Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-401-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-401-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution 4D electrical resistivity tomography and below-ground point sensor monitoring of High Arctic deglaciated sediments capture zero-curtain effects, freeze–thaw transitions, and mid-winter thawing
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Oliver Kuras
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Harry Harrison
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Paul B. Wilkinson
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Philip Meldrum
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Jonathan E. Chambers
Environmental and Engineering Geophysics, British Geological Survey, Keyworth, United Kingdom
Dane Liljestrand
Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah, United States of America
Carlos Oroza
Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah, United States of America
Steven K. Schmidt
Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
Pacifica Sommers
Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
Lara Vimercati
Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
Trevor P. Irons
Department of Geological Engineering, Montana Technological University, Butte, Montana, United States of America
Zhou Lyu
School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Adam Solon
School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
James A. Bradley
School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
Related authors
No articles found.
Dane Liljestrand, Ryan Johnson, Bethany Neilson, Patrick Strong, and Elizabeth Cotter
The Cryosphere, 19, 3123–3138, https://doi.org/10.5194/tc-19-3123-2025, https://doi.org/10.5194/tc-19-3123-2025, 2025
Short summary
Short summary
This work introduces a model specifically designed for high-resolution snow depth estimation, leveraging in situ snow observations and snow-off lidar terrain features to provide an accessible and cost-effective method for snowpack modeling in regions lacking high-quality data products or collection networks. This work demonstrates that reliable basin-scale snow depth estimates can be achieved in difficult environments with very few observations and low institutional costs.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Cited articles
Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, T. Am. I. Min. Met. Eng., 146, 54–62, 1942.
Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C., and Zona, D.: Snow melt stimulates ecosystem respiration in Arctic ecosystems, Glob. Change Biol., 26, 5042–5051, 2020.
Audebert, M., Clément, R., Touze-Foltz, N., Günther, T., Moreau, S., and Duquennoi, C.: Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), J. Appl. Geophys., 111, 320–333, https://doi.org/10.1016/j.jappgeo.2014.09.024, 2014.
Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimensional Data. Springer-Verlag, 25–71, https://doi.org/10.1007/3-540-28349-8_2, 2006.
Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., Burke, E., and Kutzbach, L.: A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, 2019.
Borchhardt, N., Baum, C., Mikhailyuk, T., and Karsten, U.: Biological Soil Crusts of Arctic Svalbard – Water Availability As Potential Controlling Factor for Microalgal Biodiversity, Front. Microbiol., 8, 1485, https://doi.org/10.3389/fmicb.2017.01485, 2017.
Bradley, J. A., Singarayer, J. S., and Anesio, A. M.: Microbial community dynamics in the forefield of glaciers, Proc. R. Soc. B., 281, 20140882, https://doi.org/10.1098/rspb.2014.0882, 2014.
Brooks, P. D., Schmidt, S. K., and Williams, M. W.: Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes, Oecologia, 110, 403–413, 1997.
Cimpoiaşu, M. O., Kuras, O., Pridmore, T., and Mooney, S. J.: Potential of geoelectrical methods to monitor root zone processes and structure: A review, Geoderma, 365, 114232, https://doi.org/10.1016/j.geoderma.2020.114232, 2020.
Cimpoiaşu, M. O., Kuras, O., Wilkinson, P. B., Pridmore, T., and Mooney, S. J.: Hydrodynamic characterization of soil compaction using integrated electrical resistivity and X-ray computed tomography, Vadose Zone J., 20, e20109, https://doi.org/10.1002/vzj2.20109, 2021.
Cimpoiasu, M. O., Kuras, O., Harrison, H., Wilkinson, P. B., Meldrum, P., Chambers, J. E., Liljestrand, D., Oroza, C., Schmidt, S. K., Sommers, P., Irons, T. P. and Bradley, J. A.: Characterization of a Deglaciated Sediment Chronosequence in the High Arctic Using Near-Surface Geoelectrical Monitoring Methods, Permafrost Periglac. Process., 35, 157–171, https://doi.org/10.1002/ppp.2220, 2024.
Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y. W., Daube, B. C., Euskirchen, E. S., Henderson, J. M., Karion, A., Miller, J. B., and Miller, S. M.: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra, P. Natl. Acad. Sci. USA, 114, 5361–5366, 2017.
Dahlin, T. and Zhou, B.: Multiple-gradient array measurements for multichannel 2D resistivity imaging, Near Surf. Geophys., 4, 113–123, https://doi.org/10.3997/1873-0604.2005037, 2006.
Daily, W., Ramirez, A., Newmark, R., and Masica, K.: Low-cost reservoir tomographs of electrical resistivity, Leading Edge, 23, 472–480, https://doi.org/10.1190/1.1756837, 2004.
Delforge, D., Watlet, A., Kaufmann, O., van Camp, M., and Vanclooster, M.: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset, J. Appl. Geophys., 184, 104203, https://doi.org/10.1016/j.jappgeo.2020.104203, 2021.
Deprez, M., de Kock, T., de Schutter, G., and Cnudde, V.: A review on freeze-thaw action and weathering of rocks, Earth-Sci. Rev., 203, 103143, https://doi.org/10.1016/J.EARSCIREV.2020.103143, 2020.
Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., and Elberling, B.: Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution, Cold Reg. Sci. Technol., 119, 16–28, https://doi.org/10.1016/j.coldregions.2015.07.002, 2015.
Elberling, B. and Brandt, K. K.: Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling, Soil Biol. Biochem., 35, 263–272, 2003.
Farzamian, M., Vieira, G., Monteiro Santos, F. A., Yaghoobi Tabar, B., Hauck, C., Paz, M. C., Bernardo, I., Ramos, M., and de Pablo, M. A.: Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica), The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, 2020.
Freeman, K. R., Pescador, M. Y., Reed, S. C., and Costello, E. K., Robeson, M. S. and Schmidt, S. K.: Soil CO2 flux and photoautotrophic community composition in high-elevation, “barren” soils, Environ. Microbiol., 11, 674–686, https://doi.org/10.1111/j.1462-2920.2008.01844.x, 2009.
Garré, S., Coteur, I., Wongleecharoen, C., Hussain, K., Omsunrarn, W., Kongkaew, T., Hilger, T., Diels, J., and Vanderborght, J.: Can We Use Electrical Resistivity Tomography to Measure Root Zone Dynamics in Fields with Multiple Crops?, Procedia Environ. Sci., 19, 403–410, https://doi.org/10.1016/j.proenv.2013.06.046, 2013.
Giuseppe, M. G. D., Troiano, A., Troise, C., and Natale, G. D.: K-Means clustering as tool formultivariate geophysical data analysis. An application to shallow fault zone imaging, J. Appl. Geophys., 101, 108–115, https://doi.org/10.1016/j.jappgeo.2013.12.004, 2014.
Giuseppe, M. G. D., Troiano, A., Patella, D., Piochi, M., and Carlino, S.: A geophysical k-means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal systemCampi Flegrei (Naples, Italy), J. Appl. Geophys., 156, 44–54, https://doi.org/10.1016/j.jappgeo.2017.06.001, 2018.
Graham, R. M., Cohen, L., Petty, A. A., Boisvert, L.,N., Rinke, A., Hudson, S. R., Nicolaus, M., and Granskog, M. A.: Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974–6983, 2017.
Hamberg, A.: En resa till norra Ishafvet sommaren 1892, Ymer, 14, 25–61, 1894.
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F., and Huddart, D.: Debris entrainment and transfer in polythermal valley glaciers, J. Glaciol., 45, 69–86, 1999.
Hauck, C.: Frozen ground monitoring using DC resistivity tomography, Geophys. Res. Lett., 29, 2016, https://doi.org/10.1029/2002GL014995, 2002.
Hilbich, C., Fuss, C., and Hauck, C.: Automated time-lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost Periglac., 22, 306–319, https://doi.org/10.1002/ppp.732, 2011.
Hodkinson, I. D., Coulson, S. J., and Webb, N. R.: Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard, J. Ecol., 91, 651–663, https://doi.org/10.1046/j.1365-2745.2003.00786.x, 2003.
Holmes, J., Chambers, J., Wilkinson, P., Meldrum, P., Cimpoiaşu, M., Boyd, J., Huntley, D., Williamson, P., Gunn, D., Dashwood, B., Whiteley, J., Watlet, A., Kirkham, M., Sattler, K., Elwood, D., Sivakumar, V., and Donohue, S.: Application of petrophysical relationships to electrical resistivity models for assessing the stability of a landslide in British Columbia, Canada, Eng. Geol., 301, 106613, https://doi.org/10.1016/j.enggeo.2022.106613, 2022.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Irvine-Fynn, T. D. L., Barrand, N. E., Porter, P. R., Hodson, A. J., and Murray, T.: Recent High Arctic glacial sediment redistribution: A process perspective using airborne lidar, Geomorphology, 125, 27–39, https://doi.org/10.1016/j.geomorph.2010.08.012, 2011.
Kasprzak, M.: High-resolution electrical resistivity tomography applied to patterned ground, Wedel Jarlsberg Land, south-west Spitsbergen, Polar Res., 34, 25678, https://doi.org/10.3402/polar.v34.25678, 2015.
Kasprzak, M. and Szymanowski, M.: Spatial and temporal patterns of near-surface ground temperature in the Arctic mountain catchment. Land Degrad. Dev., 34, 5238–5258, https://doi.org/10.1002/ldr.4841, 2023.
Kim, Y. J., Laffly, D., Kim, S., Nilsen, L., Chi, J., Nam, S., Lee, Y. B., Jeong, S., Mishra, U., Lee, Y. K., and Jung, J. Y.: Chronological changes in soil biogeochemical properties of the glacier foreland of Midtre Lovénbreen, Svalbard, attributed to soil-forming factors, Geoderma, 415, 115777, https://doi.org/10.1016/j.geoderma.2022.115777, 2022.
Kurylyk, B. L. and Watanabe, K. : The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils, Adv. Water Resour., 60, 160–177, https://doi.org/10.1016/J.ADVWATRES.2013.07.016, 2013.
Kwon, H. Y., Jung, J. Y., Kim, O. S., Laffly, D., Lim, H. S., and Lee, Y. K.: Soil development and bacterial community shifts along the chronosequence of the midtre lovénbreen glacier foreland in svalbard, J. Ecol. and Environment, 38, 461–476, https://doi.org/10.5141/ecoenv.2015.049, 2015.
LaBrecque, D. J., Heath, G., Sharpe, R., and Versteeg, R.: Autonomous monitoring of fluid movement using 3-D electrical resistivity tomography, J. Environ. Eng. Geoph., 9,167–176, 2004.
Laloy, E., Javaux, M., Vanclooster, M., Roisin, C., and Bielders, C. L.: Electrical Resistivity in a Loamy Soil: Identification of the Appropriate Pedo-Electrical Model, Vadose Zone J., 10, 1023–1033, https://doi.org/10.2136/vzj2010.0095, 2011.
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J. N.: Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession, Geomorphology, 277, 210–227, https://doi.org/10.1016/J.GEOMORPH.2016.02.015, 2017.
Liljestrand, D., Oroza, C., Jarzin Jr., M., Byington, J., Puc, Z., Irons, T., Cimpoiasu, M., and Harrison, H.: Surface and subsurface hydro-geophysical measurements, Midtre Lovenbreen glacier forefield, Svalbard. Aug 2021–Oct 2022, Arctic Data Center [data set], https://doi.org/10.18739/A2PC2TB0B, 2023.
Loke, M. H.: RES3DINVx64 ver. 4.07 with multi-core and 64-bit support for Windows XP/Vista/7/8/10. Rapid 3-D Resistivity & IP inversion using the least-squares method, Geoelectrical Imaging 2-D and 3-D. Geotomo Software, https://www.aarhusgeosoftware.dk/res3dinv (last access: July 2024), 2017.
Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B.: Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., 95, 135–156, 2013.
Lyu, Z., Sommers, P., Schmidt, S. K, Magnani, M., Cimpoiasu, M., Kuras, O., Zhuang, Q., Oh, Y., De La Fuente, M., Cramm, M., and Bradley, J. A.: Seasonal dynamics of Arctic soils: Capturing year-round processes in measurements and soil biogeochemical models, Earth-Sci. Rev., 254, 104820, https://doi.org/10.1016/j.earscirev.2024.104820, 2024.
Martín-Moreno, R., Allende Álvarez, F., and Hagen, J. O.: Little Ice Age' glacier extent and subsequent retreat in Svalbard archipelago, The Holocene, 27, 1379–1390, https://doi.org/10.1177/0959683617693904, 2017.
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019.
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A. K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L., and Björkman, M. P.: Large loss of CO2 in winter observed across the northern permafrost region, Nat. Clim. Change, 9, 852–857, 2019.
Nielsen, C. B., Groffman, P. M., Hamburg, S. P., Driscoll, C. T., Fahey, T. J., and Hardy, J. P.: Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils, Soil Sci. Soc. Am. J., 65, 1723–1730, 2001.
NPI: Geologi, Svalbard, https://geodata.npolar.no/arcgis/rest/services/Basisdata/NP_Basiskart_Svalbard_WMS/MapServer, last access: 16 November 2023.
Oldenburg, D. W. and Li, Y.: Estimating depth of investigation in DC resistivity and IP surveys, Geophysics, 64, 403–416, https://doi.org/10.1190/1.1444545, 1999.
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A.: A framework for characterizing fluvial sediment fluxes 1272 from source to sink in cold environments, Geogr. Ann. A, 92A, 155–176, 2010.
Post, E., Alley, R. B., Christensen, T. R., Macias-Fauria, M., Forbes, B. C., Gooseff, M. N., Iler, A., Kerby, J. T., Laidre, K. L., Mann, M. E., and Olofsson, J.: The polar regions in a 2 °C warmer world, Science Advances, 5, eaaw9883, https://doi.org/10.1126/sciadv.aaw9883, 2019.
Rapaić, M., Brown, R., Markovic, M., and Chaumont, D.: An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010, Atmos. Ocean, 53, 283–303, 2015.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E., Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D. L., and Kimball, J. S.: Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations, J. Climate, 23, 5715–5737, 2010.
Raz-Yaseef, N., Torn, M. S., Wu, Y., Billesbach, D. P., Liljedahl, A. K., Kneafsey, T. J., Romanovsky, V. E., Cook, D. R., and Wullschleger, S. D.: Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska, Geophys. Res. Lett., 44, 504–513, 2017.
Rime, T., Hartmann, M., Brunner, I., Widmer, F., Zeyer, J., and Frey, B.: Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield Molecular Ecology, 24, 1091–1108, 2015.
Rotem, D., Lyakhovsky, V., Christiansen, H. H., Harlavan, Y., and Weinstein, Y.: Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard, The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, 2023.
Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A., and Bruand, A.: Electrical resistivity imaging for detecting soil cracking at the centimetric scale, Soil Sci. Soc. Am. J., 67, 1319–1326, https://doi.org/10.2136/sssaj2003.1319, 2003.
Schmidt, S. K., Reed, S. C., Nemergut, D. R., Cleveland, C. C., Costello, E. K., Weintraub, M. N., Meyer, A. F., Martin, A. P., and Neff, J. C.: The earliest stages of ecosystem succession in high-elevation, recently de-glaciated soils, P. Roy. Soc. B-Biol. Sci., 275, 2793–2802, 2008.
Seklima: Observations and weather statistics, https://seklima.met.no/, last access: 10 June 2023.
Serreze, M. C., Gustafson, J., Barrett, A. P., Druckenmiller, M. L., Fox, S., Voveris, J., Stroeve, J., Sheffield, B., Forbes, B. C., Rasmus, S., Laptander, R., Brook, M., Brubaker, M., Temte, J., McCrystall, M. R., and Bartsch, A.: Arctic rain on snow events: Bridging observations to understand environmental and livelihood impacts, Environ. Res. Lett., 16, 105009, https://doi.org/10.1088/1748-9326/ac269b, 2021.
Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J., and Humlum, O.: Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic, Permafrost Periglac., 32, 47–58, https://doi.org/10.1002/ppp.2088, 2021.
Teepe, R. and Ludwig, B.: Variability of CO2 and N2O emissions during freeze-thaw cycles: results of model experiments on undisturbed forest-soil cores, J. Plant Nutr. Soil Sc., 167, 153–159, 2004.
Tyystjärvi, V., Niittynen, P., Kemppinen, J., Luoto, M., Rissanen, T., and Aalto, J.: Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes, The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, 2024.
Uhlemann, S., Dafflon, B., Peterson, J., Ulrich, C., Shirley, I., Michail, S., and Hubbard, S. S.: Geophysical Monitoring Shows that Spatial Heterogeneity in Thermohydrological Dynamics Reshapes a Transitional Permafrost System, Geophys. Res. Lett., 48, e2020GL091149, https://doi.org/10.1029/2020GL091149, 2021.
Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Kuras, O., Inauen, C. M., Swift, R. T., Curioni, G., Uhlemann, S., Graham, J., and Atherton, N.: Windowed 4D inversion for near real-time geoelectrical monitoring applications, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.983603, 2022.
Wietrzyk-Pełka, P., Rola, K., Szymanski, W., and Węgrzyn, M. H.: Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems, Sci. Total Environ. 717, 135151, https://doi.org/10.1016/j.scitotenv.2019.135151, 2020.
Wojcik, R., Eichel, J., Bradley, J. A., and Benning, L. G.: How allogenic factors affect succession in glacier forefields, Earth-Sci. Rev., 218, 103642, https://doi.org/10.1016/J.EARSCIREV.2021.103642, 2021.
Wu, Y., Hubbard, S. S., Ulrich, C., and Wullschleger, S. D.: Remote Monitoring of Freeze-Thaw Transitions in Arctic Soils Using the Complex Resistivity Method, Vadose Zone J., 12, vzj2012.0062, https://doi.org/10.2136/vzj2012.0062, 2013.
Wu, Y., Nakagawa, S., Kneafsey, T. J., Dafflon, B., and Hubbard, S.: Electrical and seismic response of saline permafrost soil during freeze – Thaw transition, J. Appl. Geophys., 146, 16–26, https://doi.org/10.1016/j.jappgeo.2017.08.008, 2017.
Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., and Euskirchen, E. S.: The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics, Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, 2015.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., and Chang, R. Y. W.: Cold season emissions dominate the Arctic tundra methane budget, P. Natl. Acad. Sci. USA, 113, 40–45, 2016.
Short summary
Young Arctic sediments, uncovered by retreating glaciers, are in continuous development, shaped by how water infiltrates and is stored in the near subsurface. Harsh weather conditions at high latitudes make direct observation of these environments very difficult. To address this, we deployed two automated sensor installations in August 2021 on a glacier forefield in Svalbard. These sensors recorded continuously for 1 year, revealing unprecedented images of the ground’s freeze–thaw transition.
Young Arctic sediments, uncovered by retreating glaciers, are in continuous development, shaped...