Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3227-2025
https://doi.org/10.5194/tc-19-3227-2025
Research article
 | 
25 Aug 2025
Research article |  | 25 Aug 2025

Modeling mixing and melting in laminar seawater intrusions under grounded ice

Madeline S. Mamer, Alexander A. Robel, Chris C. K. Lai, Earle Wilson, and Peter Washam

Related authors

Impact of glacial isostatic adjustment on zones of potential grounding line persistence in the Ross Sea Embayment (Antarctica) since the Last Glacial Maximum
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
The Cryosphere, 19, 2935–2948, https://doi.org/10.5194/tc-19-2935-2025,https://doi.org/10.5194/tc-19-2935-2025, 2025
Short summary
Sub-grid Parameterization of Iceberg Drag in a Coupled Iceberg-Ocean Model
Paul T. Summers, Rebecca H. Jackson, and Alexander A. Robel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1555,https://doi.org/10.5194/egusphere-2025-1555, 2025
Short summary
Disentangling the oceanic drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbræ)
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025,https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary
Glacier damage evolution over ice flow timescales
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025,https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary
The Greenland Ice Sheet Large Ensemble (GrISLENS): Simulating the future of Greenland under climate variability
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067,https://doi.org/10.5194/egusphere-2024-4067, 2025
Short summary

Cited articles

Adusumilli, S.: Satellite observations of atmosphere-ice-ocean interactions around Antarctica, Ph.D. thesis, University of California, San Diego, 2021. a
Al-Zubaidy, R. A. and Hilo, A. N.: Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD), Materials Today: Proceedings, 56, 1914–1926, https://doi.org/10.1016/j.matpr.2021.11.172, 2022. a
ANSYS: ANSYS Fluent 12.0 User's Guide, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm (last access: 6 May 2025), 2009. a, b, c, d
ANSYS: ANSYS Fluent – CFD Software | ANSYS, http://www.ansys.com/products/fluids/ansys-fluent (last access: 6 May 2025), 2022. a, b
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and King, M. A.: Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone, J. Geophys. Res.-Oceans, 123, 7438–7452, https://doi.org/10.1029/2018JC013987, 2018. a
Download
Short summary
In this work, we simulate estuary-like seawater intrusions into the subglacial hydrologic system for marine outlet glaciers. We find the largest controls on seawater intrusion are the subglacial space geometry and meltwater discharge velocity. Further, we highlight the importance of extending ocean-forced ice loss to grounded portions of the ice sheet, which is currently not represented in models coupling ice sheets to ocean dynamics.
Share