bromirski, P. D., Nyblade, A., Stephen, R. A., and Wiens, D. A.: Near-surface seismic anisotropy in Antarctic glacial snow and ice revealed by high-frequency ambient noise, J. Glaciol., 69, 773–789, https://doi.org/10.1017/jog.2022.98, 2023.
Cheng, F., Xia, J., and Xi, C.: Artifacts in high-frequency passive surface wave dispersion imaging: Toward the linear receiver array, Surveys Geophys., 44, 1009–1039, https://doi.org/10.1007/s10712-023-09772-1, 2023.
Diez, A., Eisen, O., Weikusat, I., Eichler, J., Hofstede, C., Bohleber, P., Bohlen, T., and Polom, U.: Influence of ice crystal anisotropy on seismic velocity analysis, Ann. Glaciol., 55, 97–106, https://doi.org/10.3189/2014AoG67A002, 2014.
Diez, A., Bromirski, P. D., Gerstoft, P., Stephen, R. A., Anthony, R. E., Aster, R. C., Cai, C., Nyblade, A., and Wiens, D. A.: Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica, Geophys. J. Int., 205, 785–795, https://doi.org/10.1093/gji/ggw036, 2016.
Feng, X., Xia, Y., and Chen, X.: Frequency-Bessel multi-mode surface wave tomography utilizing microseisms excited by energetic typhoons, Sci. China Earth Sci., 67, 3436–3447, https://doi.org/10.1007/s11430-024-1408-8, 2024.
Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Leuschen, C., and McConnell, J. R.: Extensive liquid meltwater storage in firn within the Greenland ice sheet, Nat. Geosci., 7, 95–98, https://doi.org/10.1038/ngeo2043, 2014.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fu, L., Guo, J., Li, J., Deng, B., Liu, G., Xiao, E., and Chen, X.: Imaging the ice sheet and uppermost crustal structures with a dense linear seismic array in the Larsemann Hills, Prydz Bay, East Antarctica, Seismol. Res. Lett., 93, 288–295, https://doi.org/10.1785/0220210135, 2022.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gerber, T. A., Lilien, D. A., Rathmann, N. M., Franke, S., Young, T. J., Valero-Delgado, F., Ershadi, M. R., Drews, R., Zeising, O., Humbert, A., and Stoll, N.: Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream, Nat. Commun., 14, 2653, https://doi.org/10.1038/s41467-023-38139-8, 2023.
Goujon, C., Barnola, J. M., and Ritz, C.: Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites, J. Geophys. Res. Atmos., 108, 4792, https://doi.org/10.1029/2002JD003319, 2003.
Hou, S., Li, Y., Xiao, C., and Ren, J.: Recent accumulation rate at Dome A, Antarctica, Chin. Sci. Bull., 52, 428–431, https://doi.org/10.1007/s11434-007-0041-3, 2007.
Jiang, S., Cole-Dai, J., Li, Y., Ferris, D. G., Ma, H., An, C., Shi, G., and Sun, B.: A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A, East Antarctica, J. Glaciol., 58, 65–75, https://doi.org/10.3189/2012JoG11J138, 2012.
Kirchner, H., Michot, G., Narita, H., and Suzuki, T.: Snow as a foam of ice: Plasticity, fracture and the brittle-to-ductile transition, Philos. Mag. A., 81, 2161–2181, https://doi.org/10.1080/01418610108217141, 2001.
Knopoff, L.: A matrix method for elastic wave problems, Bull. Seismol. Soc. Am., 54, 431–438, https://doi.org/10.1785/BSSA0540010431, 1964.
Kowalewski, S., Helm, V., Morris, E. M., and Eisen, O.: The regional-scale surface mass balance of Pine Island Glacier, West Antarctica, over the period 2005–2014, derived from airborne radar soundings and neutron probe measurements, The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021, 2021.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
Liu, Y., Yu, Z., Zhang, Z., Yao, H., Wang, W., Zhang, H., Fang, H., and Fang, L.: The high-resolution community velocity model V2.0 of southwest China, constructed by joint body and surface wave tomography of data recorded at temporary dense arrays, Sci. China Earth Sci., 66, 2368–2385, https://doi.org/10.1007/s11430-022-1161-7, 2023.
Ma, Y., Bian, L., Xiao, C., Allison, I., and Zhou, X. J.: Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica, Antarct. Sci., 22, 443–459, https://doi.org/10.1017/S0954102010000209, 2010.
MacAyeal, D. R.: Seismology gets under the skin of the Antarctic ice sheet, Geophys. Res. Lett., 45, 11173–11176, https://doi.org/10.1029/2018GL080366, 2018.
Medley, B., Neumann, T. A., Zwally, H. J., Smith, B. E., and Stevens, C. M.: Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021, The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, 2022.
Mi, B., Xia, J., Tian, G., Shi, Z., Xing, H., Chang, X., Xi, C., Liu, Y., Ning, L., Dai, T., Pang, J., Chen, X., Zhou, C., and Zhang, H.: Near-surface imaging from traffic-induced surface waves with dense linear arrays: an application in the urban area of Hangzhou, China, Geophys., 87, B145–B158, https://doi.org/10.1190/geo2021-0184.1, 2022.
Miller, O., Solomon, D. K., Miège, C., Koenig, L., Forster, R., Schmerr, N., Ligtenberg, R. M., and Montgomery, L.: Direct evidence of meltwater flow within a firn aquifer in southeast Greenland, Geophys. Res. Lett., 45, 207–215, https://doi.org/10.1002/2017GL075707, 2018.
Nakata, N., Gualtieri, L., and Fichtner, A.: Seismic ambient noise, Cambridge Univ. Press, https://doi.org/10.1017/9781108264808, 2019.
Narita, H.: An experimental study on the tensile fracture of snow, Contrib. Inst. Low Temp. Sci., 32, 1–37, 1984.
Nielsen, E. B., Katurji, M., Zawar-Reza, P., and Meyer, H.: Antarctic daily mesoscale air temperature dataset derived from MODIS land and ice surface temperature, Sci. Data, 10, 833, https://doi.org/10.1038/s41597-023-02720-z, 2023.
Park, C. B., Miller, R. D., and Xia, J.: Multichannel analysis of surface waves, Geophys., 64, 800–808, https://doi.org/10.1190/1.1444590, 1999.
Pearce, E., Zigone, D., Hofstede, C., Fichtner, A., Rimpot, J., Rasmussen, S. O., Freitag, J., and Eisen, O.: Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves, The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024, 2024.
Picotti, S., Vuan, A., Carcione, J. M., Horgan, H. J., and Anandakrishnan, S.: Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data, J. Geophys. Res. Solid Earth, 120, 4237–4262, https://doi.org/10.1002/2014JB011591, 2015.
Picotti, S., Carcione, J. M., and Pavan, M.: Seismic attenuation in Antarctic firn, The Cryosphere, 18, 169–186, https://doi.org/10.5194/tc-18-169-2024, 2024.
Preiswerk, L. E. and Walter, F.: High-Frequency (>2 Hz) Ambient Seismic Noise on High-Melt Glaciers: Green's Function Estimation and Source Characterization, J. Geophys. Res. Earth Surf., 123, 1667–1681, https://doi.org/10.1029/2017JF004498, 2018.
Qin, L., Qiu, H., Nakata, N., Booth, A., Zhang, Z., Karplus, M., McKeague, J., Clark, R., and Kaip, G.: High-resolution characterization of the firn layer near the West Antarctic ice sheet divide camp with active and passive seismic data, Geophys. Res. Lett., 51, e2024GL108933, https://doi.org/10.1029/2024GL108933, 2024.
Schimmel, M. and Paulssen, H.: Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys. J. Int., 130, 497–505, https://doi.org/10.1111/j.1365-246X.1997.tb05664.x, 1997.
Schlegel, R., Diez, A., Löwe, H., Mayer, C., Lambrecht, A., Freitag, J., Miller, H., Hofstede, C., and Eisen, O.: Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn, Ann. Glaciol., 60, 220–230, https://doi.org/10.1017/aog.2019.10, 2019.
Schwander, J., Sowers, T., Barnola, J. M., Blunier, T., Fuchs, A., and Malaizé, B.: Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change, J. Geophys. Res. Atmos, 102, 19483–19493, https://doi.org/10.1029/97JD01309, 1997.
Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., and Mordret, A.: On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, 2020.
Smith, B. E., Medley, B., Fettweis, X., Sutterley, T., Alexander, P., Porter, D., and Tedesco, M.: Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry, The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, 2023.
Song, Z., Pan, Y., Li, J., Peng, H., Wang, Y., Yang, Y., Lu, K., Tang, X., and Zhang, X.: The density, S-wave velocity models at Dome A region in East Antarctica (V1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.14862270, 2025.
Sun, B., Moore, J. C., Zwinger, T., Zhao, L., Steinhage, D., Tang, X., Zhang, D., Cui, X., and Martín, C.: How old is the ice beneath Dome A, Antarctica?, The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, 2014.
Tang, X., Sun, B., and Wang, T.: Radar isochronic layer dating for a deep ice core at Kunlun Station, Antarctica, Sci. China Earth Sci., 63, 303–308, https://doi.org/10.1007/s11430-018-9365-8, 2020.
van Ginkel, J., Walter, F., Lindner, F., Hallo, M., Huss, M., and Fäh, D.: Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland, The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, 2025.
Velicogna, I., Mohajerani, Y., Geruo, A., Landerer, F., Mouginot, J., Noel, B., Rignot, E., Sutterley, T., van den Broeke, M., van Wessem, M., and Wiese, D.: Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions, Geophys. Res. Lett., 47, e2020GL087291, https://doi.org/10.1029/2020GL087291, 2020.
Wang, Y., Song, X., Zhang, X., Yuan, S., Zhang, K., Wang, L., Le, Z., and Cai, W.: Multi-objective particle swarm optimization for multimode surface wave analysis, Comput. Geosci., 176, 105343, https://doi.org/10.1016/j.cageo.2023.105343, 2023a.
Wang, Y., Zhang, X., Ning, W., Lazzara, M. A., Ding, M., Reijmer, C. H., Smeets, P. C. J. P., Grigioni, P., Heil, P., Thomas, E. R., Mikolajczyk, D., Welhouse, L. J., Keller, L. M., Zhai, Z., Sun, Y., and Hou, S.: The AntAWS dataset: a compilation of Antarctic automatic weather station observations, Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, 2023b.
Wilkinson, D. S.: A pressure-sintering model for the densification of polar firn and glacier ice, J. Glaciol., 34, 40–45, https://doi.org/10.3189/s0022143000009047, 1988.
Xiao, C., Li, Y., Allison, I., Hou, S., Dreyfus, G., Barnola, J. M., Ren, J., Bian, L., Zhang, S., and Kameda, T.: Surface characteristics at Dome A, Antarctica: First measurements and a guide to future ice-coring sites, Ann. Glaciol., 48, 82–87, https://doi.org/10.3189/172756408784700653, 2008.
Yang, W., Dou, Y., Zhao, B., Guo, J., Tang, X., Zuo, G., Wang, Y., Chen, Y., and Zhang, Y.: Inversion for the density–depth profile of Dome A, East Antarctica, using frequency-modulated continuous wave radar, J. Glaciol., 67, 1213-1227, https://doi.org/10.1017/jog.2021.70, 2021.
Yang, Y. and Li, F.: The absolute gravity measurements from A10 along the 1240 km route in East Antarctica, Sci. China Earth Sci., 65, 2417–2420, https://doi.org/10.1007/s11430-022-1021-6, 2022.
Yang, Y., Sun, B., Wang, Z., Ding, M., Hwang, C., Ai, S., Wang, L., Du, Y., and E, D.: GPS-derived velocity and strain fields around Dome Argus, Antarctica, J. Glaciol., 60, 735–742, https://doi.org/10.3189/2014JoG14J078, 2014.
Yang, Y., Zhan, Z., Karrenbach, M., Reid McLaughlin, A., Biondi, E., Wiens, D. A., and Aster, R. C.: Characterizing South Pole firn structure with fiber optic sensing, Geophys. Res. Lett., 51, e2024GL109183, https://doi.org/10.1029/2024GL109183, 2024.
Zhang, Z., Nakata, N., Karplus, M., Kaip, G., and Yi, J.: Shallow ice-sheet composite structure revealed by seismic imaging near the West Antarctic ice sheet (WAIS) divide camp, J. Geophys. Res. Earth Surf., 127, e2022JF006777, https://doi.org/10.1029/2022JF006777, 2022.
Zhang, Z., Nakata, N., Karplus, M., Kaip, G., Qin, L., Li, Z., Shi, C., and Chen, X.: Seismic full-wavefield imaging of the West Antarctic Ice Sheet interior near the ice flow divide, Earth Planet Sci. Lett., 636, 118701, https://doi.org/10.1016/j.epsl.2024.118701, 2024.
Zhao, Y., Li, J., Xu, J., Yao, H., Zhu, G., Yang, H., Zhang, J., and Lu, R.: High-resolution velocity structure and seismogenic potential of strong earthquakes in the Bamei-Kangding segment of the Xianshuihe fault zone, Sci. China Earth Sci., 66, 1960–1978, https://doi.org/10.1016/j.cageo.2023.105343, 2023.
Zhou, W., Butcher, A., Brisbourne, A. M., Kufner, S. K., Kendall, J. M., and Stork, A. L.: Seismic noise interferometry and distributed acoustic sensing (DAS): Inverting for the firn layer S-velocity structure on Rutford Ice Stream, Antarctica, J. Geophys. Res. Earth Surf., 127, e2022JF006917, https://doi.org/10.1029/2022JF006917, 2022.
Short summary
Obtaining the physical properties of ice sheets is important. In this study, we use seismic ambient noise to obtain the shallow S-wave velocity structure at the Dome A region. The result agrees with the ice-core data nearby and reveals radial anisotropy in the firn layer. This study demonstrates that cultural seismic noise provides an effective and environmentally friendly way for the imaging of near-surface structures in Antarctica.
Obtaining the physical properties of ice sheets is important. In this study, we use seismic...