Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind and topography underlie correlation between seasonal snowpack, mountain glaciers, and late-summer streamflow
Elijah N. Boardman
CORRESPONDING AUTHOR
Graduate Program of Hydrologic Studies, University of Nevada, Reno, Reno, Nevada, 89557, USA
Mountain Hydrology LLC, Reno, Nevada, 89503, USA
Andrew G. Fountain
Department of Geology, Portland State University, Portland, Oregon, 97207, USA
Joseph W. Boardman
Analytical Imaging and Geophysics LLC, Boulder, Colorado, 80305, USA
Airborne Snow Observatories, Inc., Mammoth Lakes, California, 93546, USA
Thomas H. Painter
Airborne Snow Observatories, Inc., Mammoth Lakes, California, 93546, USA
Evan W. Burgess
Airborne Snow Observatories, Inc., Mammoth Lakes, California, 93546, USA
Laura Wilson
Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
Adrian A. Harpold
Graduate Program of Hydrologic Studies, University of Nevada, Reno, Reno, Nevada, 89557, USA
Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, Nevada, 89557, USA
Related authors
Elijah N. Boardman, Gabrielle F. S. Boisramé, Mark S. Wigmosta, Robert K. Shriver, and Adrian A. Harpold
EGUsphere, https://doi.org/10.5194/egusphere-2025-1877, https://doi.org/10.5194/egusphere-2025-1877, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Predicting hydrological change is a global priority. Environmental changes can cause model biases that vary over time (nonstationarity). We demonstrate a new framework to detect nonstationarity after a large wildfire, which reduces uncertainty and improves model fidelity.
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Elijah N. Boardman, Gabrielle F. S. Boisramé, Mark S. Wigmosta, Robert K. Shriver, and Adrian A. Harpold
EGUsphere, https://doi.org/10.5194/egusphere-2025-1877, https://doi.org/10.5194/egusphere-2025-1877, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Predicting hydrological change is a global priority. Environmental changes can cause model biases that vary over time (nonstationarity). We demonstrate a new framework to detect nonstationarity after a large wildfire, which reduces uncertainty and improves model fidelity.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Airborne Snow Observatories, Inc.: Data Portal, https://data.airbornesnowobservatories.com/ (last access: 15 August 2025), 2025.
Alford, D.: Density Variations in Alpine Snow, J. Glaciol., 6, 495–503, https://doi.org/10.3189/S0022143000019717, 1967.
Allen, T. R.: Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana, Geomorphology, 21, 207–216, https://doi.org/10.1016/S0169-555X(97)00059-7, 1998.
Ambach, W. and Eisner, H.: Analysis of a 20 m. Firn Pit on the Kesselwandferner (Ötztal Alps), J. Glaciol., 6, 223–231, https://doi.org/10.3189/S0022143000019237, 1966.
Anderson, R. S.: Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46, 35–58, https://doi.org/10.1016/S0169-555X(02)00053-3, 2002.
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump, S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier – rock glacier continuum, Geomorphology, 311, 127–142, https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004.
Arp, C. D., Gooseff, M. N., Baker, M. A., and Wurtsbaugh, W.: Surface-water hydrodynamics and regimes of a small mountain stream–lake ecosystem, J. Hydrol., 329, 500–513, https://doi.org/10.1016/j.jhydrol.2006.03.006, 2006.
Baker, C. L.: Geology of the Northwestern Wind River Mountains, Wyoming, Geol. Soc. America. Bull., 57, 565–596, https://doi.org/10.1130/0016-7606(1946)57[565:GOTNWR]2.0.CO;2, 1946.
Bamber, J. L. and Rivera, A.: A review of remote sensing methods for glacier mass balance determination, Global Planet. Change, 59, 138–148, https://doi.org/10.1016/j.gloplacha.2006.11.031, 2007.
Barkdull, N. S., Carling, G. T., Fernandez, D. P., Nelson, S. T., Bickmore, B. R., Tingey, D. G., Checketts, H. N., Packer, B. N., and Hale, C. A.: Glaciers Control the Hydrogeochemistry of Proglacial Streams During Late Summer in the Wind River Range, Wyoming, United States, Front. Earth Sci., 9, 727575, https://doi.org/10.3389/feart.2021.727575, 2021.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., and Schneider, D.: Snowmelt rate dictates streamflow, Geophys. Res. Lett., 43, 8006–8016, https://doi.org/10.1002/2016GL069690, 2016.
Bell, J., Tootle, G., Pochop, L., Kerr, G., and Sivanpillai, R.: Glacier Impacts on Summer Streamflow in the Wind River Range, Wyoming, J. Hydrol. Eng., 17, 521–527, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000469, 2012.
Birkel, S. D., Putnam, A. E., Denton, G. H., Koons, P. O., Fastook, J. L., Putnam, D. E., and Maasch, K. A.: Climate Inferences from a Glaciological Reconstruction of the Late Pleistocene Wind River Ice Cap, Wind River Range, Wyoming, Arct. Antarct. Alp. Res., 44, 265–276, https://doi.org/10.1657/1938-4246-44.3.265, 2012.
Blackwelder, E.: Post-Cretaceous History of the Mountains of Central Western Wyoming, J. Geol., 23, 307–340, https://doi.org/10.1086/622243, 1915.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to twenty-first century climate change, J. Geophys. Res.-Earth, 119, 717–730, https://doi.org/10.1002/2013JF002931, 2014.
Boardman, E.: Dataset for Perennial Snow and Ice Study in the Wind River Range, Wyoming, Zenodo [data set], https://doi.org/10.5281/zenodo.14291097, 2024.
Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and temporal variability in seasonal snow density, J. Hydrol., 484, 63–73, https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013.
Brahney, J., Menounos, B., Wei, X., and Curtis, P. J.: Determining annual cryosphere storage contributions to streamflow using historical hydrometric records, Hydrol. Process., 31, 1590–1601, https://doi.org/10.1002/hyp.11128, 2017.
Brauchli, T., Trujillo, E., Huwald, H., and Lehning, M.: Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model, Water Resour. Res., 53, 10723–10739, https://doi.org/10.1002/2017WR021278, 2017.
Breiman, L., Cutler, A., Liaw, A., and Wiener, M.: randomForest: Breiman and Cutlers Random Forests for Classification and Regression, CRAN [code], https://doi.org/10.32614/CRAN.package.randomForest, 2002.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017.
Cable, J., Ogle, K., and Williams, D.: Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements, Hydrol. Process., 25, 2228–2236, https://doi.org/10.1002/hyp.7982, 2011.
Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., and Mark, B. G.: Impacts of Glacier Recession and Declining Meltwater on Mountain Societies, Ann. Am. Assoc. Geogr., 107, 350–359, https://doi.org/10.1080/24694452.2016.1243039, 2017.
Cheesbrough, K., Edmunds, J., Tootle, G., Kerr, G., and Pochop, L.: Estimated Wind River Range (Wyoming, USA) Glacier Melt Water Contributions to Agriculture, Remote Sensing, 1, 818–828, https://doi.org/10.3390/rs1040818, 2009.
Clark, A. M., Harper, J. T., and Fagre, D. B.: Glacier-Derived August Runoff in Northwest Montana, Arct. Antarct. Alp. Res., 47, 1–16, https://doi.org/10.1657/AAAR0014-033, 2015.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011.
Cochand, M., Christe, P., Ornstein, P., and Hunkeler, D.: Groundwater Storage in High Alpine Catchments and Its Contribution to Streamflow, Water Resour. Res., 55, 2613–2630, https://doi.org/10.1029/2018WR022989, 2019.
Colbeck, S. C.: An overview of seasonal snow metamorphism, Rev. Geophys., 20, 45–61, https://doi.org/10.1029/RG020i001p00045, 1982.
Dadic, R., Mott, R., Lehning, M., and Burlando, P.: Wind influence on snow depth distribution and accumulation over glaciers, J. Geophys. Res.-Earth, 115, F01012, https://doi.org/10.1029/2009JF001261, 2010.
Davaze, L., Rabatel, A., Arnaud, Y., Sirguey, P., Six, D., Letreguilly, A., and Dumont, M.: Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data, The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, 2018.
Davies, B., McNabb, R., Bendle, J., Carrivick, J., Ely, J., Holt, T., Markle, B., McNeil, C., Nicholson, L., and Pelto, M.: Accelerating glacier volume loss on Juneau Icefield driven by hypsometry and melt-accelerating feedbacks, Nat. Commun., 15, 5099, https://doi.org/10.1038/s41467-024-49269-y, 2024.
de Leeuw, N., Birkeland, K., and Hendrikx, J.: Understanding Meteorological Controls on Wind Slab Properties, in: International Snow Science Workshop, Bend,Oregon, 8–13 October 2023, 1104–1111, https://arc.lib.montana.edu/snow-science/objects/ISSW2023_O11.04.pdf (last access: 15 August 2025), 2023.
Delmas, M., Gunnell, Y., and Calvet, M.: Environmental controls on alpine cirque size, Geomorphology, 206, 318–329, https://doi.org/10.1016/j.geomorph.2013.09.037, 2014.
Dettinger, M., Redmond, K., and Cayan, D.: Winter Orographic Precipitation Ratios in the Sierra Nevada – Large-Scale Atmospheric Circulations and Hydrologic Consequences, J. Hydrometeorol., 5, 1102–1116, https://doi.org/10.1175/JHM-390.1, 2004.
DeVisser, M. H. and Fountain, A. G.: A century of glacier change in the Wind River Range, WY, Geomorphology, 232, 103–116, https://doi.org/10.1016/j.geomorph.2014.10.017, 2015.
Di Mauro, B. and Fugazza, D.: Pan-Alpine glacier phenology reveals lowering albedo and increase in ablation season length, Remote Sens. Environ., 279, 113119, https://doi.org/10.1016/j.rse.2022.113119, 2022.
Dierauer, J. R., Allen, D. M., and Whitfield, P. H.: Snow Drought Risk and Susceptibility in the Western United States and Southwestern Canada, Water Resour. Res., 55, 3076–3091, https://doi.org/10.1029/2018WR023229, 2019.
Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world's mountains, WIREs Water, 3, 461–474, https://doi.org/10.1002/wat2.1140, 2016.
Drenkhan, F., Buytaert, W., Mackay, J. D., Barrand, N. E., Hannah, D. M., and Huggel, C.: Looking beyond glaciers to understand mountain water security, Nat. Sustain., 6, 130–138, https://doi.org/10.1038/s41893-022-00996-4, 2023.
Elder, K., Dozier, J., and Michaelsen, J.: Snow accumulation and distribution in an Alpine Watershed, Water Resour. Res., 27, 1541–1552, https://doi.org/10.1029/91WR00506, 1991.
Evans, I. S.: World-Wide Variations in the Direction and Concentration of Cirque and Glacier Aspects, Geogr. Ann. A, 59, 151–175, https://doi.org/10.1080/04353676.1977.11879949, 1977.
Evans, I. S.: Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes, Geomorphology, 73, 166–184, https://doi.org/10.1016/j.geomorph.2005.07.009, 2006.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Fischer, A.: Comparison of direct and geodetic mass balances on a multi-annual time scale, The Cryosphere, 5, 107–124, https://doi.org/10.5194/tc-5-107-2011, 2011.
Fleming, S. W. and Clarke, G. K.: Attenuation of High-Frequency Interannual Streamflow Variability by Watershed Glacial Cover, J. Hydraul. Eng., 131, 615–618, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(615), 2005.
Florentine, C., Harper, J., Fagre, D., Moore, J., and Peitzsch, E.: Local topography increasingly influences the mass balance of a retreating cirque glacier, The Cryosphere, 12, 2109–2122, https://doi.org/10.5194/tc-12-2109-2018, 2018.
Florentine, C., Harper, J., and Fagre, D.: Parsing complex terrain controls on mountain glacier response to climate forcing, Global Planet. Change, 191, 103209, https://doi.org/10.1016/j.gloplacha.2020.103209, 2020.
Fountain, A., Glenn, B., and McNeil, C.: Data From: Inventory of Glaciers and Perennial Snowfields of the Conterminous USA, Geology Faculty Datasets [data set], https://doi.org/10.15760/geology-data.03, 2022.
Fountain, A. G.: Effect of Snow and Firn Hydrology on the Physical and Chemical Characteristics of Glacial Runoff, Hydrol. Process., 10, 509–521, https://doi.org/10.1002/(SICI)1099-1085(199604)10:4<509::AID-HYP389>3.0.CO;2-3, 1996.
Fountain, A. G. and Tangborn, W. V.: The Effect of Glaciers on Streamflow Variations, Water Resour. Res., 21, 579–586, https://doi.org/10.1029/WR021i004p00579, 1985.
Fountain, A. G., Glenn, B., and Mcneil, C.: Inventory of glaciers and perennial snowfields of the conterminous USA, Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, 2023.
Frenierre, J. L. and Mark, B. G.: A review of methods for estimating the contribution of glacial meltwater to total watershed discharge, Progress in Physical Geography: Earth and Environment, 38, 173–200, https://doi.org/10.1177/0309133313516161, 2014.
Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M.: Snow redistribution for the hydrological modeling of alpine catchments, WIREs Water, 4, e1232, https://doi.org/10.1002/wat2.1232, 2017.
Gentine, P., D'Odorico, P., Lintner, B. R., Sivandran, G., and Salvucci, G.: Interdependence of climate, soil, and vegetation as constrained by the Budyko curve, Geophys. Res. Lett., 39, 2012GL053492, https://doi.org/10.1029/2012GL053492, 2012.
Gerber, F. and Furrer, R.: optimParallel: An R Package Providing a Parallel Version of the L-BFGS-B Optimization Method, R J., 11, 352, https://doi.org/10.32614/RJ-2019-030, 2019.
Gordon, B. L., Brooks, P. D., Krogh, S. A., Boisrame, G. F. S., Carroll, R. W. H., McNamara, J. P., and Harpold, A. A.: Why does snowmelt-driven streamflow response to warming vary? A data-driven review and predictive framework, Environ. Res. Lett., 17, 053004, https://doi.org/10.1088/1748-9326/ac64b4, 2022.
Gordon, B. L., Boisrame, G. F. S., Carroll, R. W. H., Ajami, N. K., Leonard, B., Albano, C., Mizukami, N., Andrade, M. A., Koebele, E., Taylor, M. H., and Harpold, A. A.: The Essential Role of Local Context in Shaping Risk and Risk Reduction Strategies for Snowmelt-Dependent Irrigated Agriculture, Earth's Future, 12, e2024EF004577, https://doi.org/10.1029/2024EF004577, 2024.
Graf, W. L.: Cirques as Glacier Locations, Arctic Alpine Res., 8, 79–90, https://doi.org/10.2307/1550611, 1976.
Graup, L. J., Tague, C. L., Harpold, A. A., and Krogh, S. A.: Subsurface Lateral Flows Buffer Riparian Water Stress Against Snow Drought, J. Geophys. Res.-Biogeo., 127, e2022JG006980, https://doi.org/10.1029/2022JG006980, 2022.
Groot Zwaaftink, C. D., Mott, R., and Lehning, M.: Seasonal simulation of drifting snow sublimation in Alpine terrain, Water Resour. Res., 49, 1581–1590, https://doi.org/10.1002/wrcr.20137, 2013.
Hall, D. K., Foster, J. L., DiGirolamo, N. E., and Riggs, G. A.: Snow cover, snowmelt timing and stream power in the Wind River Range, Wyoming, Geomorphology, 137, 87–93, https://doi.org/10.1016/j.geomorph.2010.11.011, 2012.
Hammond, J. C., Saavedra, F. A., and Kampf, S. K.: How Does Snow Persistence Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet Maritime and Dry Continental Climates?, Water Resour. Res., 54, 2605–2623, https://doi.org/10.1002/2017WR021899, 2018.
Hannah, D. M., Gurnell, A. M., and Mcgregor, G. R.: Spatio–temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier, Int. J. Climatol., 20, 733–758, https://doi.org/10.1002/1097-0088(20000615)20:7<733::AID-JOC490>3.0.CO;2-F, 2000.
Harpold, A. A., Dettinger, M., and Rajagopal, S.: Defining Snow Drought and Why It Matters, Eos, 98, https://doi.org/10.1029/2017EO068775, 2017.
Hartman, M. D., Baron, J. S., Lammers, R. B., Cline, D. W., Band, L. E., Liston, G. E., and Tague, C.: Simulations of snow distribution and hydrology in a mountain basin, Water Resour. Res., 35, 1587–1603, https://doi.org/10.1029/1998WR900096, 1999.
Helfricht, K., Schöber, J., Schneider, K., Sailer, R., and Kuhn, M.: Interannual persistence of the seasonal snow cover in a glacierized catchment, J. Glaciol., 60, 889–904, https://doi.org/10.3189/2014JoG13J197, 2014.
Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An assessment of differences in gridded precipitation datasets in complex terrain, J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018.
Hobbs, W. H.: Earth features and their meaning, The Macmillan Company, New York, 610 pp., 1912.
Hoffman, M. J., Fountain, A. G., and Achuff, J. M.: 20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains, Colorado, USA, Ann. Glaciol., 46, 349–354, https://doi.org/10.3189/172756407782871233, 2007.
Hood, E. and Berner, L.: Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska, J. Geophys. Res.-Biogeo., 114, G03001, https://doi.org/10.1029/2009JG000971, 2009.
Hughes, P. D.: Little Ice Age glaciers in the Balkans: low altitude glaciation enabled by cooler temperatures and local topoclimatic controls, Earth Surf. Proc. Land., 35, 229–241, https://doi.org/10.1002/esp.1916, 2010.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huning, L. S. and AghaKouchak, A.: Global snow drought hot spots and characteristics, P. Natl. Acad. Sci. USA, 117, 19753–19759, https://doi.org/10.1073/pnas.1915921117, 2020.
Huntington, J. L. and Niswonger, R. G.: Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach, Water Resour. Res., 48, W11524, https://doi.org/10.1029/2012WR012319, 2012.
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M. and Fischer, M.: Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change, Front. Earth Sci., 4, 34, https://doi.org/10.3389/feart.2016.00034, 2016.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. s., Clague, J. j., Vuille, M., Buytaert, W., Cayan, D. r., Greenwood, G., Mark, B. g., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earth's Future, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
Johnson, E. and Rupper, S.: An Examination of Physical Processes That Trigger the Albedo-Feedback on Glacier Surfaces and Implications for Regional Glacier Mass Balance Across High Mountain Asia, Front. Earth Sci., 8, 129, https://doi.org/10.3389/feart.2020.00129, 2020.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of glaciers to water availability in different climate regimes, P. Natl. Acad. Sci. USA, 107, 20223–20227, https://doi.org/10.1073/pnas.1008162107, 2010.
Kessler, M. A., Anderson, R. S., and Stock, G. M.: Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum, J. Geophys. Res.-Earth, 111, F02002, https://doi.org/10.1029/2005JF000365, 2006.
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2017.
Kneib, M., Cauvy-Fraunié, S., Escoffier, N., Boix Canadell, M., Horgby, Å., and Battin, T. J.: Glacier retreat changes diurnal variation intensity and frequency of hydrologic variables in Alpine and Andean streams, J. Hydrol., 583, 124578, https://doi.org/10.1016/j.jhydrol.2020.124578, 2020.
Kuhn, M.: The Mass Balance of Very Small Glaciers, Zeitschrift für Gletscherkunde und Glazialgeologie, 31, 171–179, 1995.
Laha, S., Kumari, R., Singh, S., Mishra, A., Sharma, T., Banerjee, A., Nainwal, H. C., and Shankar, R.: Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers, Ann. Glaciol., 58, 110–118, https://doi.org/10.1017/aog.2017.27, 2017.
Lambrecht, A. and Mayer, C.: Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria, J. Hydrol., 376, 353–361, https://doi.org/10.1016/j.jhydrol.2009.07.045, 2009.
Lapen, D. R. and Martz, L. W.: The measurement of two simple topographic indices of wind sheltering-exposure from raster digital elevation models, Comput. Geosci., 19, 769–779, https://doi.org/10.1016/0098-3004(93)90049-B, 1993.
Le, E., Janssen, J., Hammond, J., and Ameli, A. A.: The persistence of snow on the ground affects the shape of streamflow hydrographs over space and time: a continental-scale analysis, Front. Environ. Sci., 11, 1207508, https://doi.org/10.3389/fenvs.2023.1207508, 2023.
Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous precipitation distribution and snow transport in steep terrain, Water Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545, 2008.
Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P.: How much runoff originates as snow in the western United States, and how will that change in the future?, Geophys. Res. Lett., 44, 6163–6172, https://doi.org/10.1002/2017GL073551, 2017.
Lindsay, J. B.: Whitebox GAT: A case study in geomorphometric analysis, Comput. Geosci., 95, 75–84, https://doi.org/10.1016/j.cageo.2016.07.003, 2016.
Luce, C. H., Tarboton, D. G., and Cooley, K. R.: The influence of the spatial distribution of snow on basin-averaged snowmelt, Hydrol. Process., 12, 1671–1683, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N, 1998.
MacKinnon, A.: Eyeing the Future on the Wind River, Wyoming Law Review, 15, 517–548, 2015.
Maloof, A., Piburn, J., Tootle, G., and Kerr, G.: Recent Alpine Glacier Variability: Wind River Range, Wyoming, USA, Geosciences, 4, 191–201, https://doi.org/10.3390/geosciences4030191, 2014.
Marks, J., Piburn, J., Tootle, G., Kerr, G., and Oubeidillah, A.: Estimates of Glacier Mass Loss and Contribution to Streamflow in the Wind River Range in Wyoming: Case Study, J. Hydrol. Eng., 20, 05014026, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001050, 2015.
Marsh, C. B., Lv, Z., Vionnet, V., Harder, P., Spiteri, R. J., and Pomeroy, J. W.: Snowdrift-Permitting Simulations of Seasonal Snowpack Processes Over Large Mountain Extents, Water Resour. Res., 60, e2023WR036948, https://doi.org/10.1029/2023WR036948, 2024.
Marston, R. A., Pochop, L. O., Kerr, G. L., and Varuska, M. L.: Recent trends in glaciers and glacier runoff, Wind River Range, Wyoming, in: Proceedings of the Symposium on Headwaters Hydrology, Bethesda, MD, June 1989 158–169, http://library.wrds.uwyo.edu/wrp/89-03/89-03.pdf (last access: 15 August 2025), 1989.
Marston, R. A., Pochop, L. O., Kerr, G. L., Varuska, M. L., and Veryzer, D. J.: Recent Glacier Changes in the Wind River Range, Wyoming, Phys. Geogr., 12, 115–123, https://doi.org/10.1080/02723646.1991.10642421, 1991.
Matthews, J. A. and Briffa, K. R.: The “little ice age”: re-evaluation of an evolving concept, Geogr. Ann. A, 87, 17–36, https://doi.org/10.1111/j.0435-3676.2005.00242.x, 2005.
McGuire, C. R., Nufio, C. R., Bowers, M. D., and Guralnick, R. P.: Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record, PLOS ONE, 7, e44370, https://doi.org/10.1371/journal.pone.0044370, 2012.
McNeeley, S. M., Dewes, C. F., Stiles, C. J., Beeton, T. A., Rangwala, I., Hobbins, M. T., and Knutson, C. L.: Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation, Climate Risk Management, 19, 61–82, https://doi.org/10.1016/j.crm.2017.09.004, 2018.
Mears, B. Jr.: Geomorphic history of Wyoming and high-level erosion surfaces, in: Geology of Wyoming, vol. 1, edited by: Snoke, A. W., Steidtmann, J. R., and Roberts, S. M., Wyoming State Geological Survey, 608–626, ISBN 9781884589003, 1993.
Meier, M. F.: Glaciers of the Gannett Peak-Fremont Peak Area, Wyoming, Master of Science, University of Iowa, Iowa City, IA, United States, https://doi.org/10.17077/etd.jbr57cnd, 1951.
Meier, M. F.: Glaciers and Water Supply, Journal AWWA, 61, 8–12, https://doi.org/10.1002/j.1551-8833.1969.tb03696.x, 1969.
Meier, M. F.: Remote sensing of snow and ice/La télédétection de neige et de glace, Hydrol. Sci. B., 25, 307–330, https://doi.org/10.1080/02626668009491937, 1980.
Meierding, T. C.: Late Pleistocene Glacial Equilibrium-Line Altitudes in the Colorado Front Range: A Comparison of Methods, Quat. Res., 18, 289–310, https://doi.org/10.1016/0033-5894(82)90076-X, 1982.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E., Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D., Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S., Robinson, C. T., Tranter, M., and Brown, L. E.: Glacier shrinkage driving global changes in downstream systems, P. Natl. Acad. Sci. USA, 114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017.
Moore, R. D.: The Influence of Glacial Cover on the Variability of Annual Runoff, Coast Mountains, British Columbia, Canada, Can. Water Resour. J., 17, 101–109, https://doi.org/10.4296/cwrj1702101, 1992.
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm, K., and Jakob, M.: Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality, Hydrol. Process., 23, 42–61, https://doi.org/10.1002/hyp.7162, 2009.
Moore, R. D., Pelto, B., Menounos, B., and Hutchinson, D.: Detecting the Effects of Sustained Glacier Wastage on Streamflow in Variably Glacierized Catchments, Front. Earth Sci., 8, 136, https://doi.org/10.3389/feart.2020.00136, 2020.
Mott, R., Wolf, A., Kehl, M., Kunstmann, H., Warscher, M., and Grünewald, T.: Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study, The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, 2019.
Muhlfeld, C. C., Cline, T. J., Giersch, J. J., Peitzsch, E., Florentine, C., Jacobsen, D., and Hotaling, S.: Specialized meltwater biodiversity persists despite widespread deglaciation, P. Natl. Acad. Sci. USA, 117, 12208–12214, https://doi.org/10.1073/pnas.2001697117, 2020.
Munro, D. S. and Young, G. J.: An operational net shortwave radiation model for glacier basins, Water Resour. Res., 18, 220–230, https://doi.org/10.1029/WR018i002p00220, 1982.
Naftz, D. L. and Smith, M. E.: Ice Thickness, Ablation, and Other Glaciological Measurements on Upper Fremont Glacier, Wyoming, Phys. Geogr., 14, 404–414, https://doi.org/10.1080/02723646.1993.10642488, 1993.
Naftz, D. L., Susong, D. D., Schuster, P. F., Cecil, L. D., Dettinger, M. D., Michel, R. L., and Kendall, C.: Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States, J. Geophys. Res.-Atmos., 107, ACL 3-1–ACL 3-16, https://doi.org/10.1029/2001JD000621, 2002.
Natural Resource Conservation Service and National Water and Climate Center: Air and Water Database daily SNOTEL data for sites 525, 775, 822, 923, 944, https://nwcc-apps.sc.egov.usda.gov/imap/ (last access: 15 August 2025), 2024.
Nolin, A. W., Phillippe, J., Jefferson, A., and Lewis, S. L.: Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: Implications for water resources, Water Resour. Res., 46, W12509, https://doi.org/10.1029/2009WR008968, 2010.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Oerlemans, J.: Glaciers as indicators of a carbon dioxide warming, Nature, 320, 607–609, https://doi.org/10.1038/320607a0, 1986.
Oerlemans, J. and Klok, E. J.: Energy Balance of a Glacier Surface: Analysis of Automatic Weather Station Data from the Morteratschgletscher, Switzerland, Arct. Antarct. Alp. Res., 34, 477–485, https://doi.org/10.1080/15230430.2002.12003519, 2002.
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019.
Olyphant, G. A.: Insolation Topoclimates and Potential Ablation in Alpine Snow Accumulation Basins: Front Range, Colorado, Water Resour. Res., 20, 491–498, https://doi.org/10.1029/WR020i004p00491, 1984.
Olyphant, G. A.: Longwave Radiation in Mountainous Areas and Its Influence on the Energy Balance of Alpine Snowfields, Water Resour. Res., 22, 62–66, https://doi.org/10.1029/WR022i001p00062, 1986.
Onaca, A., Gachev, E., Ardelean, F., Ardelean, A., Perşoiu, A., and Hegyi, A.: Small is strong: Post-LIA resilience of Europe's Southernmost glaciers assessed by geophysical methods, CATENA, 213, 106143, https://doi.org/10.1016/j.catena.2022.106143, 2022.
O'Neel, S., Hood, E., Arendt, A., and Sass, L.: Assessing streamflow sensitivity to variations in glacier mass balance, Climatic Change, 123, 329–341, https://doi.org/10.1007/s10584-013-1042-7, 2014.
Outcalt, S. I. and MacPhail, D. D.: A Survey of Neoglaciation in the Front Range of Colorado, University of Colorado Studies, Series in Earth Sciences, 124, 1965.
Owusu-Amponsah, N. Y., VanLooy, J. A., and Vandeberg, G. S.: Changes in snow and ice surface albedo and its impact on snow and ice area in the Wind River Range, Wyoming, USA, Phys. Geogr., 44, 581–599, https://doi.org/10.1080/02723646.2022.2136594, 2023.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Palazzi, E., Mortarini, L., Terzago, S., and von Hardenberg, J.: Elevation-dependent warming in global climate model simulations at high spatial resolution, Clim. Dynam., 52, 2685–2702, https://doi.org/10.1007/s00382-018-4287-z, 2019.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.01703, 2019.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., Yang, D. Q., and Mountain Research Initiative EDW Working Group: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Pohl, E., Gloaguen, R., Andermann, C., and Knoche, M.: Glacier melt buffers river runoff in the Pamir Mountains, Water Resour. Res., 53, 2467–2489, https://doi.org/10.1002/2016WR019431, 2017.
Purves, R. S., Mackaness, W. A., and Sugden, D. E.: An approach to modelling the impact of snow drift on glaciation in the Cairngorm Mountains, Scotland, J. Quaternary Sci., 14, 313–321, https://doi.org/10.1002/(SICI)1099-1417(199907)14:4<313::AID-JQS457>3.0.CO;2-M, 1999.
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of elevation-dependent warming and its possible causes, Climatic Change, 114, 527–547, https://doi.org/10.1007/s10584-012-0419-3, 2012.
Rets, E. P., Durmanov, I. N., Kireeva, M. B., Smirnov, A. M., and Popovnin, V. V.: Past `peak water' in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges, Climatic Change, 163, 2135–2151, https://doi.org/10.1007/s10584-020-02931-y, 2020.
Richer, E. E., Kampf, S. K., Fassnacht, S. R., and Moore, C. C.: Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range, Phys. Geogr., 34, 85–107, https://doi.org/10.1080/02723646.2013.787578, 2013.
Rigge, M. B., Bunde, B., Shi, H., and Postma, K.: Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985–2020 (2.0, October 2021), Geological Survey data release [data set], https://doi.org/10.5066/P95IQ4BT, 2021.
Robson, B. A., MacDonell, S., Ayala, Á., Bolch, T., Nielsen, P. R., and Vivero, S.: Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile, The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, 2022.
Roustant, O., Ginsbourger, D., and Deville, Y.: DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, J. Stat. Softw., 51, 1–55, https://doi.org/10.18637/jss.v051.i01, 2012.
Sapiano, J. J., Harrison, W. D., and Echelmeyer, K. A.: Elevation, volume and terminus changes of nine glaciers in North America, J. Glaciol., 44, 119–135, https://doi.org/10.3189/S0022143000002410, 1998.
Schaner, N., Voisin, N., Nijssen, B., and Lettenmaier, D. P.: The contribution of glacier melt to streamflow, Environ. Res. Lett., 7, 034029, https://doi.org/10.1088/1748-9326/7/3/034029, 2012.
Schneider, D., Molotch, N. P., Deems, J. S., and Painter, T. H.: Analysis of topographic controls on depletion curves derived from airborne lidar snow depth data, Hydrol. Res., 52, 253–265, https://doi.org/10.2166/nh.2020.267, 2020.
Selkowitz, D. J. and Forster, R. R.: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat, ISPRS J. Photogramm., 117, 126–140, https://doi.org/10.1016/j.isprsjprs.2016.04.001, 2016.
Sharp, R. P.: Features of the Firn on Upper Seward Glacier St. Elias Mountains, Canada, J. Geol., 59, 599–621, https://doi.org/10.1086/625915, 1951.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00363, 2020.
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins, W. D., and Kaatz, L.: A low-to-no snow future and its impacts on water resources in the western United States, Nat. Rev. Earth Environ., 2, 800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021.
Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C., and Zemp, M.: Methodological approaches to infer end-of-winter snow distribution on alpine glaciers, J. Glaciol., 59, 1047–1059, https://doi.org/10.3189/2013JoG13J015, 2013.
Somers, L. D. and McKenzie, J. M.: A review of groundwater in high mountain environments, WIREs Water, 7, e1475, https://doi.org/10.1002/wat2.1475, 2020.
Stahl, K. and Moore, R. D.: Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada, Water Resour. Res., 42, https://doi.org/10.1029/2006WR005022, 2006.
Stan Development Team: Stan Modeling Language Users Guide and Reference Manual, 2.32.5, https://mc-stan.org/ (last access: 15 August 2025), 2023.
Stevens, C. M., Sass, L., Florentine, C., McNeil, C., Baker, E., and Bollen, K.: Direct measurements of firn-density evolution from 2016 to 2022 at Wolverine Glacier, Alaska, J. Glaciol., 70, e2, https://doi.org/10.1017/jog.2024.24, 2024.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward Earlier Streamflow Timing across Western North America, J. Climate, 18, 1136–1155, https://doi.org/10.1175/JCLI3321.1, 2005.
Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W.: Is snow sublimation important in the alpine water balance?, The Cryosphere, 2, 53–66, https://doi.org/10.5194/tc-2-53-2008, 2008.
Tabler, R. D.: Geometry and Density of Drifts Formed by Snow Fences, J. Glaciol., 26, 405–419, https://doi.org/10.3189/S0022143000010935, 1980.
Thompson, D., Tootle, G., Kerr, G., Sivanpillai, R., and Pochop, L.: Glacier Variability in the Wind River Range, Wyoming, J. Hydrol. Eng., 16, 798–805, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000384, 2011.
van Tiel, M., Kohn, I., Van Loon, A. F., and Stahl, K.: The compensating effect of glaciers: Characterizing the relation between interannual streamflow variability and glacier cover, Hydrol. Process., 34, 553–568, https://doi.org/10.1002/hyp.13603, 2020.
U.S. Geological Survey: 3D Elevation Program 1-Meter Resolution Digital Elevation Model, https://www.usgs.gov/3d-elevation-program (last access: 15 August 2025), 2019.
U.S. Geological Survey: National Water Information System daily streamflow data for sites 06221400, 06224000, 09188500, 09196500, https://maps.waterdata.usgs.gov/mapper/index.html (last access: 15 August 2025), 2024a.
U.S. Geological Survey, Earth Resources Observation And Science Center: Collection-1 Landsat Level-3 Fractional Snow Covered Area (FSCA) Science Product, U.S. Geological Survey [data set], https://doi.org/10.5066/F7XK8DS5, 2024b.
Vandeberg, G. S. and VanLooy, J. A.: Continental Glacier meltwater contributions to late summer stream flow and water quality in the northern Wind River Range, Wyoming, USA, Environ. Earth Sci., 75, 389, https://doi.org/10.1007/s12665-016-5295-0, 2016.
VanLooy, J. A. and Vandeberg, G. S.: Late summer glacial meltwater contributions to Bull Lake Creek stream flow and water quality, Wind River Range, Wyoming, USA, Physical Geography, 40, 461–480, https://doi.org/10.1080/02723646.2019.1565215, 2019.
VanLooy, J. A. and Vandeberg, G. S.: Glacier Meltwater Impacts to Late Summer Flow and Geochemistry of Tributaries in the Wind River Range, Wyoming, USA, Prof. Geogr., 76, 683–689, https://doi.org/10.1080/00330124.2024.2341073, 2024.
VanLooy, J. A., Forster, R. R., Barta, D., and Turrin, J.: Spatially variable surface elevation changes and estimated melt water contribution of Continental Glacier in the Wind River Range, Wyoming, USA: 1966–2011, Geocarto Int., 28, 98–113, https://doi.org/10.1080/10106049.2012.665500, 2013.
VanLooy, J. A., Miège, C., Vandeberg, G. S., and Forster, R. R.: Ice volume estimation inferred from ice thickness and surface measurements for Continental Glacier, Wind River Range, Wyoming, USA, J. Glaciol., 60, 478–488, https://doi.org/10.3189/2014JoG13J162, 2014.
Wentworth, C. K. and Delo, D. M.: Dinwoody Glaciers, Wind River Mountains, Wyoming; with a Brief Survey of Existing Glaciers in the United States, Geol. Soc. Am. Bull., 42, 605–620, https://doi.org/10.1130/GSAB-42-605, 1931.
Westgate, L. G. and Branson, E. B.: The Later Cenozoic History of the Wind River Mountains, Wyoming, J. Geol., 21, 142–159, https://doi.org/10.1086/622046, 1913.
Wetlaufer, K., Hendrikx, J., and Marshall, L.: Spatial Heterogeneity of Snow Density and Its Influence on Snow Water Equivalence Estimates in a Large Mountainous Basin, Hydrology, 3, 3, https://doi.org/10.3390/hydrology3010003, 2016.
Williams, L. D., Barry, R. G., and Andrews, J. T.: Application of Computed Global Radiation for Areas of High Relief, J. Appl. Meteorol., 11, 526–533, 1972.
Winstral, A. and Marks, D.: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment, Hydrol. Process., 16, 3585–3603, https://doi.org/10.1002/hyp.1238, 2002.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3, 524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow accumulations at catchment to basin scales, Adv. Water Resour., 55, 64–79, https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Wolken, G. J.: Energy balance and spatial distribution of net radiation on Dinwoody Glacier, Wind River Range, Wyoming, United States of America, Master of Arts, University of Wyoming, Laramie, Wyoming, 72 pp., https://www.proquest.com/docview/304638607/638C3C2995E940ABPQ/2 (last access: 15 August 2025), 2000.
Woolpert: WY FEMA East 2019 D19 Lot 9 Blocks 9 and 10 Airborne Lidar Report, https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/metadata/WY_FEMA_East_2019_D19/WY_FEMA_East_B9_2019/reports/ (last access: 15 August 2025), 2020.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Granados, H. D., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Zhou, J., Ding, Y., Wu, J., Liu, F., and Wang, S.: Streamflow generation in semi-arid, glacier-covered, montane catchments in the upper Shule River, Qilian Mountains, northeastern Tibetan plateau, Hydrol. Process., 35, e14276, https://doi.org/10.1002/hyp.14276, 2021.
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant...