Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-3873-2025
https://doi.org/10.5194/tc-19-3873-2025
Brief communication
 | 
16 Sep 2025
Brief communication |  | 16 Sep 2025

Brief communication: Daily, gap-free snow cover information based on a combination of NPP VIIRS and MODIS data

Andreas J. Dietz and Sebastian Roessler

Related authors

Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025,https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Calving front positions for 42 key glaciers of the Antarctic Peninsula Ice Sheet: a sub-seasonal record from 2013 to 2023 based on deep-learning application to Landsat multi-spectral imagery
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025,https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls
Mariel C. Dirscherl, Andreas J. Dietz, and Claudia Kuenzer
The Cryosphere, 15, 5205–5226, https://doi.org/10.5194/tc-15-5205-2021,https://doi.org/10.5194/tc-15-5205-2021, 2021
Short summary
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades
Celia A. Baumhoer, Andreas J. Dietz, Christof Kneisel, Heiko Paeth, and Claudia Kuenzer
The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021,https://doi.org/10.5194/tc-15-2357-2021, 2021
Short summary

Cited articles

Baker, N. and Kilcoyne, H.: Joint Polar Satellite System (JPSS) VIIRS Snow Cover Algorithm Theoretical Basis Document (ATBD) For Public Release, Goddard Space Flight Center, Greenbelt, Maryland, https://viirsland.gsfc.nasa.gov/PDF/VIIRS_snow_cover_ATBD_2015.pdf (last access: 14 September 2025) 2011. 
Brubaker, K. L., Pinker, R. T., and Deviatova, E.: Evaluation and Comparison of MODIS and IMS Snow-Cover Estimates for the Continental United States Using Station Data, J. Hydrometeorol., 6, 1002–1017, https://doi.org/10.1175/JHM447.1, 2005. 
Danielson, J. and Gesch, D.: Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 pp., 2011. 
Dietz, A. J., Kuenzer, C., and Dech, S.: Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent, Remote Sens. Lett., 6, 844–853, https://doi.org/10.1080/2150704X.2015.1084551, 2015. 
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009. 
Download
Short summary
The "Global SnowPack" product of the German Aerospace Center (DLR) contains binary information about the presence or absence of snow on a global scale since the year 2000. Now incorporating new input datasets, it was possible to increase the spatial resolution to 370 m. The detailed accuracy assessment proves the feasibility of the applied methods to remove data gaps caused by clouds and polar darkness.
Share