Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea ice in the Baltic Sea during 1993/94–2020/21 ice seasons from satellite observations and model reanalysis
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Ilja Maljutenko
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Rivo Uiboupin
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Related authors
No articles found.
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet, 6-osr9, 6, https://doi.org/10.5194/sp-6-osr9-6-2025, https://doi.org/10.5194/sp-6-osr9-6-2025, 2025
Short summary
Short summary
Over the past 3 decades, the Baltic Sea has warmed and become saltier, reflecting broader atmospheric trends. Heat content changes are mainly driven by subsurface temperature variations in the upper 100 m, influenced by air temperature, evaporation, and wind stress. Freshwater content changes are largely controlled by salinity shifts in the halocline (40–120 m), with key drivers being saline inflows, precipitation, and zonal wind stress.
Urmas Raudsepp, Ulvi Ahmadov, Ilja Maljutenko, Amirhossein Barzandeh, Mariliis Kõuts, and Priidik Lagemaa
State Planet Discuss., https://doi.org/10.5194/sp-2025-7, https://doi.org/10.5194/sp-2025-7, 2025
Preprint under review for SP
Short summary
Short summary
Over the past 30 years, the Baltic Sea’s surface mixed layer has changed unevenly: it is shoaling in the southwest due to warming and increased stratification, while deepening in the northeast as ice loss allows more winter mixing. These shifts affect marine ecosystems—shallower mixing in the south limits oxygen supply to deep waters, worsening hypoxia, while deeper mixing in the north may enhance spring algal blooms. Climate impacts in the Baltic are regionally diverse.
Urmas Raudsepp, Ilja Maljutenko, Jan-Victor Björkqvist, Amirhossein Barzandeh, Sander Rikka, Aarne Männik, Siim Pärt, Priidik Lagemaa, Victor Alari, Kaimo Vahter, and Rivo Uiboupin
State Planet Discuss., https://doi.org/10.5194/sp-2025-8, https://doi.org/10.5194/sp-2025-8, 2025
Preprint under review for SP
Short summary
Short summary
The study identified key extreme metocean conditions relevant for Floating Storage and Regasification Unit design on Estonia’s coast, using statistical approaches like GPD and GEV to estimate return values. These thresholds inform infrastructure safety margins. The analysis was extended across the Baltic Sea using harmonized methods, enabling consistent risk assessment, cross-border planning, and climate-resilient design for major maritime infrastructure sites.
Amirhossein Barzandeh, Matjaž Ličer, Marko Rus, Matej Kristan, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
Ocean Sci., 21, 1315–1327, https://doi.org/10.5194/os-21-1315-2025, https://doi.org/10.5194/os-21-1315-2025, 2025
Short summary
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet, 4-osr8, 9, https://doi.org/10.5194/sp-4-osr8-9-2024, https://doi.org/10.5194/sp-4-osr8-9-2024, 2024
Short summary
Short summary
Baltic deep water is generally warmer than surface water during winter when district heating is required. Depending on the location, depth, and oceanographic situation, bottom water of Tallinn Bay can be used as an energy source for seawater heat pumps until the end of February, covering the major time interval when heating is needed. Episodically, there are colder-water events when seawater heat extraction has to be complemented by other sources of heating energy.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023, https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Short summary
The freshwater content in the Baltic Sea has wide sub-regional variability characterized by the local climate dynamics. The total freshwater content trend is negative due to the recent increased inflows of saltwater, but there are also regions where the increase in runoff and decrease in ice content have led to an increase in the freshwater content.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
Cited articles
Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., and Janssen, P.: Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model, Ocean Dynamics, 66, 917–930, 2016. a
Åström, J., Robertsen, F., Haapala, J., Polojärvi, A., Uiboupin, R., and Maljutenko, I.: A large-scale high-resolution numerical model for sea-ice fragmentation dynamics, The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, 2024. a
Axell, L. and Liu, Y.: Application of 3-D ensemble variational data assimilation to a Baltic Sea reanalysis 1989–2013, Tellus A: Dynamic Meteorology and Oceanography, 68, 24220, https://doi.org/10.3402/tellusa.v68.24220, 2016. a
BACC II Author Team: Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-16006-1, 2015. a
Berglund, R. and Molinier, M.: IceTrafPrep: A feasibility study of a Trafficability Ice Chart Service, Talvimerenkulun tutkimusraportit – Winter Navigation Research Reports, ISSN 2342-4303, ISBN 978-952-311-029-8, 2014. a
Blanchard-Wrigglesworth, E., Webster, M., Boisvert, L., Parker, C., and Horvat, C.: Record Arctic cyclone of January 2022: Characteristics, impacts, and predictability, Journal of Geophysical Research: Atmospheres, 127, e2022JD037161, https://doi.org/10.1029/2022JD037161, 2022. a
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. a
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020. a
Brodeau, L., Rampal, P., Ólason, E., and Dansereau, V.: Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic, Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, 2024. a
Copernicus Marine Service: Baltic Sea Physics Reanalysis, https://doi.org/10.48670/moi-00013, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], 1993–2023. a
Copernicus Marine Service: Baltic Sea – Sea Ice Concentration and Thickness Charts, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00132, 2024. a
Couvelard, X., Lemarié, F., Samson, G., Redelsperger, J.-L., Ardhuin, F., Benshila, R., and Madec, G.: Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration, Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020, 2020. a
Fritzner, S., Graversen, R., Christensen, K. H., Rostosky, P., and Wang, K.: Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system, The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, 2019. a
Grayek, S., Wiese, A., Ho-Hagemann, H. T. M., and Staneva, J.: Added value of including waves into a coupled atmosphere–ocean model system within the North Sea area, Frontiers in Marine Science, 10, 1104027, https://doi.org/10.3389/fmars.2023.1104027, 2023. a
Haapala, J. and Leppäranta, M.: Simulating the Baltic Sea ice season with a coupled ice-ocean model, Tellus A, 48, 622–643, 1996. a
Haapala, J. and Leppäranta, M.: The Baltic Sea ice season in changing climate, Boreal Environment Research, 2, 93–108, 1997. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, 2020. a, b
Høyer, J. L. and Karagali, I.: Sea surface temperature climate data record for the North Sea and Baltic Sea, Journal of Climate, 29, 2529–2541, 2016. a
Jevrejeva, S.: Severity of winter seasons in the northern Baltic Sea between 1529 and 1990: reconstruction and analysis, Climate Research, 17, 55–62, 2001. a
Jevrejeva, S. and Leppäranta, M.: Ice conditions along the Estonian coast in a statistical view, Hydrology Research, 33, 241–262, 2002. a
Kärnä, T., Ljungemyr, P., Falahat, S., Ringgaard, I., Axell, L., Korabel, V., Murawski, J., Maljutenko, I., Lindenthal, A., Jandt-Scheelke, S., Verjovkina, S., Lorkowski, I., Lagemaa, P., She, J., Tuomi, L., Nord, A., and Huess, V.: Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea, Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, 2021. a, b
Karvonen, J.: Baltic sea ice concentration estimation based on C-band dual-polarized SAR data, IEEE Transactions on Geoscience and Remote Sensing, 52, 5558–5566, 2013. a
Karvonen, J.: Baltic sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data, IEEE Transactions on Geoscience and Remote Sensing, 55, 2871–2883, 2017. a
Karvonen, J., Simila, M., and Lehtiranta, J.: SAR-based estimation of the Baltic sea ice motion, in: 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007, 2605–2608, IEEE, https://doi.org/10.1109/IGARSS.2007.4423378, 2007. a
Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B. W., Hajdu, S., and Olli, K.: Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers, Limnology and Oceanography, 58, 753–762, 2013. a
Klais, R., Norros, V., Lehtinen, S., Tamminen, T., and Olli, K.: Community assembly and drivers of phytoplankton functional structure, Functional Ecology, 31, 760–767, 2017a. a
Klais, R., Otto, S. A., Teder, M., Simm, M., and Ojaveer, H.: Winter–spring climate effects on small-sized copepods in the coastal Baltic Sea, ICES Journal of Marine Science, 74, 1855–1864, 2017b. a
Kohout, A. L., Williams, M., Dean, S., and Meylan, M.: Storm-induced sea-ice breakup and the implications for ice extent, Nature, 509, 604–607, 2014. a
Koldunov, N. V., Köhl, A., Serra, N., and Stammer, D.: Sea ice assimilation into a coupled ocean–sea ice model using its adjoint, The Cryosphere, 11, 2265–2281, https://doi.org/10.5194/tc-11-2265-2017, 2017. a
Lemieux, J.-F., Beaudoin, C., Dupont, F., Roy, F., Smith, G. C., Shlyaeva, A., Buehner, M., Caya, A., Chen, J., Carrieres, T., Pogson, L., DeRepentigny, P., Plante, A., Pestieau, P., Pellerin, P., Ritchie, H., Garric, G., and Ferry, N.: The Regional Ice Prediction System (RIPS): verification of forecast sea ice concentration, Quarterly Journal of the Royal Meteorological Society, 142, 632–643, 2016. a
Leppäranta, M.: On the structure and mechanics of pack ice in the Bothnian Bay, Merentutkimuslaitos, ISSN 0357-1076, http://hdl.handle.net/10138/169141 (last access: 15 October 2024), 1981. a
Leppäranta, M.: History and Future of Snow and Sea Ice in the Baltic Sea, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, USA, https://doi.org/10.1093/acrefore/9780190228620.013.891, 2023. a, b
Leppäranta, M. and Lewis, J.: Observations of ice surface temperature and thickness in the Baltic Sea, International Journal of Remote Sensing, 28, 3963–3977, 2007. a
Li, Y., Tang, G., O’Rourke, E., Minallah, S., e Braga, M. M., Nowicki, S., Smith, R. S., Lawrence, D. M., Hurtt, G. C., Peano, D., Meyer, G., Hassler, B., Mao, J., Xue, Y., and Juckes, M.: CMIP7 Data Request: Land and Land Ice Priorities and Opportunities, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-3207, 2025. a
Light, B., Smith, M. M., Perovich, D. K., Webster, M. A., Holland, M. M., Linhardt, F., Raphael, I. A., Clemens-Sewall, D., Macfarlane, A. R., Anhaus, P., and Bailey, D. A.: Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elem Sci Anth, 10, 000103, https://doi.org/10.1525/elementa.2021.000103, 2022. a
Löptien, U. and Axell, L.: Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea, The Cryosphere, 8, 2409–2418, https://doi.org/10.5194/tc-8-2409-2014, 2014. a
Mäkynen, M. and Hallikainen, M.: Passive microwave signature observations of the Baltic Sea ice, International Journal of Remote Sensing, 26, 2081–2106, 2005. a
Mäkynen, M., Karvonen, J., Cheng, B., Hiltunen, M., and Eriksson, P. B.: Operational service for mapping the Baltic Sea landfast ice properties, Remote Sensing, 12, 4032, https://doi.org/10.3390/rs12244032, 2020. a
Nie, Y., Li, C., Vancoppenolle, M., Cheng, B., Boeira Dias, F., Lv, X., and Uotila, P.: Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean, Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, 2023. a
Nielsen-Englyst, P., Høyer, J. L., Kolbe, W. M., Dybkjær, G., Lavergne, T., Tonboe, R. T., Skarpalezos, S., and Karagali, I.: A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–2021, Remote Sensing of Environment, 284, 113331, https://doi.org/10.1016/j.rse.2022.113331, 2023. a
Olason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz, M., Dansereau, V., and Samaké, A.: A new brittle rheology and numerical framework for large-scale sea-ice models, Journal of Advances in Modeling Earth Systems, 14, e2021MS002685, https://doi.org/10.1029/2021MS002685, 2022. a
Parkinson, C. L.: Arctic sea ice, 1973–1976: Satellite passive-microwave observations, vol. 490, Scientific and Technical Information Branch, National Aeronautics and Space Administration, https://ntrs.nasa.gov/citations/19870015437 (last access: 15 October 2024), 1987. a
Pärn, O., Lessin, G., and Stips, A.: Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea, PLoS one, 16, e0242637, https://doi.org/10.1371/journal.pone.0242637, 2021. a, b
Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., and Haapala, J.: Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea, Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, 2017. a, b, c
Perovich, D. K., Nghiem, S. V., Markus, T., and Schweiger, A.: Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system, Journal of Geophysical Research: Oceans, 112, 2007. a
Pirazzini, R., Vihma, T., Granskog, M. A., and Cheng, B.: Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period, Annals of Glaciology, 44, 7–14, 2006. a
Prasad, S., Haynes, R. D., Zakharov, I., and Puestow, T.: Estimation of sea ice parameters using an assimilated sea ice model with a variable drag formulation, Ocean Modelling, 158, 101739, https://doi.org/10.1016/j.ocemod.2020.101739, 2021. a
Raudsepp, U., Uiboupin, R., Maljutenko, I., Hendricks, S., Ricker, R., Liu, Y., Iovino, D., Peterson, K. A., Zuo, H., Lavergne, T., Aaboe, S., and Raj, R. P.: Combined analysis of Cryosat-2/SMOS sea ice thickness data with model reanalysis fields over the Baltic Sea, Journal of operational oceanography, The Institute of Marine Engineering, Science & Technology, 12, S73, URN: urn:nbn:se:smhi:diva-5481, ISI: 000495675100009, 2019. a
Raudsepp, U., Uiboupin, R., Laanemäe, K., and Maljutenko, I.: Geographical and seasonal coverage of sea ice in the Baltic Sea, Copernicus Marine Service Ocean State Report, Journal of Operational Oceanography, 13, s115–s121, https://doi.org/10.1080/1755876X.2020.1785097, 2020. a, b
Roach, L. A., Horvat, C., Dean, S. M., and Bitz, C. M.: An emergent sea ice floe size distribution in a global coupled ocean-sea ice model, Journal of Geophysical Research: Oceans, 123, 4322–4337, 2018. a
Ronkainen, I., Lehtiranta, J., Lensu, M., Rinne, E., Haapala, J., and Haas, C.: Interannual sea ice thickness variability in the Bay of Bothnia, The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, 2018. a
Sutherland, P. and Dumont, D.: Marginal ice zone thickness and extent due to wave radiation stress, Journal of Physical Oceanography, 48, 1885–1901, 2018. a
BACC Author Team: Assessment of climate change for the Baltic Sea basin, Regional Climate Studies, Springer Science & Business Media, Berlin, Heidelberg, 473 pp., https://doi.org/10.1007/978-3-540-72786-6, 2008. a
Voipio, A.: The Baltic Sea, Elsevier, ISBN 9780444553195, 1981. a
Wagner, P. M., Hughes, N., Bourbonnais, P., Stroeve, J., Rabenstein, L., Bhatt, U., Little, J., Wiggins, H., and Fleming, A.: Sea-ice information and forecast needs for industry maritime stakeholders, Polar Geography, 43, 160–187, 2020. a
Yang, C.-Y., Liu, J., and Chen, D.: Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model, The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024, 2024. a, b
Zhang, Y.-F., Bitz, C. M., Anderson, J. L., Collins, N., Hendricks, J., Hoar, T., Raeder, K., and Massonnet, F.: Insights on sea ice data assimilation from perfect model observing system simulation experiments, Journal of Climate, 31, 5911–5926, 2018. a
Short summary
The sea ice statistics study highlights the bias in model estimations compared to satellite data and provides a simple approach to minimise that. During the study period, the model estimates sea ice forming slightly earlier but aligns well with the satellite data for ice season's end. Rapid decrease in the sea ice parameters is observed across the Baltic Sea, especially the ice thickness in the Bothnian Bay sub-basin. These statistics could be crucial for regional adaptation strategies.
The sea ice statistics study highlights the bias in model estimations compared to satellite data...