Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-3831-2025
https://doi.org/10.5194/tc-19-3831-2025
Research article
 | 
16 Sep 2025
Research article |  | 16 Sep 2025

Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter

Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler

Data sets

Inputs (forcing, observations and config file) for the experiments included in "Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter" Mazzolini et al. https://doi.org/10.5281/zenodo.13860511

Inputs (forcing and observations) ready for use by "MuSA: The Multiscale Snow Data Assimilation System (v1.0)" Alonso-González https://doi.org/10.5281/zenodo.7248635

SlideRule: Enabling rapid, scalable, open science for the NASA ICESat-2 mission and beyond Shean et al. https://doi.org/10.21105/joss.04982

Google Earth Engine: Planetary-scale geospatial analysis for everyone Gorelick et al. https://doi.org/10.1016/j.rse.2017.06.031

xarray: N-D labeled Arrays and Datasets in Python Hoyer and Hamman https://doi.org/10.5334/jors.148

Model code and software

ealonsogzl/MuSA: v2.1 TC submission (v2.1) Alonso-González et al. (2024) https://doi.org/10.5281/zenodo.11147258

xdem, version v0.0.2 xDEM contributors https://doi.org/10.5281/zenodo.4809698

Download
Short summary
In this work, we showcase the use the satellite laser altimeter ICESat-2, which is able to retrieve snow depth in areas where snow amounts are still poorly estimated despite the importance of these water resources. We can update snow models with these observations through algorithms that spatially propagate the information beyond the satellite profiles. The positive results show the potential of the approach to improve snow simulations, in terms of average snow depth and spatial distribution.
Share