Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2797-2025
https://doi.org/10.5194/tc-19-2797-2025
Research article
 | 
05 Aug 2025
Research article |  | 05 Aug 2025

A random-forest-derived 35-year snow phenology record reveals climate trends in the Yukon River Basin

Caleb G. Pan, Kristofer Lasko, Sean P. Griffin, John S. Kimball, Jinyang Du, Tate G. Meehan, and Peter B. Kirchner

Related authors

Climate impact on mean annual cycle and interannual variability of CO2 fluxes in European deciduous broadleaf and evergreen needleleaf forests: insights from observations and state-of-the-art data-driven and process-based models
Asmat Ullah, Julien Crétat, Gaïa Michel, Olivier Mathieu, Mathieu Thevenot, Andrey Dara, Robert Granat, Zhendong Wu, Clément Bonnefoy-Claudet, Julianne Capelle, Jean Cacot, and John S. Kimball
Biogeosciences, 22, 4135–4162, https://doi.org/10.5194/bg-22-4135-2025,https://doi.org/10.5194/bg-22-4135-2025, 2025
Short summary
Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensing
Jinyang Du, K. Arthur Endsley, Kazem Bakian Dogaheh, John Kimball, Mahta Moghaddam, Tom Douglas, Asem Melebari, Sepehr Eskandari, Jinhyuk Kim, Jane Whitcomb, Yuhuan Zhao, and Sophia Henze
EGUsphere, https://doi.org/10.5194/egusphere-2025-3236,https://doi.org/10.5194/egusphere-2025-3236, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Brief Communication: Evaluating Snow Depth Measurements from Ground-Penetrating Radar and Airborne Lidar in Boreal Forest and Tundra Environments during the NASA SnowEx 2023 Campaign
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435,https://doi.org/10.5194/egusphere-2025-2435, 2025
Short summary
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024,https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
The ABoVE L-band and P-band airborne synthetic aperture radar surveys
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024,https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary

Cited articles

Alifu, H., Vuillaume, J.-F., Johnson, B. A., and Hirabayashi, Y.: Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data, Geomorphology, 369, 107365, https://doi.org/10.1016/j.geomorph.2020.107365, 2020. 
Bair, E. H., Dozier, J., Rittger, K., Stillinger, T., Kleiber, W., and Davis, R. E.: How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?, The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, 2023. 
Ballinger, T. J., Bhatt, U. S., Bieniek, P. A., Brettschneider, B., Lader, R. T., Littell, J. S., Thoman, R. L., Waigl, C. F., Walsh, J. E., and Webster, M. A.: Alaska Terrestrial and Marine Climate Trends, 1957–2021, J. Climate, 36, 4375–4391, https://doi.org/10.1175/JCLI-D-22-0434.1, 2023. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Beltaos, S. and Prowse, T.: River-ice hydrology in a shrinking cryosphere, Hydrol. Process., 23, 122–144, https://doi.org/10.1002/hyp.7165, 2009. 
Download
Short summary
This study examines 35 years of snow cover changes in Alaska’s Yukon River Basin using machine learning to track snowmelt timing and disappearance. Results show snow is melting earlier and disappearing faster due to rising temperatures, highlighting the effects of climate change on water resources, ecosystems, and communities. The findings improve understanding of snow dynamics and provide critical insights for addressing climate-driven challenges in the region.
Share