Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermokarst lakes disturb the permafrost structure and stimulate through-talik formation in the Qinghai–Tibet Plateau, China: a hydrogeophysical investigation
School of Civil and Hydraulic Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Wei Wang
CORRESPONDING AUTHOR
School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an 710054, China
Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
Fujun Niu
Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, School of Environment and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China
Zeyong Gao
State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, CAS, Lanzhou, 730000, China
Wenkang Huang
Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, 510630, Guangdong, China
Huake Cao
College of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, Shaanxi, China
Related authors
No articles found.
Xiaoqing Peng, Guangshang Yang, Oliver W. Frauenfeld, Xuanjia Li, Weiwei Tian, Guanqun Chen, Yuan Huang, Gang Wei, Jing Luo, Cuicui Mu, and Fujun Niu
Earth Syst. Sci. Data, 16, 2033–2045, https://doi.org/10.5194/essd-16-2033-2024, https://doi.org/10.5194/essd-16-2033-2024, 2024
Short summary
Short summary
It is important to know about the distribution of thermokarst landscapes. However, most work has been done in the permafrost regions of the Qinghai–Tibetan Plateau, except for the Qilian Mountains in the northeast. Here we used satellite images and field work to investigate and analyze its potential driving factors. We found a total of 1064 hillslope thermokarst (HT) features in this area, and 82 % were initiated in the last 10 years. These findings will be significant for the next predictions.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Cited articles
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015wr017016, 2015.
Bouchard, F., Francus, P., Pienitz, R., and Laurion, I.: Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec, Canada, J. Geophys. Res.-Biogeo., 116, https://doi.org/10.1029/2011jg001883, 2011.
Briggs, M. A., Campbell, S., Nolan, J., Walvoord, M. A., Ntarlagiannis, D., Day-Lewis, F. D., and Lane, J. W.: Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes, Permafr. Periglac. Process., 28, 52–65, https://doi.org/10.1002/ppp.1893, 2017.
Cheng, G. D., Zhao, L., Li, R., Wu, X. D., Sheng, Y., Hu, G. J., Zou, D. F., Jin, H. J., Li, X., and Wu, Q. B.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau, Chin. Sci. Bull. Chin., 64, 2783–2795, https://doi.org/10.1360/tb-2019-0191, 2019.
Creighton, A. L., Parsekian, A. D., Angelopoulos, M., Jones, B. M., Bondurant, A., Engram, M., Lenz, J., Overduin, P. P., Grosse, G., Babcock, E., and Arp, C. D.: Transient electromagnetic surveys for the determination of talik depth and geometry beneath thermokarst lakes, J. Geophys. Res.-Solid Earth, 123, 9310–9323, https://doi.org/10.1029/2018jb016121, 2018.
Ding, Y. J., Zhang, S. Q., Zhao, L., Li, Z. Q., and Kang, S. C.: Global warming weakening the inherent stability of glaciers and permafrost, Sci. Bull., 64, 245–253, https://doi.org/10.1016/j.scib.2018.12.028, 2019.
Gao, B. and Coon, E. T.: Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models, The Cryosphere, 16, 4141–4162, https://doi.org/10.5194/tc-16-4141-2022, 2022.
Gao, S. H., Jin, H. J., Bense, V. F., Wang, X. B., and Chai, X. J.: Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW, Hydrogeol. J., 27, 1725–1737, https://doi.org/10.1007/s10040-019-01942-z, 2019.
Gao, Z. Y., Niu, F. J., Wang, Y. B., Lin, Z. J., and Wang, W.: Suprapermafrost groundwater flow and exchange around a thermokarst lake on the Qinghai-Tibet Plateau, China, J. Hydrol., 593, 125882, https://doi.org/10.1016/j.jhydrol.2020.125882, 2021.
Guo, L., Yu, Q. H., You, Y. H., Wang, X. B., Yuan, C., and Li, X. N.: Evaluation on the influences of lakes on the thermal regimes of nearby tower foundations along the Qinghai-Tibet Power Transmission Line, Appl. Therm. Eng., 102, 829–840, https://doi.org/10.1016/j.applthermaleng.2016.03.135, 2016.
Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Vdlksch, I., Miihll, D. V., and Mausbacher, R.: Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps, J. Geophys. Res.-Earth Surf., 113, https://doi.org/10.1029/2007jf000799, 2008.
Hornum, M. T., Betlem, P., and Hodson, A.: Groundwater flow through continuous permafrost along geological boundary revealed by electrical resistivity tomography, Geophys. Res. Lett., 48, e2021GL092757, https://doi.org/10.1029/2021gl092757, 2021.
in 't Zandt, M. H., Liebner, S., and Welte, C. U.: Roles of Thermokarst Lakes in a Warming World, Trends in Microbiology, 28, 769–779, https://doi.org/10.1016/j.tim.2020.04.002, 2020.
Ke, X. and Wang, W.: ERT data, Zenodo [data set], https://doi.org/10.5281/zenodo.17164658, 2025.
Ke, X. M., Li, Y. J., Wang, W., Niu, F. J., and Gao, Z. Y.: Hydrogeochemical characteristics and processes of thermokarst lake and groundwater during the melting of the active layer in a permafrost region of the Qinghai-Tibet Plateau, China, Sci. Total Environ., 851, 158183, https://doi.org/10.1016/j.scitotenv.2022.158183, 2022a.
Ke, X. M., Ou, A. F., Wang, W., Niu, F. J., and Gao, Z. Y.: Interaction of thermokarst lake and permafrost in Qinghai-Tibet Plateau, Adv. Water Sci., 33, 542–552, https://doi.org/10.14042/j.cnki.32.1309.2022.04.003, 2022b.
Ke, X. M., Liu, P., Wang, W., Li, J. L., Niu, F. J., Gao, Z. Y., and Kong, D. T.: Spatial variability of the vertical saturated hydraulic conductivity of sediments around typical thermokarst lakes, Geoderma, 429, 116230, https://doi.org/10.1016/j.geoderma.2022.116230, 2023a.
Ke, X. M., Wang, W., Huang, W. F., Niu, F. J., and Gao, Z. Y.: Thermokarst lakes group accelerates permafrost degradation in the Qinghai–Tibet Plateau, China: A modeling study, J. Hydrol., 625, 130072, https://doi.org/10.1016/j.jhydrol.2023.130072, 2023b.
Keating, K., Binley, A., Bense, V., Van Dam, R. L., and Christiansen, H. H.: Combined geophysical measurements provide evidence for unfrozen water in permafrost in the Adventdalen valley in Svalbard, Geophys. Res. Lett., 45, 7606–7614, https://doi.org/10.1029/2017gl076508, 2018.
Lamontagne-Halle, P., McKenzie, J. M., Kurylyk, B. L., Molson, J., and Lyon, L. N.: Guidelines for cold-regions groundwater numerical modelling, WIREs Water, 7, e1467, https://doi.org/10.1002/wat2.1467, 2020.
Li, J. L., Wang, W., Wang, D. H., Li, J. Q., and Dong, J.: Hydrochemical and stable isotope characteristics of lake water and groundwater in the Beiluhe Basin, Qinghai-Tibet Plateau, Water, 12, 2269, https://doi.org/10.3390/w12082269, 2020.
Li, J. L., Wang, W., Ke, X. M., Li, J. H., Yu, Y. T., Gao, Z. Y., and Niu, F. J.: Impacts of groundwater flow on the evolution of a thermokarst lake in the permafrost-dominated region on the Qinghai-Tibet plateau, Hydrol. Proces., 35, e14443, https://doi.org/10.1002/hyp.14443, 2021a.
Li, M., Zeng, Y., Lubczynski, M. W., Roy, J., Yu, L., Qian, H., Li, Z., Chen, J., Han, L., Zheng, H., Veldkamp, T., Schoorl, J. M., Hendricks Franssen, H.-J., Hou, K., Zhang, Q., Xu, P., Li, F., Lu, K., Li, Y., and Su, Z.: A first investigation of hydrogeology and hydrogeophysics of the Maqu catchment in the Yellow River source region, Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, 2021b.
Li, S. Y., Zhan, H. B., Lai, Y. M., Sun, Z. Z., and Pei, W. S.: The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming, J. Geophys. Res.-Earth Surface, 119, 836–853, https://doi.org/10.1002/2013jf002930, 2014.
Lin, Z. J., Niu, F. J., Ge, J. J., Wang, P., and Dong, Y. H.: Variation characteristics of the thawing lake in permafrost regions of the Tibetan Plateau and their influence on the thermal state of permafrost, J. Glaciol. Geocryol., 32, 341–350, 2010.
Lin, Z. J., Luo, J., and Niu, F. J.: Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau, Geosphere, 12, 632–643, https://doi.org/10.1130/ges01194.1, 2016.
Lin, Z. J., Niu, F. J., Fang, J. H., Luo, J., and Yin, G. A.: Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau, Geomorphology, 276, 16–26, https://doi.org/10.1016/j.geomorph.2016.09.035, 2017.
Liu, G. M., Wu, T. H., Hu, G. J., Wu, X. D., and Li, W. P.: Permafrost existence is closely associated with soil organic matter preservation: Evidence from relationships among environmental factors and soil carbon in a permafrost boundary area, CATENA, 196, 104894, https://doi.org/10.1016/j.catena.2020.104894, 2021.
Liu, H. M., Cheng, Y., Liu, Z. F., Li, Q. R., Zhang, H. Y., and Wei, W.: Conflict or coordination? The spatiotemporal relationship between humans and nature on the Qinghai-Tibet plateau, Earths Future, 11, e2022EF003452, https://doi.org/10.1029/2022ef003452, 2023a.
Liu, Z. Y., Wang, S. W., Jiang, Z. Y., Dong, Y. H., Chen, J. B., and Cui, F. Q.: Study on the coupling thermal effect of thermokarst lake and high sunny slope on permafrost embankment, Transp. Geotech., 41, 101024, https://doi.org/10.1016/j.trgeo.2023.101024, 2023b.
Loke, M. H. and Barker, R. D.: Practical techniques for 3D resistivity surveys and data inversion, Geophys. Prospect., 44, 499–523, https://doi.org/10.1111/j.1365-2478.1996.tb00162.x, 1996.
Luo, J., Niu, F. J., Lin, Z. J., Liu, M. H., Yin, G. A., and Gao, Z. Y.: Abrupt increase in thermokarst lakes on the central Tibetan Plateau over the last 50 years, CATENA, 217, 106497, https://doi.org/10.1016/j.catena.2022.106497, 2022.
McKenzie, J. M., Voss, C. I., and Siegel, D. I.: Groundwater flow with energy transport and water–ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs, Adv. Water Resour., 30, 966–983, https://doi.org/10.1016/j.advwatres.2006.08.008, 2007.
Niu, F. J., Wang, W., Lin, Z. J., and Luo, J.: Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau, Adv. Earth Sci., 33, 335–342, https://doi.org/10.11867/j.issn.1001-8166.2018.04.0335, 2018.
Noetzli, J., Arenson, L. U., Bast, A., Beutel, J., Delaloye, R., Farinotti, D., Gruber, S., Gubler, H., Haeberli, W., Hasler, A., Hauck, C., Hiller, M., Hoelzle, M., Lambiel, C., Pellet, C., Springman, S. M., Vonder Muehll, D., and Phillips, M.: Best practice for measuring permafrost temperature in boreholes based on the experience in the Swiss Alps, Front. Earth Sci., 9, 607875, https://doi.org/10.3389/feart.2021.607875, 2021.
Obu, J.: How much of the earth's surface is underlain by permafrost?, J. Geophys. Res.-Earth Surf., 126, e2021JF006123, https://doi.org/10.1029/2021jf006123, 2021.
Peng, E. X., Sheng, Y., Hu, X. Y., Wu, J. C., and Cao, W.: Thermal effect of thermokarst lake on the permafrost under embankment, Adv. Clim. Chang. Res., 12, 76–82, https://doi.org/10.1016/j.accre.2020.10.002, 2021.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: High-resolution datasets of permafrost thermal state and hydrothermal zonation in the Northern Hemisphere, National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.271190, 2021.
Rangel, R. C., Parsekian, A. D., Farquharson, L. M., Jones, B. M., Ohara, N., Creighton, A. L., Gaglioti, B. V., Kanevskiy, M., Breen, A. L., Bergstedt, H., Romanovsky, V. E., and Hinkel, K. M.: Geophysical observations of taliks below drained lake basins on the Arctic Coastal Plain of Alaska, J. Geophys. Res.-Solid Earth, 126, e2020JB020889, https://doi.org/10.1029/2020jb020889, 2021.
Rowland, J. C., Travis, B. J., and Wilson, C. J.: The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011gl048497, 2011.
Shur, Y., Jorgenson, M. T., and Kanevskiy, M. Z.: Permafrost, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands, Dordrecht, 2011.
Sjöberg, Y., Marklund, P., Pettersson, R., and Lyon, S. W.: Geophysical mapping of palsa peatland permafrost, The Cryosphere, 9, 465–478, https://doi.org/10.5194/tc-9-465-2015, 2015.
Sun, W., Cao, B., Hao, J., Wang, S., Clow, G. D., Sun, Y., Fan, C., Zhao, W., Peng, X., Yao, Y., and Zhang, T.: Two-dimensional simulation of island permafrost degradation in Northeastern Tibetan Plateau, Geoderma, 430, 116330, https://doi.org/10.1016/j.geoderma.2023.116330, 2023.
Tang, L. Y., Wang, K., Jin, L., Yang, G. S., Jia, H. L., and Taoum, A.: A resistivity model for testing unfrozen water content of frozen soil, Cold Reg. Sci. Technol., 153, 55–63, https://doi.org/10.1016/j.coldregions.2018.05.003, 2018.
Terry, N., Grunewald, E., Briggs, M., Gooseff, M., Huryn, A. D., Kass, M. A., Tape, K. D., Hendrickson, P., and Lane, J. W.: Seasonal subsurface thaw dynamics of an aufeis feature inferred from geophysical methods, J. Geophys. Res.-Earth Surf., 125, e2019JF005345, https://doi.org/10.1029/2019jf005345, 2020.
Uhlemann, S., Shirley, I., Wielandt, S., Ulrich, C., Wang, C., Fiolleau, S., Peterson, J., Lamb, J., Thaler, E., Rowland, J., Hubbard, S. S., and Dafflon, B.: Estimating permafrost distribution using co-located temperature and electrical resistivity measurements, Geophys. Res. Lett., 50, e2023GL103987, https://doi.org/10.1029/2023gl103987, 2023.
Veremeeva, A., Nitze, I., Gunther, F., Grosse, G., and Rivkina, E.: Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, North-Eastern Siberia, Remote Sens., 13, 178, https://doi.org/10.3390/rs13020178, 2021.
Wang, W. H., Wu, T. H., Zhao, L., Li, R., Xie, C. W., Qiao, Y. P., Zhang, H. W., Zhu, X. F., Yang, S. H., Qin, Y. H., and Hao, J. M.: Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau, Sci. Total Environ., 626, 366–376, https://doi.org/10.1016/j.scitotenv.2018.01.097, 2018.
Wellman, T. P., Voss, C. I., and Walvoord, M. A.: Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA), Hydrogeol. J., 21, 281–298, https://doi.org/10.1007/s10040-012-0941-4, 2013.
Wen, Z., Zhelezniak, M., Wang, D. Y., Ma, W., Wu, Q. B., Yang, Z., Zhirkov, A., and Gao, Q.: Thermal interaction between a thermokarst lake and a nearby embankment in permafrost regions, Cold Reg. Sci. Technol., 155, 214–224, https://doi.org/10.1016/j.coldregions.2018.08.010, 2018.
Wu, Q. B., Zhang, T. J., and Liu, Y. Z.: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau, Glob. Planet. Change, 72, 32–38, https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Wu, T., Xie, C., Zhu, X., Chen, J., Wang, W., Li, R., Wen, A., Wang, D., Lou, P., Shang, C., La, Y., Wei, X., Ma, X., Qiao, Y., Wu, X., Pang, Q., and Hu, G.: Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, 2022.
Xu, Z. D., Jiang, L. M., Guo, R., Huang, R. G., Zhou, Z. W., Niu, F. J., and Jiao, Z. P.: Interaction of permafrost degradation and thermokarst lakes in the Qinghai-Tibet Plateau. Geomorphology, 425, https://doi.org/10.1016/j.geomorph.2023.108582, 2023.
Yang, G. Q., Xie, C. W., Wang, W., Du, E., Liu, W. H., Zhang, Y. X., and Ni, J.: Study on TEM sounding permafrost with shallow bedrock, J. Glaciol. Geocryol., 41, 1067–1077, https://doi.org/10.7522/j.issn.1000-0240.2019.0328, 2019.
Yao, T. D., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y. M., Luo, T. X., Xu, B. Q., Yang, X. X., Joswiak, D. R., Wang, W. C., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., and Fayziev, R.: Third Pole Environment (TPE), Environ. Dev., 3, 52–64, https://doi.org/10.1016/j.envdev.2012.04.002, 2012.
Yin, G. A., Niu, F. J., Lin, Z. J., Luo, J., and Liu, M. H.: Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China, Sci. Total Environ., 581, 472–485, https://doi.org/10.1016/j.scitotenv.2016.12.155, 2017.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska, Permafr. Periglac. Process., 14, 151–160, https://doi.org/10.1002/ppp.451, 2003.
Yoshikawa, K., Leuschen, C., Ikeda, A., Harada, K., Gogineni, P., Hoekstra, P., Hinzman, L., Sawada, Y., and Matsuoka, N.: Comparison of geophysical investigations for detection of massive ground ice (pingo ice), J. Geophys. Res.-Planets, 111, https://doi.org/10.1029/2005JE002573, 2006.
You, Y. H., Yang, M. B., Yu, Q. H., Wang, X. B., Li, X. N., and Yue, Y. Y.: Investigation of an icing near a tower foundation along the Qinghai-Tibet Power Transmission Line, Cold Reg. Sci. Technol., 121, 250–257, https://doi.org/10.1016/j.coldregions.2015.05.005, 2016.
You, Y. H., Yu, Q. H., Pan, X. C., Wang, X. B., and Guo, L.: Geophysical imaging of permafrost and talik configuration beneath a thermokarst lake, Permafr. Periglac. Process., 28, 470–476, https://doi.org/10.1002/ppp.1938, 2017.
Zhang, G. F., Nan, Z. T., Hu, N., Yin, Z. Y., Zhao, L., Cheng, G. D., and Mu, C. C.: Qinghai-Tibet Plateau Permafrost at Risk in the Late 21st Century, Earths Future, 10, https://doi.org/10.1029/2022ef002652, 2022.
Zhang, G. F., Mu, C. C., Nan, Z. T., Wu, X. D., Cheng, G. D.: Elevation dependency of future degradation of permafrost over the Qinghai-Tibet Plateau, Environ. Res. Lett., 18, https://doi.org/10.1088/1748-9326/ace0d1, 2023a.
Zhang, Y. X., Zhao, L., Xie, C. W., Wu, T. H., Wu, X. D., Yang, G. Q., Yang, S. H., Wang, W., Pang, Q. Q., Liu, G. Y., Zou, D. F., Hu, G. J., Wang, C., and Liu, S. B.: Permafrost characteristics and potential influencing factors in the lake regions of Hoh Xil, Qinghai-Tibet Plateau, Geoderma, 437, 116572, https://doi.org/10.1016/j.geoderma.2023.116572, 2023b.
Zhao, L.: A new map of permafrost distribution on the Tibetan Plateau (2017), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.270468, 2019.
Zhao, L. and Sheng, Y. (Eds.): Permafrost Survey Manual, Science Press, Beijing, ISBN 9787030456113, 2015 (in Chinese).
Zhou, F. J., Yao, M. M., Fan, X. W., Yin, G. A., Meng, X. L., and Lin, Z. J.: Evidence of warming from long-term records of climate and permafrost in the hinterland of the Qinghai-Tibet plateau, Front. Environ. Sci., 10, 836085, https://doi.org/10.3389/fenvs.2022.836085, 2022a.
Zhou, H. X. and Che, A. L.: Geomaterial segmentation method using multidimensional frequency analysis based on electrical resistivity tomography, Eng. Geol., 284, 105925, https://doi.org/10.1016/j.enggeo.2020.105925, 2021.
Zhou, H. Y., Liu, G. Y., Yang, B., Zou, D. F., Zhao, L., Du, E. J., Tan, C. H., Chen, W., Yang, C. L., Wen, L., Duoji, W., Zhang, X. X., Xiao, Y., Hu, G. J., Li, Z. B., Xie, C. W., Wang, L. X., and Liu, S. B.: Characteristics of permafrost in Tuotuo River source area of upper Yangtze Rive, J. Glaciol. Geocryol., 44, 69–82, https://doi.org/10.7522/j.issn.1000-0240.2022.0020, 2022b.
Zipper, S. C., Lamontagne-Halle, P., McKenzie, J. M., and Rocha, A. V.: Groundwater controls on postfire permafrost thaw: Water and energy balance effects, J. Geophys. Res.-Earth Surf., 123, 2677–2694, https://doi.org/10.1029/2018jf004611, 2018.
Short summary
Permafrost measurements on the Qinghai–Tibet Plateau are typically limited to seasonally frozen soils or permafrost at a few borehole locations, with little effort made to detect deep permafrost and sublake taliks. We employed electrical resistivity tomography and ground temperature measurement methods to determine the current permafrost structure, revealing that permafrost below three thermokarst lakes has completely thawed.
Permafrost measurements on the Qinghai–Tibet Plateau are typically limited to seasonally frozen...