Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-347-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-347-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
History and dynamics of Fennoscandian Ice Sheet retreat, contemporary ice-dammed lake evolution, and faulting in the Torneträsk area, northwestern Sweden
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
now at: Department of Earth Science, University of Bergen, Bergen, Norway
Arjen P. Stroeven
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024, https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary
Short summary
Reconstructions of past earthquakes are useful to assess earthquake hazard risk. We assess a limestone scarp exposed by earthquakes along the Sparta Fault, Greece, using 36Cl and rare-earth elements and yttrium (REE-Y). Our analyses indicate an increase in the average scarp slip rate from 0.8–0.9 mm yr-1 at 6.5–7.7 kyr ago to 1.1–1.2 mm yr-1 up to the devastating 464 BCE earthquake. REE-Y indicate clays in the fault scarp; their potential use in palaeoseismicity would benefit from further study.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Martim Mas e Braga, Richard Selwyn Jones, Jennifer C. H. Newall, Irina Rogozhina, Jane L. Andersen, Nathaniel A. Lifton, and Arjen P. Stroeven
The Cryosphere, 15, 4929–4947, https://doi.org/10.5194/tc-15-4929-2021, https://doi.org/10.5194/tc-15-4929-2021, 2021
Short summary
Short summary
Mountains higher than the ice surface are sampled to know when the ice reached the sampled elevation, which can be used to guide numerical models. This is important to understand how much ice will be lost by ice sheets in the future. We use a simple model to understand how ice flow around mountains affects the ice surface topography and show how much this influences results from field samples. We also show that models need a finer resolution over mountainous areas to better match field samples.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Julien Seguinot, Irina Rogozhina, Arjen P. Stroeven, Martin Margold, and Johan Kleman
The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, https://doi.org/10.5194/tc-10-639-2016, 2016
Short summary
Short summary
We use a numerical model based on approximated ice flow physics and calibrated against field-based evidence to present numerical simulations of multiple advance and retreat phases of the former Cordilleran ice sheet in North America during the last glacial cycle (120 000 to 0 years before present).
B. W. Goodfellow, A. P. Stroeven, D. Fabel, O. Fredin, M.-H. Derron, R. Bintanja, and M. W. Caffee
Earth Surf. Dynam., 2, 383–401, https://doi.org/10.5194/esurf-2-383-2014, https://doi.org/10.5194/esurf-2-383-2014, 2014
J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, https://doi.org/10.5194/tc-8-1087-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Geomorphology
Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
Ice flow dynamics of the northwestern Laurentide Ice Sheet during the last deglaciation
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica
Formation of ribbed bedforms below shear margins and lobes of palaeo-ice streams
A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology
Ice-stream flow switching by up-ice propagation of instabilities along glacial marginal troughs
Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
How dynamic are ice-stream beds?
Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024, https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Short summary
Associated with climate change between the Last Glacial Maximum and the current interglacial period, we reconstruct the behaviour of the southwestern Laurentide Ice Sheet, which covered the Canadian Prairies, using detailed landform mapping. Our reconstruction depicts three shifts in the ice sheet’s dynamics. We suggest these changes resulted from ice sheet thinning triggered by abrupt climatic change. However, we show that regional lithology and topography also play an important role.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
EGUsphere, https://doi.org/10.5194/egusphere-2024-137, https://doi.org/10.5194/egusphere-2024-137, 2024
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes, and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically-driven changes in the ice sheet surface slope.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Etienne Brouard and Patrick Lajeunesse
The Cryosphere, 13, 981–996, https://doi.org/10.5194/tc-13-981-2019, https://doi.org/10.5194/tc-13-981-2019, 2019
Short summary
Short summary
Modifications in ice-stream networks have major impacts on ice sheet mass balance and global sea level. However, the mechanisms controlling ice-stream switching remain poorly understood. We report a flow switch in an ice-stream system that occurred on the Baffin Island shelf through the erosion of a marginal trough. Up-ice propagation of ice streams through marginal troughs can lead to the piracy of neighboring ice catchments, which induces an adjacent ice-stream switch and shutdown.
Josh Crozier, Leif Karlstrom, and Kang Yang
The Cryosphere, 12, 3383–3407, https://doi.org/10.5194/tc-12-3383-2018, https://doi.org/10.5194/tc-12-3383-2018, 2018
Short summary
Short summary
Understanding ice sheet surface meltwater routing is important for modeling and predicting ice sheet evolution. We determined that bed topography underlying the Greenland Ice Sheet is the primary influence on 1–10 km scale ice surface topography, and on drainage-basin-scale surface meltwater routing. We provide a simple means of predicting the response of surface meltwater routing to changing ice flow conditions and explore the implications of this for subglacial hydrology.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Cited articles
Alexanderson, H., Hättestrand, M., Lindqvist, M. A., and Sigfúsdóttir, T.: MIS 3 age of the Veiki moraine in N Sweden – Dating the landform record of an intermediate-sized ice sheet in Scandinavia, Arct. Antarct. Alp. Res., 54, 239–261, https://doi.org/10.1080/15230430.2022.2091308, 2022.
Arvidsson, R.: Fennoscandian earthquakes: Whole crustal rupturing related to postglacial rebound, Science, 274, 744–746, https://doi.org/10.1126/science.274.5288.744, 1996. a
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019. a
Bentley, M. J., Ó Cofaigh, C., Anderson, J. B., Conway, H., Davies, B., Graham, A. G. C., Hillenbrand, C.-D., Hodgson, D. A., Jamieson, S. S. R., Larter, R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P., Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X., Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W., Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K., Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L., Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M., Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J., Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney, R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J., Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D., Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman, W., Wagner, B., White, D. A., Witus, A. E., and Zwartz, D.: A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 1–9, https://doi.org/10.1016/j.quascirev.2014.06.025, 2014. a
Berglund, M.: The highest postglacial shore levels and glacio-isostatic uplift pattern in northern Sweden, Geogr. Ann. A, 94, 321–337, https://doi.org/10.1111/j.1468-0459.2011.00443.x, 2012. a
Björck, S.: A review of the history of the Baltic Sea, 13.0–8.0 ka BP, Quatern. Int., 27, 19–40, https://doi.org/10.1016/1040-6182(94)00057-C, 1995. a
Borgström, I.: Terrängformerna och den glaciala utvecklingen i södra fjällen (Geomorphology and glacial history of the middle Swedish mountains), PhD thesis, Stockholm University, Stockholm, ISBN 9171467424, 1989. a
Boulton, G. S., Smith, G. D., Jones, A. S., and Newsome, J.: Glacial geology and glaciology of the last mid-latitude ice sheets, J. Geol. Soc. London, 142, 447–474, https://doi.org/10.1144/gsjgs.142.3.0447, 1985. a
Boulton, G. S., Dongelmans, P., Punkari, M., and Broadgate, M.: Palaeoglaciology of an ice sheet through a glacial cycle: The European ice sheet through the Weichselian, Quaternary Sci. Rev., 20, 591–625, https://doi.org/10.1016/S0277-3791(00)00160-8, 2001. a
Box, J. E., Hubbard, A., Bahr, D. B., Colgan, W. T., Fettweis, X., Mankoff, K. D., Wehrlé, A., Noël, B., van den Broeke, M. R., Wouters, B., Bjørk, A. A., and Fausto, R. S.: Greenland ice sheet climate disequilibrium and committed sea-level rise, Nat. Clim. Change, 12, 808–813, https://doi.org/10.1038/s41558-022-01441-2, 2022. a
Boyes, B. M., Linch, L. D., Pearce, D. M., and Nash, D. J.: The last Fennoscandian Ice Sheet glaciation on the Kola Peninsula and Russian Lapland (Part 2): Ice sheet margin positions, evolution, and dynamics, Quaternary Sci. Rev., 300, 107872, https://doi.org/10.1016/j.quascirev.2022.107872, 2023. a
Brennand, T. A.: Deglacial meltwater drainage and glaciodynamics: Inferences from Laurentide eskers, Canada, Geomorphology, 32, 263–293, https://doi.org/10.1016/S0169-555X(99)00100-2, 2000. a
Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J., Morlighem, M., Schlegel, N.-J., Hakim, G. J., Schaefer, J. M., Johnson, J. V., Lesnek, A. J., Thomas, E. K., Allan, E., Bennike, O., Cluett, A. A., Csatho, B., de Vernal, A., Downs, J., Larour, E., and Nowicki, S.: Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century, Nature, 586, 70–74, https://doi.org/10.1038/s41586-020-2742-6, 2020. a
Carrivick, J. L. and Tweed, F. S.: Proglacial lakes: character, behaviour and geological importance, Quaternary Sci. Rev., 78, 34–52, https://doi.org/10.1016/j.quascirev.2013.07.028, 2013. a
Carrivick, J. L., Tweed, F. S., Sutherland, J. L., and Mallalieu, J.: Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers, Front. Earth Sci., 8, 577068, https://doi.org/10.3389/feart.2020.577068, 2020. a
Chandler, B. M. P., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, I. O., Benn, D. I., Clark, C. D., Darvill, C. M., Evans, D. J. A., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts, D. H., Stokes, C. R., Storrar, R. D., and Stroeven, A. P.: Glacial geomorphological mapping: A review of approaches and frameworks for best practice, Earth-Sci. Rev., 185, 806–846, https://doi.org/10.1016/j.earscirev.2018.07.015, 2018. a, b, c
Clark, C. D., Hughes, A. L., Greenwood, S. L., Spagnolo, M., and Ng, F. S.: Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws, Quaternary Sci. Rev., 28, 677–692, https://doi.org/10.1016/j.quascirev.2008.08.035, 2009. a
Clayton, L., Attig, J. W., Ham, N. R., Johnson, M. D., Jennings, C. E., and Syverson, K. M.: Ice-walled-lake plains: Implications for the origin of hummocky glacial topography in middle North America, Geomorphology, 97, 237–248, https://doi.org/10.1016/j.geomorph.2007.02.045, 2008. a
Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., and Pattyn, F.: Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model, The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, 2024. a
Dulfer, H. E., Margold, M., Darvill, C. M., and Stroeven, A. P.: Reconstructing the advance and retreat dynamics of the central sector of the last Cordilleran Ice Sheet, Quaternary Sci. Rev., 284, 107465, https://doi.org/10.1016/j.quascirev.2022.107465, 2022. a, b, c
Dunlop, P. and Clark, C. D.: The morphological characteristics of ribbed moraine, Quaternary Sci. Rev., 25, 1668–1691, https://doi.org/10.1016/j.quascirev.2006.01.002, 2006. a
Ebert, K. and Hättestrand, C.: The impact of Quaternary glaciations on inselbergs in northern Sweden, Geomorphology, 115, 56–66, https://doi.org/10.1016/j.geomorph.2009.09.030, 2010. a
Ebert, K., Hättestrand, C., Hall, A. M., and Alm, G.: DEM identification of macroscale stepped relief in arctic northern Sweden, Geomorphology, 132, 339–350, https://doi.org/10.1016/j.geomorph.2011.05.021, 2011. a
Elfström, A.: Large boulder deposits and catastrophic floods. A case study of the Båldakatj area, Swedish Lapland, Geogr. Ann. A, 69, 101–121, https://doi.org/10.1080/04353676.1987.11880200, 1987. a
Ely, J. C., Clark, C. D., Hindmarsh, R. C. A., Hughes, A. L. C., Greenwood, S. L., Bradley, S. L., Gasson, E., Gregoire, L., Gandy, N., Stokes, C. R., and Small, D.: Recent progress on combining geomorphological and geochronological data with ice sheet modelling, demonstrated using the last British–Irish Ice Sheet, J. Quaternary Sci., 36, 946–960, https://doi.org/10.1002/jqs.3098, 2021. a
Fabel, D., Stroeven, A. P., Harbor, J., Kleman, J., Elmore, D., and Fink, D.: Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al, Earth Planet. Sc. Lett., 201, 397–406, https://doi.org/10.1016/S0012-821X(02)00714-8, 2002. a, b
Fabel, D., Fink, D., Fredin, O., Harbor, J., Land, M., and Stroeven, A. P.: Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet, Quaternary Res., 65, 136–146, https://doi.org/10.1016/j.yqres.2005.06.006, 2006. a
Fredin, O. and Hättestrand, C.: Relict lateral moraines in northern Sweden–Evidence for an early mountain centred ice sheet, Sediment. Geol., 149, 145–156, https://doi.org/10.1016/S0037-0738(01)00249-4, 2002. a
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D., and Edwards, T. L.: Global environmental consequences of twenty-first-century ice-sheet melt, Nature, 566, 65–72, https://doi.org/10.1038/s41586-019-0889-9, 2019. a
Goodfellow, B. W., Stroeven, A. P., Hättestrand, C., Kleman, J., and Jansson, K. N.: Deciphering a non-glacial/glacial landscape mosaic in the northern Swedish mountains, Geomorphology, 93, 213–232, https://doi.org/10.1016/j.geomorph.2007.02.018, 2008. a
Goodfellow, B. W., Stroeven, A. P., Lifton, N. A., Heyman, J., Lewerentz, A., Hippe, K., Näslund, J.-O., and Caffee, M. W.: Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz, Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, 2024. a
Goodship, A. and Alexanderson, H.: Dynamics of a retreating ice sheet: A LiDAR study in Värmland, SW Sweden, GFF, 142, 325–345, https://doi.org/10.1080/11035897.2020.1822437, 2020.
Greenwood, S. L., Avery, R. S., Gyllencreutz, R., Regnéll, C., and Tylmann, K.: Footprint of the Baltic Ice Stream: Geomorphic evidence for shifting ice stream pathways, Boreas, 53, 4–26, https://doi.org/10.1111/bor.12634, 2024. a
Groh, A., Ewert, H., Fritsche, M., Rülke, A., Rosenau, R., Scheinert, M., and Dietrich, R.: Assessing the current evolution of the Greenland Ice Sheet by means of satellite and ground-based observations, Surv. Geophys., 35, 1459–1480, https://doi.org/10.1007/s10712-014-9287-x, 2014. a
Hanna, E., Topál, D., Box, J. E., Buzzard, S., Christie, F. D. W., Hvidberg, C., Morlighem, M., De Santis, L., Silvano, A., Colleoni, F., Sasgen, I., Banwell, A. F., van den Broeke, M. R., DeConto, R., De Rydt, J., Goelzer, H., Gossart, A., Gudmundsson, G. H., Lindbäck, K., Miles, B., Mottram, R., Pattyn, F., Reese, R., Rignot, E., Srivastava, A., Sun, S., Toller, J., Tuckett, P. A., and Ultee, L.: Short- and long-term variability of the Antarctic and Greenland ice sheets, Nat. Rev. Earth Environ., 5, 193–210, https://doi.org/10.1038/s43017-023-00509-7, 2024. a
Hättestrand, C.: Ribbed moraines in Sweden – Distribution pattern and palaeoglaciological implications, Sediment. Geol., 111, 41–56, https://doi.org/10.1016/S0037-0738(97)00005-5, 1997. a
Hättestrand, C. and Kleman, J.: Ribbed moraine formation, Quaternary Sci. Rev., 18, 43–61, https://doi.org/10.1016/S0277-3791(97)00094-2, 1999. a
Hättestrand, C. and Stroeven, A. P.: A relict landscape in the centre of Fennoscandian glaciation: Geomorphological evidence of minimal Quaternary glacial erosion, Geomorphology, 44, 127–143, https://doi.org/10.1016/S0169-555X(01)00149-0, 2002. a
Hättestrand, M.: Weichselian interstadial pollen stratigraphy from a Veiki plateau at Rissejauratj in Norrbotten, northern Sweden, GFF, 129, 287–294, https://doi.org/10.1080/11035890701294287, 2007. a
Høgaas, F. and Longva, O.: The late-glacial ice-dammed lake Nedre Glomsjø in Mid-Norway: an open lake system succeeding an actively retreating ice sheet, Norw. J. Geol., 98, 4, https://doi.org/10.17850/njg98-4-08, 2018. a
Holdar, C.-G.: Problemet Torne-issjön, Geogr. Ann., 34, 73–88, https://doi.org/10.1080/20014422.1952.11904366, 1952. a, b, c
Holdar, C.-G.: Deglaciationsförloppet i Torneträsk-området efter senaste nedisningsperioden, med vissa tillbakablickar och regionala jämförelser, Geol. Foren. Stock. For., 79, 291–528, https://doi.org/10.1080/11035895709447187, 1957. a
Holdar, C.-G.: The inland ice in the Abisko area, Geogr. Ann., 41, 231–235, https://doi.org/10.1080/20014422.1959.11907954, 1959. a
Hoppe, G. and Melander, O.: Geomorphological map 28 I Stora Sjöfallet – Description and assessment of areas of geomorphological importance, Naturvårdsverket Report, SNV PM 1207, http://naturvardsverket.diva-portal.org/smash/get/diva2:1157080/FULLTEXT01.pdf (last access: 11 December 2023), 1979. a, b
Hughes, A. L., Clark, C. D., and Jordan, C. J.: Subglacial bedforms of the last British Ice Sheet, J. Maps, 6, 543–563, https://doi.org/10.4113/jom.2010.1111, 2010. a
Hughes, A. L. C., Clark, C. D., and Jordan, C. J.: Flow-pattern evolution of the last British Ice Sheet, Quaternary Sci. Rev., 89, 148–168, https://doi.org/10.1016/j.quascirev.2014.02.002, 2014. a, b
Hughes, A. L. C., Gyllencreutz, R., Lohne, O. S., Mangerud, J., and Svendsen, J. I.: The last Eurasian ice sheets – A chronological database and time-slice reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142, 2016. a, b, c, d
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., Tech. rep., IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023. a
Jakobsson, M., Björck, S., Alm, G., Andrén, T., Lindeberg, G., and Svensson, N.-O.: Reconstructing the Younger Dryas ice dammed lake in the Baltic Basin: Bathymetry, area and volume, Global Planet. Change, 57, 355–370, https://doi.org/10.1016/j.gloplacha.2007.01.006, 2007. a
Jansson, K. N., Stroeven, A. P., Alm, G., Dahlgren, K. I. T., Glasser, N. F., and Goodfellow, B. W.: Using a GIS filtering approach to replicate patterns of glacial erosion, Earth Surf. Proc. Land., 36, 408–418, https://doi.org/10.1002/esp.2056, 2011. a
Jarman, D.: Rock slope failure and landscape evolution in the Caledonian Mountains, as exemplified in the Abisko area, northern Sweden, Geogr. Ann. A, 84, 213–224, https://doi.org/10.1111/j.0435-3676.2002.00176.x, 2002. a
Jenkin, M.: Holocene glacier and climate variability at Sulitjelmaisen, subarctic Norway and Sweden, Master's thesis, University of Bergen, Norway, https://app.cristin.no/results/show.jsf?id=1688202 (last access: 15 November 2024), 2018. a
Jibson, R. W.: Use of landslides for paleoseismic analysis, Eng. Geol., 43, 291–323, https://doi.org/10.1016/S0013-7952(96)00039-7, 1996. a
Kleman, J. and Borgström, I.: Reconstruction of palaeo-ice sheets: The use of geomorphological data, Earth Surf. Proc. Land., 21, 893–909, https://doi.org/10.1002/(SICI)1096-9837(199610)21:10<893::AID-ESP620>3.0.CO;2-U, 1996. a
Kleman, J. and Stroeven, A. P.: Preglacial surface remnants and Quaternary glacial regimes in northwestern Sweden, Geomorphology, 19, 35–54, https://doi.org/10.1016/S0169-555X(96)00046-3, 1997. a, b, c, d
Kleman, J., Hättestrand, C., Borgström, I., and Stroeven, A.: Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model, J. Glaciol., 43, 283–299, https://doi.org/10.3189/S0022143000003233, 1997. a, b
Kleman, J., Hättestrand, C., Stroeven, A. P., Jansson, K. N., De Angelis, H., and Borgström, I.: Reconstruction of palaeo-ice sheets – Inversion of their glacial geomorphological record, in: Glacier Science and Environmental Change, edited by: Knight, P. G., Blackwell Science Ltd, 192–198, https://doi.org/10.1002/9780470750636.ch38, 2006. a, b, c
Kleman, J., Stroeven, A. P., and Lundqvist, J.: Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation, Geomorphology, 97, 73–90, https://doi.org/10.1016/j.geomorph.2007.02.049, 2008. a
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A. P., Hättestrand, C., Alm, G., and Glasser, N.: North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr, Quaternary Sci. Rev., 29, 2036–2051, https://doi.org/10.1016/j.quascirev.2010.04.021, 2010. a, b
Kleman, J., Hättestrand, M., Borgström, I., Preusser, F., and Fabel, D.: The Idre marginal moraine – An anchorpoint for Middle and Late Weichselian ice sheet chronology, Quaternary Science Advances, 2, 100010, https://doi.org/10.1016/j.qsa.2020.100010, 2020. a
Krinner, G., Mangerud, J., Jakobsson, M., Crucifix, M., Ritz, C., and Svendsen, J. I.: Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes, Nature, 427, 429–432, https://doi.org/10.1038/nature02233, 2004. a
Lagerbäck, R.: The Veiki moraines in northern Sweden – Widespread evidence of an Early Weichselian deglaciation, Boreas, 17, 469–486, https://doi.org/10.1111/j.1502-3885.1988.tb00562.x, 1988. a
Lagerbäck, R. and Witschard, F.: Neotectonics in northern Sweden – Geological investigations, SKBF/KBS Teknisk Rapport, 83–58, https://skb.se/publikation/3156/TR83-58webb_OCR.pdf (last access: 11 December 2023), 1983. a
Lantmäteriet: Product description: Orthophoto (Document version 2.6), https://www.lantmateriet.se/globalassets/geodata/geodataprodukter/flyg--och-satellitbilder/e_pb_ortofoto.pdf (last access: 8 November 2024), 2021a. a
Levy, R., Naish, T., Lowry, D., Priestley, R., Winefield, R., Alevropolous-Borrill, A., Beck, E., Bell, R., Blick, G., Dadic, R., Gillies, T., Golledge, N., Heine, Z., Jendersie, S., Lawrence, J., O'Leary, K., Paulik, R., Roberts, C., Taitoko, M., and Trayling, N.: Melting ice and rising seas – Connecting projected change in Antarctica's ice sheets to communities in Aotearoa New Zealand, J. Roy. Soc. New Zeal., 54, 449–472, https://doi.org/10.1080/03036758.2023.2232743, 2024. a
Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R., and Morrison, A. K.: Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater, Nature, 615, 841–847, https://doi.org/10.1038/s41586-023-05762-w, 2023. a
Lidmar-Bergström, K.: Relief and saprolites through time on the Baltic Shield, Geomorphology, 12, 45–61, https://doi.org/10.1016/0169-555X(94)00076-4, 1995. a
Lindblom, E., Lund, B., Tryggvason, A., Uski, M., Bödvarsson, R., Juhlin, C., and Roberts, R.: Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden, Geophys. J. Int., 201, 1704–1716, https://doi.org/10.1093/gji/ggv112, 2015. a
Lindén, M., Möller, P., Björck, S., and Sandgren, P.: Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden, Boreas, 35, 1–22, https://doi.org/10.1111/j.1502-3885.2006.tb01109.x, 2006. a, b, c
Livingstone, S. J., Lewington, E. L. M., Clark, C. D., Storrar, R. D., Sole, A. J., McMartin, I., Dewald, N., and Ng, F.: A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology, The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, 2020. a, b
Lorang, M. S., Stanford, J. A., Hauer, F. R., and Jourdonnais, J. H.: Dissipative and reflective beaches in a large lake and the physical effects of lake level regulation, Ocean Coast. Manage., 19, 263–287, https://doi.org/10.1016/0964-5691(93)90045-Z, 1993. a
Lundqvist, J.: Ice-lake types and deglaciation pattern along the Scandinavian mountain range, Boreas, 1, 27–54, https://doi.org/10.1111/j.1502-3885.1972.tb00142.x, 1972. a, b
Lundqvist, J. and Lagerbäck, R.: The Pärve Fault: A late-glacial fault in the Precambrian of Swedish Lapland, Geol. Foren. Stock. For., 98, 45–51, https://doi.org/10.1080/11035897609454337, 1976. a, b, c
Lundqvist, J. and Saarnisto, M.: Summary of project IGCP-253, Quatern. Int., 28, 9–18, https://doi.org/10.1016/1040-6182(95)00046-L, 1995. a
Lützow, N., Veh, G., and Korup, O.: A global database of historic glacier lake outburst floods, Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, 2023. a
Mallalieu, J., Carrivick, J. L., Quincey, D. J., and Raby, C. L.: Ice-marginal lakes associated with enhanced recession of the Greenland Ice Sheet, Global Planet. Change, 202, 103503, https://doi.org/10.1016/j.gloplacha.2021.103503, 2021. a
Margold, M., Jansson, K. N., Kleman, J., Stroeven, A. P., and Clague, J. J.: Retreat pattern of the Cordilleran Ice Sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater landforms, Boreas, 42, 830–847, https://doi.org/10.1111/bor.12007, 2013. a, b, c
Matthews, J. A., Dawson, A. G., and Shakesby, R. A.: Lake shoreline development, frost weathering and rock platform erosion in an alpine periglacial environment, Jotunheimen, southern Norway, Boreas, 15, 33–50, https://doi.org/10.1111/j.1502-3885.1986.tb00741.x, 1986. a
Melander, O.: Geomorfologiska kartbladet 30 H Riksgränsen (öst), 30 I Abisko 31 H Reurivare och 31 I Vadvetjäkka: Beskrivning och naturvärdesbedömning, Tech. Rep. SNV PM 857, Naturvårdsverket Report, https://www.diva-portal.org/smash/get/diva2:1157101/FULLTEXT01.pdf (last access: 11 December 2023), 1977a. a, b, c, d, e
Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., and Feyen, L.: Global long-term observations of coastal erosion and accretion, Sci. Rep.-UK, 8, 12876, https://doi.org/10.1038/s41598-018-30904-w, 2018. a
Mikko, H., Smith, C. A., Lund, B., Ask, M. V., and Munier, R.: LiDAR-derived inventory of post-glacial fault scarps in Sweden, GFF, 137, 334–338, https://doi.org/10.1080/11035897.2015.1036360, 2015. a
Møller, J. J.: Shoreline relation and prehistoric settlement in northern Norway, Norsk Geogr. Tidsskr., 41, 45–60, https://doi.org/10.1080/00291958708552171, 1987. a
Moon, S., Perron, J. T., Martel, S. J., Goodfellow, B. W., Mas Ivars, D., Hall, A., Heyman, J., Munier, R., Näslund, J.-O., Simeonov, A., and Stroeven, A. P.: Present-day stress field influences bedrock fracture openness deep into the subsurface, Geophys. Res. Lett., 47, e2020GL090581, https://doi.org/10.1029/2020GL090581, 2020. a
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a
Munier, R., Adams, J., Brandes, C., Brooks, G., Dehls, J., Einarsson, P., Gibbons, S. J., Hjartardóttir, A. R., Hogaas, F., Johansen, T. A., Kvaerna, T., Mattila, J., Mikko, H., Müller, K., Nikolaeva, S. B., Ojala, A., Olesen, O., Olsen, L., Palmu, J.-P., Ruskeeniemi, T., Ruud, B. O., Sandersen, P. B. E., Shvarev, S. V., Smith, C. A., Steffen, H., Steffen, R., Sutinen, R., and Tassis, G.: International database of Glacially Induced Faults, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.922705, 2020. a, b, c, d
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782, 2010. a
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M., Ruskeeniemi, T., Palmu, J.-P., and Sutinen, R.: Distribution and morphology of landslides in northern Finland: An analysis of postglacial seismic activity, Geomorphology, 326, 190–201, https://doi.org/10.1016/j.geomorph.2017.08.045, 2019. a, b
Panin, A. V., Astakhov, V. I., Lotsari, E., Komatsu, G., Lang, J., and Winsemann, J.: Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia, Earth-Sci. Rev., 201, 103069, https://doi.org/10.1016/j.earscirev.2019.103069, 2020. a
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.: The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing, Quaternary Sci. Rev., 153, 97–121, https://doi.org/10.1016/j.quascirev.2016.10.009, 2016. a
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.: Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017. a
Patton, H., Hubbard, A., Heyman, J., Alexandropoulou, N., Lasabuda, A. P. E., Stroeven, A. P., Hall, A. M., Winsborrow, M., Sugden, D. E., Kleman, J., and Andreassen, K.: The extreme yet transient nature of glacial erosion, Nat. Commun., 13, 7377, https://doi.org/10.1038/s41467-022-35072-0, 2022. a
Perkins, A. J. and Brennand, T. A.: Refining the pattern and style of Cordilleran Ice Sheet retreat: palaeogeography, evolution and implications of lateglacial ice-dammed lake systems on the southern Fraser Plateau, British Columbia, Canada, Boreas, 44, 319–342, https://doi.org/10.1111/bor.12100, 2015. a
Peterson, G. and Smith, C. A.: Description of units in the geomorphic database of Sweden, Tech. Rep. SGU-rapport 2013:4, SGU, http://resource.sgu.se/produkter/sgurapp/s1304-rapport.pdf (last access: 11 December 2023), 2013.
Ploeg, K.: Glacial lakes in the Torneträsk region, northern Sweden, are key to understanding regional deglaciation patterns and dynamics, Master's thesis, Stockholm University, Stockholm, http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208142 (last access: 11 December 2023), 2022. a
Ploeg, K.: Dataset for “History and dynamics of Fennoscandian Ice Sheet retreat, contemporary ice-dammed lake evolution, and faulting in the Torneträsk area, northwestern Sweden”, Zenodo [data set], https://doi.org/10.5281/zenodo.12800563, 2024. a
Quiquet, A., Dumas, C., Paillard, D., Ramstein, G., Ritz, C., and Roche, D. M.: Deglacial ice sheet instabilities induced by proglacial lakes, Geophys. Res. Lett., 48, e2020GL092141, https://doi.org/10.1029/2020GL092141, 2021. a
Rapp, A.: Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia, Geogr. Ann., 42, 65–200, https://doi.org/10.1080/20014422.1960.11880942, 1960. a
Regnéll, C., Peterson Becher, G., Öhrling, C., Greenwood, S. L., Gyllencreutz, R., Blomdin, R., Brendryen, J., Goodfellow, B. W., Mikko, H., Ransed, G., and Smith, C.: Ice-dammed lakes and deglaciation history of the Scandinavian Ice Sheet in central Jämtland, Sweden, Quaternary Sci. Rev., 314, 108219, https://doi.org/10.1016/j.quascirev.2023.108219, 2023. a, b, c, d, e, f, g, h, i
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Romundset, A., Akçar, N., Fredin, O., Andersen, J. L., Høgaas, F., Christl, M., Yesilyurt, S., and Schlüchter, C.: Early Holocene thinning and final demise of the Scandinavian Ice Sheet across the main drainage divide of southern Norway, Quaternary Sci. Rev., 317, 108274, https://doi.org/10.1016/j.quascirev.2023.108274, 2023. a, b
Scherrenberg, M. D. W., Berends, C. J., and van de Wal, R. S. W.: Late Pleistocene glacial terminations accelerated by proglacial lakes, Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024, 2024. a, b
Schuster, M. and Nutz, A.: Lacustrine wave-dominated clastic shorelines: Modern to ancient littoral landforms and deposits from the Lake Turkana Basin (East African Rift System, Kenya), J. Paleolimnol., 59, 221–243, https://doi.org/10.1007/s10933-017-9960-4, 2018. a
Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M., and Kleman, J.: Numerical simulations of the Cordilleran ice sheet through the last glacial cycle, The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, 2016. a
SGU: Product description: “The highest shoreline” (Swedish), https://resource.sgu.se/dokument/produkter/hogsta-kustlinjen-beskrivning.pdf, last access: 18 July 2024b. a
Sjögren, O.: Geografiska och glacialgeologiska studier vid Torneträsk, Sveriges Geologiske Undersökning, Ser. C, 219, 1909. a
Slater, T., Hogg, A. E., and Mottram, R.: Ice-sheet losses track high-end sea-level rise projections, Nat. Clim. Change, 10, 879–881, https://doi.org/10.1038/s41558-020-0893-y, 2020. a
Smith, C. A., Grigull, S., and Mikko, H.: Geomorphic evidence of multiple surface ruptures of the Merasjärvi “postglacial fault”, northern Sweden, GFF, 140, 318–322, https://doi.org/10.1080/11035897.2018.1492963, 2018. a
Smith, C. A., Mikko, H., and Grigull, S.: Glacially Induced Faults in Sweden: The Rise and Reassessment of the Single-Rupture Hypothesis, in: Glacially-Triggered Faulting, edited by: Steffen, H., Olesen, O., and Sutinen, R., Cambridge University Press, 218–230, https://doi.org/10.1017/9781108779906.016, 2021. a, b, c
Smith, M. J. and Clark, C. D.: Methods for the visualization of digital elevation models for landform mapping, Earth Surf. Proc. Land., 30, 885–900, https://doi.org/10.1002/esp.1210, 2005. a, b
Steffen, H. and Wu, P.: Glacial isostatic adjustment in Fennoscandia – A review of data and modeling, J. Geodyn., 52, 169–204, https://doi.org/10.1016/j.jog.2011.03.002, 2011. a
Steffen, H., Olesen, O., and Sutinen, R.: Glacially Triggered Faulting: A Historical Overview and Recent Developments, in: Glacially-Triggered Faulting, edited by: Steffen, H., Olesen, O., and Sutinen, R., Cambridge University Press, 3–19, https://doi.org/10.1017/9781108779906.003, 2021. a
Stokes, C. R. and Clark, C. D.: Evolution of late glacial ice-marginal lakes on the northwestern Canadian Shield and their influence on the location of the Dubawnt Lake palaeo-ice stream, Palaeogeogr. Palaeocl., 215, 155–171, https://doi.org/10.1016/j.palaeo.2004.09.006, 2004. a
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C. A., Hughes, A. L. C., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J. W., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P., and Teller, J. T.: On the reconstruction of palaeo-ice sheets: Recent advances and future challenges, Quaternary Sci. Rev., 125, 15–49, https://doi.org/10.1016/j.quascirev.2015.07.016, 2015. a
Storrar, R. D., Stokes, C. R., and Evans, D. J.: Morphometry and pattern of a large sample (>20 000) of Canadian eskers and implications for subglacial drainage beneath ice sheets, Quaternary Sci. Rev., 105, 1–25, https://doi.org/10.1016/j.quascirev.2014.09.013, 2014. a
Stroeven, A. P., Fabel, D., Harbor, J., Hättestrand, C., and Kleman, J.: Quantifying the erosional impact of the Fennoscandian ice sheet in the Torneträsk–Narvik corridor, northern Sweden, based on cosmogenic radionuclide data, Geogr. Ann. A, 84, 275–287, https://doi.org/10.1111/j.0435-3676.2002.00182.x, 2002. a, b, c, d, e, f, g, h, i
Stroeven, A. P., Harbor, J., and Heyman, J.: Erosional Landscapes, in: Treatise on Geomorphology, edited by: Shroder, J., Giardino, R., and Harbor, J., Glacial and Periglacial Geomorphology, vol. 8, Academic Press, San Diego, 100–112, https://doi.org/10.1016/B978-0-12-374739-6.00198-6, 2013. a
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson, K. N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Stroeven, A. P., Hättestrand, C., Jansson, K., and Kleman, J.: Paleoglaciology, in: Glaciers and Ice Sheets in the Climate System: The Karthaus Summer School Lecture Notes, edited by: Fowler, A. and Ng, F., Springer Textbooks in Earth Sciences, Geography and Environment, Springer International Publishing, Cham, 431–457, https://doi.org/10.1007/978-3-030-42584-5_17, 2021. a, b, c
Suganuma, Y., Kaneda, H., Mas e Braga, M., Ishiwa, T., Koyama, T., Newall, J. C., Okuno, J., Obase, T., Saito, F., Rogozhina, I., Andersen, J. L., Kawamata, M., Hirabayashi, M., Lifton, N. A., Fredin, O., Harbor, J. M., Stroeven, A. P., and Abe-Ouchi, A.: Regional sea-level highstand triggered Holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica, Commun. Earth. Environ., 3, 273, https://doi.org/10.1038/s43247-022-00599-z, 2022. a
Sutherland, J. L., Carrivick, J. L., Gandy, N., Shulmeister, J., Quincey, D. J., and Cornford, S. L.: Proglacial lakes control glacier geometry and behavior during recession, Geophys. Res. Lett., 47, e2020GL088865, https://doi.org/10.1029/2020GL088865, 2020. a
Sutinen, R.: Timing of early Holocene landslides in Kittilä, Finnish Lapland, Geol. S. Finl., 40, 53–58, 2005. a
Sutinen, R., Andreani, L., and Middleton, M.: Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland, Geomorphology, 326, 202–212, https://doi.org/10.1016/j.geomorph.2018.08.034, 2019. a
Svenonius, F.: Strandlinierna vid Torne Träsk, Geol. Foren. Stock. For., 20, 153–162, https://doi.org/10.1080/11035899809453982, 1898. a
Szuman, I., Kalita, J. Z., Diemont, C. R., Livingstone, S. J., Clark, C. D., and Margold, M.: Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet, The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, 2024. a, b
Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., and Fletcher, C. H.: Sea-level rise exponentially increases coastal flood frequency, Sci. Rep.-UK, 10, 6466, https://doi.org/10.1038/s41598-020-62188-4, 2020. a
Thompson, T. A. and Baedke, S. J.: Strand-plain evidence for late Holocene lake-level variations in Lake Michigan, GSA Bulletin, 109, 666–682, https://doi.org/10.1130/0016-7606(1997)109<0666:SPEFLH>2.3.CO;2, 1997. a
Utting, D. J. and Atkinson, N.: Proglacial lakes and the retreat pattern of the southwest Laurentide Ice Sheet across Alberta, Canada, Quaternary Sci. Rev., 225, 106034, https://doi.org/10.1016/j.quascirev.2019.106034, 2019. a, b, c, d
van de Wal, R. S. W., Nicholls, R. J., Behar, D., McInnes, K., Stammer, D., Lowe, J. A., Church, J. A., DeConto, R., Fettweis, X., Goelzer, H., Haasnoot, M., Haigh, I. D., Hinkel, J., Horton, B. P., James, T. S., Jenkins, A., LeCozannet, G., Levermann, A., Lipscomb, W. H., Marzeion, B., Pattyn, F., Payne, A. J., Pfeffer, W. T., Price, S. F., Seroussi, H., Sun, S., Veatch, W., and White, K.: A high-end estimate of sea level rise for practitioners, Earths Future, 10, e2022EF002751, https://doi.org/10.1029/2022EF002751, 2022. a
Vogel, H., Wagner, B., and Rosén, P.: Lake floor morphology and sediment architecture of Lake Torneträsk, northern Sweden, Geogr. Ann. A, 95, 159–170, https://doi.org/10.1111/geoa.12006, 2013. a
Wells, G. H., Dugmore, A. J., Beach, T., Baynes, E. R., Sæmundsson, P., and Luzzadder-Beach, S.: Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: Challenges, solutions, and an enhanced interpretive framework, Prog. Phys. Geog., 46, 398–421, https://doi.org/10.1177/03091333211065001, 2022. a
Wu, P. and Peltier, W. R.: Viscous gravitational relaxation, Geophys. J. Int., 70, 435–485, https://doi.org/10.1111/j.1365-246X.1982.tb04976.x, 1982. a
Zhang, T., Wang, W., and An, B.: Heterogeneous changes in global glacial lakes under coupled climate warming and glacier thinning, Commun. Earth. Environ., 5, 374, https://doi.org/10.1038/s43247-024-01544-y, 2024. a
Short summary
Mapping of glacial landforms using lidar data shows that the retreating margin of the Fennoscandian Ice Sheet dammed a series of lakes in the Torneträsk Basin during deglaciation. These lakes were more extensive than previously thought and produced outburst floods. We show that sections of the Pärvie Fault, the longest glacially activated fault of Sweden, ruptured multiple times and during the existence of ice-dammed lake Torneträsk.
Mapping of glacial landforms using lidar data shows that the retreating margin of the...