Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3227-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3227-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling mixing and melting in laminar seawater intrusions under grounded ice
Madeline S. Mamer
CORRESPONDING AUTHOR
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Alexander A. Robel
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Chris C. K. Lai
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Earle Wilson
Department of Earth System Science, Stanford University, Stanford, CA, USA
Peter Washam
Department of Astronomy, Cornell University, Ithaca, NY, USA
Related authors
No articles found.
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
The Cryosphere, 19, 2935–2948, https://doi.org/10.5194/tc-19-2935-2025, https://doi.org/10.5194/tc-19-2935-2025, 2025
Short summary
Short summary
We predicted how sea level changed in the Ross Sea (Antarctica) due to glacial isostatic adjustment, or solid Earth ice sheet interactions, over the last deglaciation (20 000 years ago to present) and calculated how these changes in bathymetry impacted ice stream stability. Glacial isostatic adjustment shifts stability from where ice reached its maximum 20 000 years ago, at the continental shelf edge, to the modern grounding line today, reinforcing ice-age climate endmembers.
Paul T. Summers, Rebecca H. Jackson, and Alexander A. Robel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1555, https://doi.org/10.5194/egusphere-2025-1555, 2025
Short summary
Short summary
We develop a method that allows numerical ocean models to include drag from icebergs, even for icebergs smaller than the model grid scale. This builds upon previous models that have either neglected iceberg drag, or required higher resolution to model individual icebergs. We test our model against higher resolution models, as well as models without iceberg drag, and show that including drag from icebergs is important for capturing realistic ocean circulation, temperature, and ice melt rates.
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025, https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary
Short summary
Sermeq Kujalleq, Greenland's largest glacier, has significantly retreated since the late 1990s in response to warming ocean temperatures. Using a large-ensemble approach, our simulations show that the retreat is mainly initiated by the arrival of warm water but sustained and accelerated by the glacier's position over deeper bed troughs and vigorous calving. We highlight the need for models of ice mélange to project glacier behavior under rapid calving regimes.
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025, https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary
Short summary
The rate of ice loss from ice sheets is controlled by the flow of ice from the center of the ice sheet and by the internal fracturing of the ice. These processes are coupled; fractures reduce the viscosity of ice and enable more rapid flow, and rapid flow causes the fracturing of ice. We present a simplified way of representing damage that is applicable to long-timescale flow estimates. Using this model, we find that including fracturing in an ice sheet simulation can increase the loss of ice by 13–29 %.
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067, https://doi.org/10.5194/egusphere-2024-4067, 2025
Short summary
Short summary
This study examines how random variations in climate may influence future ice loss from the Greenland Ice Sheet. We find that random climate variations are important for predicting future ice loss from the entire Greenland Ice Sheet over the next 20–30 years, but relatively unimportant after that period. Thus, uncertainty in sea level projections from the effect of climate variability on Greenland may play a role in coastal decision-making about sea level rise over the next few decades.
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025, https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary
Short summary
Some fjords contain dense packs of icebergs referred to as ice mélange. Ice mélange can affect the stability of marine-terminating glaciers by resisting the calving of new icebergs and by modifying fjord currents and water properties. We have developed the first numerical model of ice mélange that captures its granular nature and that is suitable for long-timescale simulations. The model is capable of explaining why some glaciers are more strongly influenced by ice mélange than others.
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024, https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Short summary
The average size of many glaciers and ice sheets changes when noise is added to the system. The reasons for this drift in glacier state is intrinsic to the dynamics of how ice flows and the bumpiness of the Earth's surface. We argue that not including noise in projections of ice sheet evolution over coming decades and centuries is a pervasive source of bias in these computer models, and so realistic variability in glacier and climate processes must be included in models.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Cited articles
Adusumilli, S.: Satellite observations of atmosphere-ice-ocean interactions around Antarctica, Ph.D. thesis, University of California, San Diego, 2021. a
Al-Zubaidy, R. A. and Hilo, A. N.: Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD), Materials Today: Proceedings, 56, 1914–1926, https://doi.org/10.1016/j.matpr.2021.11.172, 2022. a
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and King, M. A.: Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone, J. Geophys. Res.-Oceans, 123, 7438–7452, https://doi.org/10.1029/2018JC013987, 2018. a
Brenner, S., Rainville, L., Thomson, J., Cole, S., and Lee, C.: Comparing Observations and Parameterizations of Ice-Ocean Drag Through an Annual Cycle Across the Beaufort Sea, J. Geophys. Res.-Oceans, 126, e2020JC016977, https://doi.org/10.1029/2020JC016977, 2021. a
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains, The Cryosphere, 11, 381–405, https://doi.org/10.5194/tc-11-381-2017, 2017. a, b
Chalá, D. C., Castro-Faccetti, C., Quiñones-Bolaños, E., and Mehrvar, M.: Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations, Water, 16, 1970, https://doi.org/10.3390/w16141970, 2024. a
Christianson, K., Bushuk, M., Dutrieux, P., Parizek, B. R., Joughin, I. R., Alley, R. B., Shean, D. E., Abrahamsen, E. P., Anandakrishnan, S., Heywood, K. J., Kim, T. W., Lee, S. H., Nicholls, K., Stanton, T., Truffer, M., Webber, B. G., Jenkins, A., Jacobs, S., Bindschadler, R., and Holland, D. M.: Sensitivity of Pine Island Glacier to observed ocean forcing, Geophys. Res. Lett., 43, 10817–10825, https://doi.org/10.1002/2016GL070500, 2016. a
Ciracì, E., Rignot, E., Scheuchl, B. I., Tolpekin, V. I., Wollersheim, M., An, L., Milillo, P., Bueso-Bello, J.-L. I., Rizzoli, P. I., Dini, L., by R Byron Parizek, and Robel, A. A.: Melt rates in the kilometer-size grounding zone of Petermann Glacier, Greenland, before and during a retreat, P. Natl. Acad. Sci. USA, 120, e2220924120, https://doi.org/10.1073/pnas.2220924120, 2023. a, b
Davis, P. E. D., Nicholls, K. W., Holland, D. M., Schmidt, B. E., Washam, P., Riverman, K. L., Arthern, R. J., Vaňková, I., Eayrs, C., Smith, J. A., Anker, P. G. D., Mullen, A. D., Dichek, D., Lawrence, J. D., Meister, M. M., Clyne, E., Basinski-Ferris, A., Rignot, E., Queste, B. Y., Boehme, L., Heywood, K. J., Anandakrishnan, S., and Makinson, K.: Suppressed basal melting in the eastern Thwaites Glacier grounding zone, Nature, 614, 479–485, https://doi.org/10.1038/s41586-022-05586-0, 2023. a, b, c, d
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg, S. R., Broeke, M. R. V. D., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013. a
Gadi, R., Rignot, E., and Menemenlis, D.: Modeling Ice Melt Rates From Seawater Intrusions in the Grounding Zone of Petermann Gletscher, Greenland, Geophys. Res. Lett., 50, e2023GL105869, https://doi.org/10.1029/2023GL105869, 2023. a, b
Geyer, W. R., Trowbridge, J. H., and Bowen, M. M.: The Dynamics of a Partially Mixed Estuary, J. Phys. Oceanogr., 30, 2035–2048, https://doi.org/10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2, 2000. a
Geyer, W. R., Scully, M. E., and Ralston, D. K.: Quantifying vertical mixing in estuaries, Environ. Fluid Mech., 8, 495–509, https://doi.org/10.1007/s10652-008-9107-2, 2008. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice-Ocean Interactions at the Base of an Ice Shelf, Amer. Meteor. Soc., 29, 1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a, b, c, d
Horgan, H. J., Alley, R. B., Christianson, K., Jacobel, R. W., Anandakrishnan, S., Muto, A., Beem, L. H., and Siegfried, M. R.: Estuaries beneath ice sheets, Geology, 41, 1159–1162, https://doi.org/10.1130/G34654.1, 2013. a, b
Hrenya, C. M., Bolio, E. J., Chakrabarti, D., and Sinclair, J. L.: Comparison of Low Reynolds Number k-e Turbulence Models in Predicting Fully Developed Pipe Flow, Chem. Eng. Sci., 50, 1923–1941, https://doi.org/10.1016/0009-2509(95)00035-4, 1995. a
Jackson, R. H., Shroyer, E. L., Nash, J. D., Sutherland, D. A., Carroll, D., Fried, M. J., Catania, G. A., Bartholomaus, T. C., and Stearns, L. A.: Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations, Geophys. Res. Lett., 44, 6886–6894, https://doi.org/10.1002/2017GL073602, 2017. a
Jayakody, H., Al-Dadah, R., and Mahmoud, S.: Computational fluid dynamics investigation on indirect contact freeze desalination, Desalination, 420, 21–33, https://doi.org/10.1016/j.desal.2017.06.023, 2017. a
Jenkins, A.: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294, https://doi.org/10.1175/JPO-D-11-03.1, 2011. a
Jenkins, A., Nicholls, K. W., and Corr, H. F.: Observation and parameterization of ablation at the base of Ronne Ice Ahelf, Antarctica, J. Phys. Oceanogr., 40, 2298–2312, https://doi.org/10.1175/2010JPO4317.1, 2010. a, b
Kader, B. A. and Yaglom, A. M.: Heat and Mass Transfer Laws for Fully Turbulent Wall Flows, Int. J. Heat Mass T., 15, 2329–2351, https://doi.org/10.1016/0017-9310(72)90131-7, 1972. a
Kim, J. H., Rignot, E., Holland, D., and Holland, D.: Seawater Intrusion at the Grounding Line of Jakobshavn Isbræ, Greenland, From Terrestrial Radar Interferometry, Geophys. Res. Lett., 51, e2023GL106181, https://doi.org/10.1029/2023GL106181, 2024. a
Kimura, S., Nicholls, K. W., and Venables, E.: Estimation of ice shelf melt rate in the presence of a thermohaline staircase, J. Phys. Oceanogr., 45, 133–148, https://doi.org/10.1175/JPO-D-14-0106.1, 2015. a, b
Krvavica, N., Travaš, V., and Ožanić, N.: A field study of interfacial friction and entrainment in a microtidal salt-wedge estuary, Environ. Fluid Mech., 16, 1223–1246, https://doi.org/10.1007/s10652-016-9480-1, 2016. a, b, c
Lai, C. C. and Socolofsky, S. A.: Budgets of turbulent kinetic energy, Reynolds stresses, and dissipation in a turbulent round jet discharged into a stagnant ambient, Environ. Fluid Mech., 19, 349–377, https://doi.org/10.1007/s10652-018-9627-3, 2019. a
Launder, B. and Spalding, D.: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Pergamon, ISBN 978-0-08-030937-8, https://doi.org/10.1016/B978-0-08-030937-8.50016-7, 1983. a
Lu, P., Li, Z., Cheng, B., and Leppäranta, M.: A parameterization of the ice-ocean drag coefficient, J. Geophys. Res.-Oceans, 116, C07019, https://doi.org/10.1029/2010JC006878, 2011. a
Macgregor, J. A., Anandakrishnan, S., Catania, G. A., and Winebrenner, D. P.: The grounding zone of the Ross Ice Shelf, West Antarctica, from ice-penetrating radar, J. Glaciol., 57, 917–928, https://doi.org/10.3189/002214311798043780, 2011. a
Mamer, M.: madiemamer/seawater-intrusion: Code for Figures in Manuscript `Modeling mixing and melting in laminar seawater intrusions under grounded ice”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.16883483, 2025. a
Mansour, N. N., Kim, J., and Moin, P.: Near-wall k-ε turbulence modeling, AIAA J., 27, 1068–1073, https://doi.org/10.2514/3.10222, 1989. a
Mcphee, M. G.: An Analysis of Pack Ice Drift in Summer, in Sea Ice Processes and Models, edited by: Pritchard, R. S., Seattle and London, University of Washington Press, 62–75, 1980. a
Mcphee, M. G.: Air-Ice-Ocean Interaction Turbulent Boundary Layer Exchange Processes, Springer, New York, NY, https://doi.org/10.1007/978-0-387-78335-2_5, 2008. a
McPhee, M. G., Maykut, G. A., and Morison, J. H.: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea, J. Geophys. Res.-Oceans, 92, 7017–7031, https://doi.org/10.1029/JC092iC07p07017, 1987. a
Middleton, L., Davis, P. E., Taylor, J. R., and Nicholls, K. W.: Double Diffusion As a Driver of Turbulence in the Stratified Boundary Layer Beneath George VI Ice Shelf, Geophys. Res. Lett., 49, e2021GL096119, https://doi.org/10.1029/2021GL096119, 2022. a, b
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica, Sci. Adv., 5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019. a
Montagna, P. A., Palmer, T. A., and Pollack, J. B.: Hydrological Changes and Estuarine Dynamics, Springer, New York, NY, 1st edn., https://doi.org/10.1007/978-1-4614-5833-3, 2013. a, b
Nguyen, K. D., Guillou, S., Gourbesville, P., and Thiébot, J., eds.: Estuaries and Coastal Zones in Times of Global Change: Proceedings of ICEC-2018, Springer Water, Springer Singapore, Singapore, ISBN 978-981-15-2080-8, https://doi.org/10.1007/978-981-15-2081-5, 2020. a
Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N.-J., Amory, C., van den Broeke, M. R., Horwath, M., Joughin, I., King, M. D., Krinner, G., Nowicki, S., Payne, A. J., Rignot, E., Scambos, T., Simon, K. M., Smith, B. E., Sørensen, L. S., Velicogna, I., Whitehouse, P. L., A, G., Agosta, C., Ahlstrøm, A. P., Blazquez, A., Colgan, W., Engdahl, M. E., Fettweis, X., Forsberg, R., Gallée, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B. C., Harig, C., Helm, V., Khan, S. A., Kittel, C., Konrad, H., Langen, P. L., Lecavalier, B. S., Liang, C.-C., Loomis, B. D., McMillan, M., Melini, D., Mernild, S. H., Mottram, R., Mouginot, J., Nilsson, J., Noël, B., Pattle, M. E., Peltier, W. R., Pie, N., Roca, M., Sasgen, I., Save, H. V., Seo, K.-W., Scheuchl, B., Schrama, E. J. O., Schröder, L., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T. C., Vishwakarma, B. D., van Wessem, J. M., Wiese, D., van der Wal, W., and Wouters, B.: Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020, Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, 2023. a
Pope, S. B.: Turbulent Flows, Cambridge University Press, Cambridge, UK, ISBN 978-0521591256, https://doi.org/10.1017/CBO9780511840531, 2000. a, b, c
Randelhoff, A., Sundfjord, A., and Renner, A. H.: Effects of a shallow pycnocline and surface meltwater on sea ice-ocean drag and turbulent heat flux, J. Phys. Oceanogr., 44, 2176–2190, https://doi.org/10.1175/JPO-D-13-0231.1, 2014. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting Around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013. a
Roquet, F., Madec, G., Brodeau, L., and Nycander, J.: Defining a simplified yet “Realistic” equation of state for seawater, J. Phys. Oceanogr., 45, 2564–2579, https://doi.org/10.1175/JPO-D-15-0080.1, 2015. a, b, c
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.: The role of double-diffusive convection in basal melting of Antarctic ice shelves, P. Natl. Acad. Sci. USA, 118, e2007541118, https://doi.org/10.1073/pnas.2007541118, 2021. a, b
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.: Regimes and Transitions in the Basal Melting of Antarctic Ice Shelves, J. Phys. Oceanogr., 52, 2589–2608, https://doi.org/10.1175/jpo-d-21-0317.1, 2022. a, b, c, d
Sayag, R. and Worster, M. G.: Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting, Geophys. Res. Lett., 40, 5877–5881, https://doi.org/10.1002/2013GL057942, 2013. a
Schlichting, H. and Gersten, K.: Boundary-Layer Theory, Springer Berlin Heidelberg, ISBN 9783662529195, https://doi.org/10.1007/978-3-662-52919-5, 2016. a
Schmidt, B. E., Washam, P., Davis, P. E., Nicholls, K. W., Holland, D. M., Lawrence, J. D., Riverman, K. L., Smith, J. A., Spears, A., Dichek, D. J., Mullen, A. D., Clyne, E., Yeager, B., Anker, P., Meister, M. R., Hurwitz, B. C., Quartini, E. S., Bryson, F. E., Basinski-Ferris, A., Thomas, C., Wake, J., Vaughan, D. G., Anandakrishnan, S., Rignot, E., Paden, J., and Makinson, K.: Heterogeneous melting near the Thwaites Glacier grounding line, Nature, 614, 471–478, https://doi.org/10.1038/s41586-022-05691-0, 2023. a
Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, 2019. a, b
Stanton, T. P., Shaw, W. J., Truffer, M., Corr, H. F. J., Peters, L. E., Riverman, K. L., Bindschadler, R., Holland, D. M., and Anandakrishnan, S.: Channelized Ice Melting in the Ocean Boundary Layer Beneath Pine Island Glacier, Antarctica, Science, 341, 1236–1239, https://doi.org/10.1126/science.1239373, 2013. a
Sultan, R. A., Rahman, M. A., Rushd, S., Zendehboudi, S., and Kelessidis, V. C.: Validation of CFD model of multiphase flow through pipeline and annular geometries, Particul. Sci. Technol., 37, 685–697, https://doi.org/10.1080/02726351.2018.1435594, 2019. a
Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman, K. L., and Christianson, K.: Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sci. Lett., 361, 422–428, https://doi.org/10.1016/j.epsl.2012.11.008, 2013. a
Washam, P., Nicholls, K. W., Münchow, A., and Padman, L.: Tidal Modulation of Buoyant Flow and Basal Melt Beneath Petermann Gletscher Ice Shelf, Greenland, J. Geophys. Res.-Oceans, 125, e2020JC016427, https://doi.org/10.1029/2020JC016427, 2020. a, b, c
Washam, P., Lawrence, J. D., Stevens, C. L., Hulbe, C. L., Horgan, H. J., Robinson, N. J., Stewart, C. L., Spears, A., Quartini, E., Hurwitz, B., Meister, M. R., Mullen, A. D., Dichek, D. J., Bryson, F., and Schmidt, B. E.: Direct observations of melting, freezing, and ocean circulation in an ice shelf basal crevasse, Sci. Adv., 9, eadi7638, https://doi.org/10.1126/sciadv.adi7638, 2023. a, b
Whiteford, A., Horgan, H. J., Leong, W. J., and Forbes, M.: Melting and Refreezing in an Ice Shelf Basal Channel at the Grounding Line of the Kamb Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 127, e2021JF006532, https://doi.org/10.1029/2021JF006532, 2022. a
Yang, Z. and Shih, T. H.: New Time Scale Based k-ε Model for Near-Wall Turbulence, AIAA J., 31, 1191–1198, https://doi.org/10.2514/3.11752, 1993. a, b
Zangiabadi, E., Edmunds, M., Fairley, I. A., Togneri, M., Williams, A. J., Masters, I., and Croft, N.: Computational fluid dynamics and visualisation of coastal flows in tidal channels supporting ocean energy Development, Energies, 8, 5997–6012, https://doi.org/10.3390/en8065997, 2015. a
Zhao, K., Skyllingstad, E., and Nash, J. D.: Improved Parameterizations of Vertical Ice-Ocean Boundary Layers and Melt Rates, Geophys. Res. Lett., 51, e2023GL105862, https://doi.org/10.22541/essoar.169186339.97711746/v1, 2024. a
Zhu, L., Atoufi, A., Lefauve, A., Taylor, J. R., Kerswell, R. R., Dalziel, S. B., Lawrence, G. A., and Linden, P. F.: Stratified inclined duct: direct numerical simulations, J. Fluid Mech., 969, A20, https://doi.org/10.1017/jfm.2023.502, 2023. a
Short summary
In this work, we simulate estuary-like seawater intrusions into the subglacial hydrologic system for marine outlet glaciers. We find the largest controls on seawater intrusion are the subglacial space geometry and meltwater discharge velocity. Further, we highlight the importance of extending ocean-forced ice loss to grounded portions of the ice sheet, which is currently not represented in models coupling ice sheets to ocean dynamics.
In this work, we simulate estuary-like seawater intrusions into the subglacial hydrologic system...