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Abstract. This study presents a 35-year snow phenology
record for the Yukon River Basin (YRB), developed using
a random forest (RF) model at a 3.125 km resolution, cap-
turing detailed trends in snowmelt onset and snow-off. The
RF model, incorporating dynamic daily variables, improves
upon traditional threshold-based methods by reducing sensi-
tivity to transient thaw events and atmospheric noise. Model
evaluation against station observations yielded a mean ab-
solute error (MAE) of 10.5d and a root mean square er-
ror (RMSE) of 13.7d for snowmelt onset. For snow-off,
the model achieved an MAE of 18.1d and an RMSE of
20.7d. This approach successfully mapped snow phenology
across the diverse YRB landscape, providing valuable insight
into how variations in snow cover align with regional cli-
mate patterns. Challenges such as sample bias due to lim-
ited ground-based data coverage highlight the need to ex-
pand in situ measurements to improve model performance
further. Trend analysis segmented by two timeframes, 1988—
2005 and 2006-2023, revealed distinct climate impacts on
snow phenology. During 1988-2005, high snowfall and sta-
ble temperatures resulted in hastened snowmelt onset and
lengthened snowmelt durations, reflecting early-season snow
abundance. In contrast, from 2006-2023, warming spring
and summer temperatures corresponded to progressively ear-
lier snowmelt onset and snow-off. These shifts in snowmelt
patterns align with a lengthened snow-free season, indicating
an increasing influence of warmer temperatures on the snow-

pack. This RF-derived dataset provides an essential tool for
tracking climate-driven snow changes, offering insights into
hydrologic and ecologic dynamics in the YRB under accel-
erating climate change.

1 Introduction

Snow cover and its seasonal progression, or phenology,
play a crucial role in regulating the global energy budget
and shaping ecosystem structure and function (Callaghan
et al.,, 2011). These processes directly drive ecologic and
hydrologic responses to seasonal variability. In the Yukon
River Basin (YRB), regional warming (Ballinger et al.,
2023; Rantanen et al., 2022) has reduced snow cover (Derk-
sen and Brown, 2012), triggering widespread environmen-
tal changes. A warmer and longer snow-free season has dis-
rupted permafrost, boosted vegetation growth, and increased
ecosystem carbon uptake (Ling and Zhang, 2003; Pulliainen
et al., 2017) but also enhanced regional drought and fire dis-
turbance (Scholten et al., 2021), led to a decline in plant di-
versity (Niittynen et al., 2018), and disrupted wildlife move-
ments (Berger et al., 2018; Cosgrove et al., 2021). Seasonal
snowmelt drives much of the discharge into the Yukon River
and its adjoining stream networks, and the timing of this
melt has significant hydrologic impacts. Earlier snowmelt
has heightened flood risks, intensified the spring flood pulse,
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and accelerated river ice breakup (Beltaos and Prowse, 2009;
Lesack et al., 2014; Semmens and Ramage, 2013). These
changes are reshaping the region’s geomorphology and di-
rectly affecting the communities that rely on stable snow and
ice conditions in the Yukon for winter travel, recreation, and
harvest (Cold et al., 2020).

Enhanced monitoring and understanding of spatiotempo-
ral variability in snow phenology are essential for assessing
risks and mitigating potential impacts on Alaskan communi-
ties reliant on the Yukon River. Ground-based observations,
like snow water equivalent (SWE) and snow depth measure-
ments from SNOTEL sites, provide valuable insights into
snow phenology. However, the vast landscape heterogeneity
and limited ground observation locations make it challeng-
ing to forecast snow phenology reliably across large spatial
scales (Bair et al., 2023). Satellite microwave remote sensing
offers a valuable alternative for mapping snow phenology,
especially in remote, high-latitude regions. The moderate-
frequency ( ~< 37 GHz) retrievals from operational satel-
lite microwave radiometers are sensitive to Snow cover con-
ditions, providing nearly continuous, year-round data. Im-
portantly, the propagation of microwave energy through the
snowpack is responsive to changes in snow structure, in-
cluding liquid water content (LWC) and grain size and den-
sity, which are key indicators of snowmelt onset (Tedesco et
al., 2015). However, the sampling footprint from the passive
microwave (PMW) retrievals can range from ~ 12-25km
resolution depending on frequency and can be too coarse
to capture snow spatial heterogeneity, especially in moun-
tain environments. While higher-frequency K-band and Ka-
band radiometers are limited by their coarser spatial resolu-
tion, they provide twice-daily acquisitions for polar latitudes
from 1988 to the present, offering a valuable long-term data
record.

In contrast, synthetic aperture radar (SAR) sensors are sen-
sitive to snow conditions and offer improved spatial resolu-
tion over microwave radiometers and scatterometers. C-band
SAR data from the European Space Agency (ESA) Sentinel-
1 mission have proven valuable for detecting snowmelt on-
set using a median minimum backscatter approach, often in
combination with optical infrared remote sensing imagery
(Darychuk et al., 2023; Gagliano et al., 2023; Marin et al.,
2020; Nagler and Rott, 2000). The ability of SAR to detect
changes in snowpack structure and LWC makes it particu-
larly effective for identifying the onset of snowmelt, as the
C-band radar backscatter at VV and VH polarizations de-
creases when snow transitions from dry to wet. The extrac-
tion of snowmelt onset using Sentinel-1 missions shows great
promise, providing excellent detail with a spatial resolution
of 10 m. However, a current limitation of these data is the rel-
atively short temporal record. Sentinel-1A began operations
in April 2014, followed by Sentinel-1B nearly 2 years later in
April 2016. Unfortunately, Sentinel-1B was decommissioned
in December 2021 due to power issues.
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Several snow phenology algorithms utilize K- and Ka-
band radiometric brightness temperature (7},) measurements
collected from the Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave Imager (SSM/I) (1987—
present) and Special Sensor Microwave Imager/Sounder
(SSMIS) (2004—present). Various retrieval algorithms using
these data to derive snow properties include (1) the 7y diur-
nal amplitude variation (DAV) method (Ramage and Isacks,
2002; Tedesco and Miller, 2007), (2) the T; differencing
approach (K-Ka) (Wang et al., 2013, 2016), (3) a single-
frequency 7y temporal change algorithm coupled with re-
analysis surface temperature (Kim et al., 2017), (4) the gra-
dient ratio polarization (GRP) approach (Dolant et al., 2016;
Du et al., 2025; Pan et al., 2018), and (5) a remote sens-
ing and physics-based hybrid method (Dattler et al., 2024).
Each algorithm leverages the interaction between the surface
snowpack, its liquid water content (LWC), and the resulting
effect on the Ty signal at each band or polarization. Specif-
ically, dry snow conditions lead to volumetric scattering in
both K and Ka bands, with stronger scattering at higher fre-
quencies. In contrast, when the LWC within the snowpack
increases, snow emissivity at lower frequencies likely de-
creases due to attenuated soil emission, while increasing at
higher frequencies such as K and Ka bands due to enhanced
emission from the wet snow layers (Dolant et al., 2016). Due
to these interactions, past algorithms have successfully de-
rived snow phenology by analyzing 7, time series using these
approaches and applying thresholds to identify transitioning
snow conditions.

While threshold-based methods have successfully pre-
dicted snow phenology, they often fail to fully capture land-
scape variability in snow conditions due to their coarse spa-
tial resolution. Additionally, these methods are susceptible
to atmospheric noise, which can lead to potential false posi-
tives. Alternatively, machine learning (ML) offers a flexible
empirical modeling approach for estimating snow properties
from satellite observations and other ancillary data. ML pro-
vides the ability to model complex interactions across diverse
datasets and has been applied widely in cryosphere applica-
tions (Campbell et al., 2021; Dunmire et al., 2024; Guidi-
celli et al., 2023; Meloche et al., 2022; Tedesco et al., 2004;
Tsai et al., 2019). Among ML methods, random forest (RF)
has demonstrated success, often bettering other methods,
due to its flexibility, ability to handle high-dimensional data,
and success in handling complex environmental datasets. RF
constructs multiple decision trees during training and ag-
gregates their outputs, reducing overfitting and increasing
robustness in diverse datasets. Furthermore, RF can man-
age missing data and maintain accuracy even with uncorre-
lated features (Breiman, 2001). Neural networks (NNs) also
present a strong alternative, particularly for modeling non-
linear and temporal relationships in snow-related data. NN
methods have shown strong performance in linking PMW
observations to snow properties (Forman and Xue, 2017).
However, model comparisons have shown that RF has out-
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performed NN for retrieving snow cover, emphasizing RF’s
robustness in cryosphere remote sensing applications (Xiao
et al., 2021).

Previous efforts to characterize long-term snow phenol-
ogy in the YRB have relied on threshold-based methods ap-
plied to PMW observations (Pan et al., 2021; Semmens et
al., 2013). While these approaches have provided valuable
insights, they face limitations related to model generalizabil-
ity, temporal robustness, and sensitivity to landscape hetero-
geneity. Fixed thresholds can misclassify short-term warm-
ing events as melt onset and are often unable to capture the
spatial complexity of snowpack transitions in mountainous
terrain. In this study, we address these challenges by applying
an ML framework that incorporates dynamic predictors and
static landscape features. This approach enables daily clas-
sification of snow state, spatially explicit uncertainty map-
ping, and improved representation of the nonlinear interac-
tions that govern snowmelt.

Furthermore, our dataset extends the snow phenology
records for the YRB from 2018 to 2023, offering a 25 % in-
crease in temporal coverage during a period of record-setting
Arctic warming (Ballinger et al., 2023). The extended study
period enables us to examine emerging trends in the snow
season which may have been missed in prior datasets.

Our study integrates a temporal component into the RF
framework, allowing the model to capture seasonal variations
in snow cover. Unlike traditional thresholding methods that
rely on fixed values (Pan et al., 2021), the RF model accounts
for multiple variables and their interactions, producing more
nuanced predictions. By incorporating time series data, our
RF model tracks the evolution of snow conditions through-
out the season (Rittger et al., 2021), improving predictions of
snowmelt onset.

In this paper, we examine the question: how has amplified
Arctic warming influenced the timing, duration, and variabil-
ity of snow phenology in the YRB? To address this ques-
tion, we use an ML framework informed with T;, time series
from the K and Ka bands collected from SSM/I(S), along
with other complementary dynamic and static variables, to
estimate primary spring snowmelt onset and snow-off dates
across the YRB from 1988 to 2023. The resulting annual
snow phenology maps are produced at an enhanced reso-
lution of 3.125 km, offering an improvement over previous
records derived directly from PMW observations and en-
abling a more detailed delineation of landscape heterogene-
ity. We then apply the snow phenology outputs with other an-
cillary and in situ environmental data to (1) assess model per-
formance and define relative quality maps, (2) examine YRB
snow phenology climatology and compare it with anomalous
years, (3) analyze spatiotemporal trends in snow phenology
over the period of record, and (4) explore interactions be-
tween snow phenology and seasonal snowfall and tempera-
ture trends.
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2 Study area

The YRB constitutes one of North America’s largest river
basins (Fig. 1). This region experiences 6 to 9 months of
snow cover annually, and spring snowmelt runoff is the
main hydrologic contribution to the discharge (Brown et al.,
2020). The YRB has a mean annual discharge of 6400 m3 s~!
(Brabets et al., 2000) with a drainage area exceeding
853300 km?2, covers 10° of latitude from 59 to 69°N, ex-
tends into the Canadian Yukon and British Columbia territo-
ries to the east, and extends to the west coast of Alaska before
draining into the Bering Sea. The diverse topography, with
a median elevation of 617 m and extending from sea level
to the highest elevations of the Brooks Range (2735 m) and
Alaska (6190 m) Range, encompasses a diversity of north-
ern boreal, arctic, alpine, and maritime biomes. Evergreen
needleleaf forests are the dominant vegetation cover (54 %),
followed by broadleaf deciduous forests (9 %) covering the
valley bottoms and into the mid-elevations. The Yukon Delta
and higher elevations have tall and low shrubs (9 %) mixed
with some dry and wet herbaceous (9 %) tundra as the domi-
nant plant community. Permafrost is present to a large extent
in the YRB and comprises several types including sporadic
(14 %), discontinuous (46 %), continuous (16 %), and mod-
erately thick to thin permafrost (24 %) (Brabets et al., 2000).
Historically the Yukon River served as the main travel corri-
dor of the region and the YRB is the ancestral homelands of
several Native Alaskan cultures. Presently, many communi-
ties are inextricably linked to and rely upon the Yukon and
its tributaries for travel, subsistence, and livelihood (Cold et
al., 2020).

3 Data
3.1 Training and testing datasets

We acquired daily in situ snow depth measurements from the
Global Historical Climatology Network (GHCNd) (Menne et
al., 2012) to build the RF model training and testing dataset.
Filtering stations across Alaska, 77 stations included snow
depth measurements spanning at least 1 year between 1988
and 2023. While our focus is on the YRB, we included sites
located outside the basin to supplement the sparse in situ
observations within the YRB and enhance model general-
izability. This expanded dataset increases the robustness of
the model across diverse snowmelt regimes. However, we ac-
knowledge that incorporating data from regions with differ-
ent climatic conditions (e.g., maritime vs. continental) may
introduce some bias, and we interpret model outputs within
the YRB with that potential limitation in mind.

Although many researchers use the day of peak SWE
or a breakpoint after peak SWE to determine the onset of
snowmelt (Darychuk et al., 2023; Gagliano et al., 2023), the
lack of SWE measurements in the GHCNd led us to use peak
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Figure 1. The YRB study areas delineated by the dashed black
polygon and the black upside-down triangles indicate climate sta-
tions utilized for creating a training and testing dataset for our ML
models.

snow depth instead. Specifically, for each station and year,
we identified snowmelt onset by locating the day with the
highest snow depth in spring (March—-May). However, peak
snow depth often did not accurately represent the true onset
of snowmelt, as decreases in snow depth can occur due to
factors like wind redistribution, sublimation, or compaction,
unrelated to snowmelt. For this reason, we could not apply
rigid rules to defining snowmelt onset using snow depth.

To improve the identification of snowmelt onset, we used
our best judgment for interpretation, supported by air tem-
perature data. When average daily temperatures consistently
rose above freezing and snow depth began to steadily de-
crease from its peak, it became easier to pinpoint the onset of
snowmelt. Identifying snow-off from snow depth was more
straightforward and defined as the first day when snow depth
reached O for at least 10 consecutive days in spring. After an-
alyzing each in situ snow depth time series, we compiled 971
observations for snowmelt onset and 933 snow-off observa-
tions for RF training and testing. The lower number of snow-
off observations is primarily due to gaps in the snow depth
records — many time series did not extend far enough into the
melt season to capture when snow depth reached zero.

3.2 Time series datasets
In this study, we employ a combination of dynamic and static

datasets as RF model predictors and for analyzing the model
snow phenology outputs. The dynamic RF predictors include

The Cryosphere, 19, 2797-2819, 2025

C. G. Pan et al.: 35-year snow phenology record reveals climate trends

the Ty-derived indices, T}, difference (TBD), and gradient ra-
tio polarization (GRP), as well as their respective 3 d moving
averages (MA_TBD and MA_GRP). We also utilize daily
thaw degree days (TDDs), day of year (DOY), total water
vapor (TQV), and daily snow cover. Together, these dynamic
datasets provide a comprehensive basis for capturing both
seasonal and interannual variability in snow phenology.

We also include several static landscape factors and assess
how landscape features influence model sensitivity. Static
variables include fractional water (FW) cover, fractional tree
cover (FTC), elevation (GTOPO), topographic variability, as-
pect, and proximity, described by a pixel’s proximity to the
nearest ocean. These datasets are summarized in Table 1 and
described in more detail in the following section. In addition,
a comprehensive table with all datasets used in this study is
found in Table Al.

3.2.1 Passive microwave satellite record

We acquired K-band (19 GHz) and Ka-band (37 GHz) after-
noon Ty, retrievals at vertical (V) and horizontal (H) polariza-
tions from the MEaSUREs Calibrated Enhanced Resolution
Passive Microwave Daily EASE-Grid 2.0 Brightness Tem-
perature ESDR, available from the National Snow and Ice
Data Center (NSIDC) (Brodzik and Long, 2016). This Ty
record is multidecadal and calibrated across multiple sensors
and platforms from different frequencies and polarizations
from the NOAA DMSP SSM/I and SSMIS. Each platform
has several sensors: from SSMI/I we selected FO8 (1998-
1991), F11 (1992-1995), and F13 (1996-2007), and from
SSMIS we used F17 (2007-2016) and F18 (2017-2023).
These sensors were selected because their equatorial over-
pass time remained consistent while in commission. Miss-
ing temporal observations were gap-filled using a temporal
linear interpolation of adjacent Ty retrievals (Wang et al.,
2016). These missing observations are generally infrequent
and short in duration, typically affecting only 1-2 consecu-
tive days due to sensor outages, orbital gaps, or data trans-
mission gaps (Long and Brodzik, 2016).

We chose to focus only on the SSM/I-SSMIS record to en-
sure continuity and minimize calibration uncertainty across
the 35-year period. These sensors offer comparable radio-
metric characteristics and orbital parameters, enabling a har-
monized time series suitable for long-term analysis. Other
PMW sensors such as SMMR, AMSR, and AMSR2 were
not included. The SMMR dataset (1978-1987) exhibits fre-
quent data dropouts, and its inclusion would have required
extensive temporal interpolation. The Advanced Microwave
Scanning Radiometer for EOS (AMSRE) and the Advanced
Microwave Scanning Radiometer 2 (AMSR2) offer valu-
able observations, but their shorter and non-overlapping time
periods with the SSM/I-SSMIS record would require addi-
tional cross-sensor calibration and harmonization to recon-
cile differences in spatial resolution and observation geome-
try. By focusing on SSM/I-SSMIS, we preserved the tempo-
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Table 1. Dynamic and static predictor summary, including their abbreviation as well as spatial and temporal resolutions.

Dataset

Spatial resolution

Temporal resolution

Ty, difference (TBD)

Gradient ratio polarization (GRP)
Moving average TBD (MA_TBD)
Moving average GRP (MA_GRP)
Cumulative thaw degree day (TDD)
Day of year (DOY)

Snow cover

Total precipitable water vapor (TQV)
Fraction water (FW)

Fractional tree cover (FTC)
Elevation (GTOPO)

Aspect

Proximity

Topographic variability

3.125km daily
3.125km daily
3.125km 3 d moving average
3.125km 3 d moving average
1 km daily
daily
4 and 3 km daily
50km daily
1 km static
250 m static
1 km static
1km static
1 km static
30m static

2801

ral consistency and data integrity critical for reliable empir-
ical model training and long-term phenological trend detec-
tion.

The native sampling resolution of the combined K and
Ka Ty, retrievals is ~ 25km or coarser; however, the MEa-
SUREs products used were processed using the scatterom-
eter image reconstruction (SIR) approach to obtain an en-
hanced spatial grid resolution of 6.25 km (K) and 3.125 km
(Ka) from the overlapping T, antenna patterns (Brodzik et
al., 2018; Long and Brodzik, 2016). We then resampled K-
band Ti, retrievals to match the Ka resolution of 3.125km
using a nearest-neighbor interpolation.

We then reduced the vertically polarized K and Ka bands
into a Ty, difference index, henceforth termed TBD, defined
as the difference between K and Ka bands (Wang et al.,
2013). We also reduced the K and Ka bands into an addi-
tional index, the GRP, by first calculating the gradient ratio
(GR) at vertical and horizontal polarizations using Eq. (1)
(Grenfell and Putkonen, 2008).

[Tb (pOI’ 37) - Tb (POL 19)]

GR 1 = 1
(Pols7.19) = 7 pol. 37) + Ty (pol, 19)] )

The GRP is then ratioed using Eq. (2) (Dolant et al., 2016).

GR
GRP = —Y 2)
GRy
Together, both the TBD and GRP provide a source for identi-
fying daily snow conditions such as dry and stable, melting,
and disappeared (Pan et al., 2019; Wang et al., 2016).

3.2.2 Daily snow cover

We use ancillary daily snow-covered area estimates to de-
termine the presence or absence of snow at a given loca-
tion and time. For the period from 1988 to 2023, we relied
on two data sources. From 2004 to 2023, we used the In-
teractive Multisensor Snow and Ice Mapping System (IMS)
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daily snow cover extent record, which has a 4 km resolution.
The IMS provides global coverage and is informed by ex-
pert interpretation of geostationary visible satellite imagery,
polar-orbiting multispectral satellite sensors, PMW sensors,
and ground observations (Helfrich et al., 2007). Although the
IMS also provides daily snow cover area outputs at a coarser
24 km resolution dating back to 1997, we opted to use alter-
native higher-spatial-resolution snow cover estimates from
SnowModel (Liston et al., 2020) to fill in the earlier years
(1988-2003), as the 24 km resolution IMS data is less able
to resolve snow cover heterogeneity in complex terrain and
does not cover the entire period of interest.

The SnowModel dataset was developed using meteorolog-
ical data derived from both MERRA-2 and ERAS5 reanaly-
sis data. These reanalyses were used to create bias-corrected
inputs for SnowModel, resulting in daily estimates of snow
properties for the North American domain at a 3 km resolu-
tion from 1980 to 2020 (Liston et al., 2020). Although Snow-
Model includes several snow variables, we used the modeled
snow depth to define daily snow presence or absence. Specif-
ically, if the estimated snow depth exceeded O on any given
day, we assigned a value of 1; if snow depth was 0, we as-
signed a value of 0.

3.2.3 Daymet

We calculated daily cumulative thaw degree days (TDDs) us-
ing the North American Daymet (V4) record (Thornton et al.,
2021). We obtained the Daymet data through the Microsoft
Planetary Computer STAC, which is produced by the Oak
Ridge National Laboratory DAAC. Daymet provides 1km
spatial resolution, interpolated from daily weather station
temperature observations, but with potential bias introduced
from the sparse regional weather station network, especially
at higher elevations. TDD serves as a useful proxy for as-
sessing the amount of incoming solar radiation the snow-
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pack has been exposed to at a given location and reflects the
seasonal dynamics of anomalous temperatures that influence
snowmelt onset. TDD was created by summing daily mean
temperatures above 0 °C for each pixel during the melt sea-
son. To facilitate comparison across regions and years, TDD
values were normalized to a cumulative percent scale (0 %—
100 %), where 0% represents the onset of above-freezing
temperatures and 100 % represents the total seasonal accu-
mulation. TDD was created by summing daily mean temper-
ature above 0 °C for each pixel and is returned as a cumula-
tive percent.

3.2.4 MERRA-2 total column water vapor

Precipitable water vapor and precipitating clouds can affect
PMW observations (Du et al., 2015) and have adverse ef-
fects on snow retrievals (Dolant et al., 2016). To account
for these effects on SSM/I and SSMIS evening observations,
we incorporated total column water vapor (TQV) from the
NASA MERRA-2 (Modern-Era Retrospective analysis for
Research and Applications, Version 2) product (Gelaro et al.,
2017). MERRA-2 is a global atmospheric reanalysis dataset
that provides TQV estimates at a native spatial resolution of
0.5° latitude x 0.625° longitude and spans from 1980 to the
present. We extracted TQV values corresponding to 18:00
Alaska local time to coincide with the satellite overpasses
and resampled to 3.125 km using a nearest-neighbor interpo-
lation.

3.3 Static datasets

We also used several static datasets for model training and
to examine the influence of land cover on snow phenology
prediction. We represented elevation using the GTOPO30
dataset at a 1 km resolution and used it to derive terrain as-
pect. To better capture fine-scale terrain variability, we also
incorporated additional topographic metrics derived from the
ALOS World 3D-30m DEM (Tadono et al., 2014). Specif-
ically, we calculated the standard deviation of elevation at
the 3.125km EASE grid scale, which provides a proxy for
local topographic complexity and helps mitigate known Ty,
retrieval uncertainties in high-relief regions; henceforth this
variable is referred to as topographic variability (Xiong et al.,
2022).

We acquired average fractional water inundation (FW)
from the global land parameter data record, generated from
the AMSRE and AMSR-2 records (Du et al., 2017). In addi-
tion to prediction and assessing uncertainty, FW served as a
mask to screen model outputs likely affected by water con-
tamination.

To represent percent fractional tree cover (FTC), we uti-
lized the MODIS MOD44B V005 500m Vegetation Con-
tinuous Fields product. Additionally, we created a custom
dataset, termed “proximity”, which captures the distance of
each pixel from the ocean. This is important because Ty, pix-
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els near large water bodies are prone to water contamination
and frequent cyclonic events that can influence LWC in the
regional snowpack (Rees et al., 2010).

3.4 Ancillary datasets

We used an established satellite-based snow phenology
dataset for comparison with our ML results. These data in-
clude the annual timing of snowmelt onset and snow-off for
the YRB from 1988 to 2018 mapped to a 6.25 km resolution
grid as a day of year (DOY) (Pan et al., 2020, 2021). The
data were also derived using a similar thresholding approach
of the GRP and TBD derived from microwave T}, observa-
tions. Additionally, a glacier land cover dataset for the YRB
was obtained from the Glacier Covered Area for the State of
Alaska dataset (Roberts-Pierel et al., 2022), which we used to
identify pixels that maintain year-round snow cover, as they
do not experience a “snow-off”.

4 Methods
4.1 RF framework

We implemented an RF classifier to predict snow phenology,
specifically focusing on estimating the annual timing (DOY)
of snowmelt onset and snow-off across the YRB. The RF
approach was chosen due to its ability to handle complex,
high-dimensional data and robustness to overfitting, making
it well-suited for cryosphere applications (Breiman, 2001;
Alifu et al., 2020; Blandini et al., 2023). Although RF does
not inherently model temporal sequences like some other al-
gorithms, our approach used daily inputs to generate a se-
quence of predictions that are later interpreted in chronolog-
ical order. Each day is treated as an independent sample dur-
ing training and prediction, but the outputs are interpreted
sequentially to identify the timing of snowpack transitions,
such as the first wet snow day, indicating snowmelt onset.
This post-prediction sequencing is critical for deriving the
correct DOY phenology metrics. Accordingly, we used the
RF implementation in scikit-learn (Pedregosa et al., 2011).
In this study, the RF model snow phenology metrics were
derived at 3.125 km resolution from 1988-2023, represent-
ing a valuable spatial and temporal enhancement over previ-
ous snow records developed for the YRB (Pan et al., 2021).
The earlier threshold-based dataset was produced at 6.25 km
and covered the years 1988-2016, later extended to 2018. In
contrast, the dataset presented here extends through 2023, of-
fering a 7-year increase in temporal coverage. Although the
original K-band Ty, grid resolution was 6.25 km, the 3.125 km
resolution of the RF predictions is consistent with the grid
resolution of the Ka-band T; record, which may help to
improve the spatial delineation of snowpack characteristics.
Additionally, the 3.125 km resolution is approximate to — or
still coarser than — other RF model predictor datasets used,
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which helps to ensure spatial coherence in representing land-
scape heterogeneity.

4.1.1 RF model setup

To enhance the prediction of snow phenology, we configured
the RF model to delineate daily snow conditions. We did
this by classifying expected snow conditions for each day
in a time series leading up to the observed snowmelt onset
or snow-off day in spring as either “dry snow” or “present”.
After the observed onset or snow-off day, the conditions are
labeled as “wet snow” or “absent”, respectively. The label-
ing approach transforms each time series into a sequence of
daily snow condition classes, enabling a clear and daily de-
scription of a given evolving phenological event. By labeling
the time series accordingly, we were able to (1) add a tempo-
ral dimension to the RF classifier, (2) expand the RF training
and testing datasets, and (3) use the day each labeled time
series changes as the snow phenology date (Fig. 2).

To assess daily snow conditions, each model was trained
using a set of daily and static predictors. Daily predictors in-
cluded TDD, TBD, GRP TQV, and DOY. Static predictors,
representing landscape and environmental characteristics, in-
cluded proximity to oceans, FTC, FW, elevation, topographic
variability, and aspect. All static variables were scaled from
0 to 1. Table 1 includes more detail on the model training
datasets. Snow-off included snowmelt onset as a predictor
with the intention that this variable would ensure that snow-
off predictions would occur after the snowmelt onset.

We parameterized the RF models using a cross-validated
grid search method. This approach systematically evalu-
ates various combinations of hyperparameters to identify
the best configuration by performing cross-validation. It se-
lects the combination of parameters that minimizes the user-
defined evaluation metric, such as the cross-validated score
(Jaaskeldinen et al., 2022). The grid of adjustable parameters
we provided for hyper-tuning included the number of RF de-
cision trees, the maximum depth of each tree, the minimum
sample size for node splitting, the minimum sample size for
leaf nodes, and the maximum number of features considered
at each split. In addition to parameter selection, the cross-
validated score also helps minimize overfitting. A full list of
tested parameter ranges and the selected final values for each
model is provided in Table A2.

Finally, we identified the timing of snowmelt onset and
snow-off from the model outputs by applying a logic that re-
turned the first day of 10 consecutive days classified as either
“wet snow” or “absent”.

4.1.2 Assessing uncertainty and error
To ensure independence between training and testing data,
we implemented our 80/20 split at the time series level such

that each time series represents a single pixel across a full
snow season and is treated as an individual unit. This precau-
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tion avoided any overlap in time or space between the train-
ing and testing sets. Consequently, no individual pixel’s time
series contributed data to both training and testing subsets in
each iteration, ensuring that model evaluation reflected only
out-of-sample predictions.

Model performance was assessed using a bootstrapping
approach, with an 80/20 split between training and testing
data. For each iteration, both datasets were randomly sam-
pled with replacement from the full dataset, allowing us to
evaluate model accuracy and variability. Performance was
evaluated with the testing data by (1) extracting the R? value
to quantify the agreement between observed and predicted
dates and (2) aggregating the mean absolute error (MAE)
across different land cover types. To determine whether dif-
ferences in model error across land cover characteristics were
statistically significant, we applied a one-way analysis of
variance (ANOVA). For each iteration, we also calculated
feature importance using the built-in mean decrease in im-
purity method from the RF algorithm and calculated the av-
erage importance and standard deviation for each feature.

The output absolute error from our model bootstrapping
was used as the dependent variable in an ordinary least-
squares (OLS) regression, with land cover variables such
as FW, FTC, elevation, topographic variability, aspect, and
proximity serving as the explanatory variables (Kim et al.,
2011). The goal was to establish a relationship between the
observed error and the land cover characteristics to identify
pixels in the YRB where we may expect lower or higher
errors. We then applied the OLS model across the YRB to
predict anticipated error. These values were scaled from 0
to 1, creating a dimensionless quality control (QC) metric.
The QC metric was further classified into a quantile classifi-
cation, with qualitative labels of “best”, “good”, “moderate”,
and “low” to describe the relative quality of the model predic-
tions. This qualitative classification simplifies interpretation
and communication of model quality across the basin. While
this process discretizes a continuous variable, the underlying
QC values are retained and available.

4.2 Trend analysis
4.2.1 Snow phenology

To analyze snow phenology trends over time, we devel-
oped snow phenology climatology for the period 1991-2020,
which corresponds to the current 30-year climate normal
(Palecki et al., 2021). Using a natural break classification
method, we divided the data into two categories: “earlier”
and “later” snow events. In this context, a “snow event” refers
to an annual snow phenology transition — such as snowmelt
onset or complete snow disappearance — at the pixel level.
Each pixel’s event date was compared to its long-term cli-
matological mean (1991-2020). If the event occurred earlier
than the mean, it was classified as “earlier”; if it occurred
later, it was classified as “later”.
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Figure 2. Comparison between daily in situ air temperature and snow depth measurements (a) taken from Fairbanks International Airport
in 2012 and collocated brightness-temperature-derived TBD and GRP (b). Panel (¢) shows the daily snowmelt onset RF model output. The
snowmelt onset, marked by the transition from dry to wet snow, is identified as the day when the model output changes from O to 1.

This classification enabled us to calculate the total area (in
km?) of the basin experiencing earlier or later snow events
in each year. This spatially aggregated approach provides a
more hydrologically meaningful metric than raw day-of-year
values, as it reflects how much of the landscape is contribut-
ing to earlier or delayed runoff. Framing the results relative
to the climatological mean also contextualizes each year’s
snowmelt timing within a long-term baseline, helping to in-
terpret the magnitude and direction of interannual variability.

Next, for each year, we classified the snow metrics using
the same two categories derived from the climatology and
calculated the annual change in area for each class. If the area
of the “earlier” class decreased, we expected a correspond-
ing increase in the “later” class. To assess the trends over
time, we applied a linear regression and performed a Mann—
Kendall test (MKT) to evaluate the direction and strength of
the annual changes in area, where the MKT outputs tau, a di-
mensionless, nonparametric measure of monotonic trend and
strength (Kendall, 1962).

Because trends over the full period of record were gener-
ally weak or nonsignificant, we further examined the poten-
tial for meaningful sub-period patterns by dividing the 35-
year time series (1988-2023) into two equal halves: 1988—
2005 and 2006-2023. This split allowed us to evaluate
whether changes in snow phenology were occurring within
shorter timeframes that may have been masked by variability
across the full record.
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4.2.2 Temperature and snow depth

Seasonal air temperature across the YRB was analyzed us-
ing data from GHCNd climate stations to assess long-term
climate trends and their relationship to changes in snowpack
conditions. To create a single, harmonized air temperature
time series, we selected stations with at least 17 years of
data for each of the two time periods (1988-2005 and 2006—
2023) from an initial set of 35 stations in the YRB. This
selection criterion reduced the set to 8 stations for 1988—
2005 and 15 stations for 2006-2023. With the selected sta-
tions, we then calculated seasonal average temperature time
series for each period, specifically for winter, spring, sum-
mer, and combined spring/summer temperatures. These sea-
sonal means were used in a trend analysis to evaluate how air
temperatures have changed over time across the YRB and to
explore their potential associations with observed snowmelt
dynamics.

We also extracted the snow depth at the day of snowmelt
onset across YRB using the GHCNd climate stations. Like
temperature, we required a station to have recorded at least
17 years of snow depth measurements. We also checked each
of these stations to determine if the annual snow depth mea-
surements were complete and without extended data gaps.
These screening criteria resulted in 4 stations selected for
1988-2005 and 13 stations for 2006-2023. The resulting
snow depth data were used to analyze trends in snow cover.
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5 Results
5.1 RF model performance

The RF model effectively classified daily snow conditions
for both snowmelt onset and snow-off, as demonstrated by
the bootstrapped testing results. For snowmelt onset, the
model classified snow conditions as either “dry snow” or
“wet snow” with high accuracy. The model achieved an F1
score, precision, and recall averaging 0.97 on the testing data,
indicating a strong ability to balance false positives and false
negatives. These metrics suggest that the RF model reliably
distinguished between dry and wet snow conditions leading
up to snowmelt onset. Grid search results for the RF are
found in Table A2.

Similarly, for snow-off, the RF model successfully clas-
sified daily snow conditions as either “present” or “absent”.
The model maintained an average F1 score, precision, and re-
call of 0.96 on the testing data. This consistent performance
highlights the model’s ability to accurately capture the tran-
sition between snow presence and absence throughout the
snow-off period, providing dependable predictions of snow
cover dynamics.

Once the snowmelt onset and snow-off days of year were
extracted, they were compared against our testing data gen-
erated during bootstrap iterations. These stations are located
both inside and outside the YRB. In each iteration, an 80/20
(training/testing) split with replacement ensured that the test-
ing data represented a unique subset of high-quality observa-
tions from different years and locations, allowing the model’s
generalizability to be evaluated across a variety of condi-
tions. The bootstrapped results yielded an average R? of 0.72
for snowmelt onset and 0.80 for snow-off, demonstrating that
the predicted snow DOY metrics closely matched the ob-
served values from the testing data. Additionally, the model
produced an MAE of 6.11d for snowmelt onset and 5.73d
for snow-off. The root mean square error (RMSE) values of
the model results were 8.30 d for snowmelt onset and 7.70d
for snow-off. We also assessed model bias by evaluating the
mean error across all testing observations. Results showed
minimal bias in both snowmelt onset (mean error =0.59 d)
and snow-off timing (mean error =0.20d), indicating that
the model does not systematically overpredict or underpre-
dict the timing of these events. Overall, these metrics indi-
cate favorable model performance in predicting the timing of
these key snow phenology events across the YRB.

The final error assigned to the snow phenology dataset is
assessed by comparing the RF model predictions across the
full YRB gridded dataset with an independent testing dataset
derived from the limited number of GHCNA stations located
within the YRB. From these stations we calculated an MAE
10.54 d and RMSE of 13.68 d relative to the snowmelt onset
product. The modeled snow-off results showed an MAE of
18.1d and RMSE of 20.77 d relative to the station observa-
tions. The higher final observed errors, compared to the boot-
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strapped errors, are attributed to the greater heterogeneity in
land cover and terrain across the basin, which contributes
to larger differences between the sparse in situ ground sta-
tion measurements of local snow conditions and the coarser
landscape-level RF predictions.

5.1.1 Model feature importance

On average, the most influential features for predicting
snowmelt onset were DOY, TDD, TQV, snow cover pres-
ence, and TBD, in that order (Fig. Al). The snow-off pre-
dictions followed a similar pattern, with TDD, DOY, snow
cover presence, and TBD emerging as the top-ranked fea-
tures (Fig. A2). In both models, the dynamic time series fea-
tures — such as temperature and snow cover presence — played
a significantly larger role in the predictions compared to the
static features, such as proximity, elevation, and fractional
water cover. Interestingly, the GRP had relatively low impor-
tance for the snow-off model, which is likely due to its erratic
behavior during no-snow conditions and in areas with signif-
icant vegetation cover.

5.1.2 Land cover and uncertainty

Mean absolute errors were binned by land cover features to
assess whether these characteristics had a significant influ-
ence on model performance. These MAE values were de-
rived from the bootstrapped model predictions, aggregated
across all iterations, and grouped by land cover type. Land
cover features such as elevation, topographic variability,
FTC, and proximity, were grouped into four natural breaks
and compared with the corresponding model MAE to iden-
tify potential patterns or relationships. FW was grouped into
three bins including “low (FW < 5%)”, “medium (5% <
FW < 10%”, and “high (FW > 10 %)”. Figure 3 indicates
that when elevation, proximity, and FW decrease, MAE also
decreases for both snowmelt onset and snow-off predictions.
Conversely, as FTC increases, MAE also increases, though
this is only observable for snowmelt onset predictions. Also
notable is that higher FW is associated with higher MAE val-
ues for snowmelt onset. FW values exceeding 10 % are often
indicative of the presence of standing water, riparian zones,
or proximity to lakes and rivers (Du et al., 2016). These hy-
drologically active areas introduce substantial variability in
surface emissivity, which can obscure or distort the PMW
signal used to detect snow state transitions. Hence, FW may
be a major factor behind the overall lower model perfor-
mance, relative to snow-off. Yet, overall, these land cover
and error interactions are as anticipated — error increases with
higher surface water cover, coastal proximity, and tree cover.

The one-way ANOVA results indicate that each land
cover characteristic has a statistically significant influence
on model error (MAE), with p values well below 0.05. For
both snowmelt onset and snow-off, FW had the largest effect
size, with F statistics of 28.34 and 26.27, respectively. FTC
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Figure 3. Average snowmelt onset (left) and snow-off (right) MAE aggregated by land cover features. Land cover was binned using a Jenks
classification, except for aspect and FW with lower values on the left and higher values moving to the right.

and proximity to water bodies also exerted strong influences tively low individual importance, as they contribute to overall
on MAE. Specifically, FTC yielded F statistics of 75.88 model performance gain.
for snowmelt onset and 22.62 for snow-off, while proximity
showed F = 18.65 for snowmelt onset and 19.57 for snow- 5.2 Model comparisons
off. Topographic variability and latitude also contributed sig-
nificantly, suggesting that terrain complexity and regional
gradients play important roles in prediction uncertainty.
These results indicate that model performance varies sig-
nificantly with variations in certain land cover features, sug-
gesting that these land characteristics are associated with
higher or lower prediction errors. However, ANOVA alone
does not demonstrate whether these static land features im-
prove model performance when included as predictors. To
test this, we compared RF model performance with and with-
out the inclusion of static variables. When all predictors
(both dynamic and static) were used, the R? values were
0.72 for snowmelt onset and 0.80 for snow-off. In contrast,
when static variables were excluded, R? dropped to 0.64
and 0.40, respectively. These results support the inclusion of
static variables as additional RF predictors, despite their rela-

5.2.1 RF and threshold comparison

A comparison between the annual median snowmelt onset
and snow-off dates derived from the RF model and another
established snow phenology record (Pan et al., 2021) is pre-
sented in Fig. 5. For snowmelt onset, the results show a mod-
erate correlation between the two records for the YRB, with
an r value of 0.58 (p < 0.05). However, the previous record
was derived using a Ty, thresholding method and consistently
predicted earlier snowmelt onset dates, averaging about 1.5d
earlier than our RF model. When compared to the in situ test-
ing dataset within the YRB, the previous snow record pro-
duced an MAE of 11d and an RMSE of 14.57 d, similar to
our RF model performance.
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Figure 4. 1988-2018 annual median dates £ 1 standard deviation
for snowmelt onset (a) and snow-off (b) for the ABoVE GRP
threshold model (Pan et al., 2020) (black triangles) and the RF
model (this study) (gray circles).

For snow-off, the two records displayed a stronger corre-
lation, with an r value of 0.80 (p < 0.05). The previous ap-
proach still showed earlier snow-off bias, averaging about
2d earlier than the RF-derived snow-off date. Despite the
stronger correlation, the thresholding approach returned a
high MAE of 32d and an RMSE of 54 d, which is about
double the error derived for the RF method. The RF-derived
snowmelt onset and snow-off results also exhibit signifi-
cantly lower standard deviations compared to the previous
approach, indicating that the ML method is less susceptible
to outliers.

5.2.2 Snow-off model comparison

Our snow-off predictions incorporate two different mod-
eled snow cover datasets, IMS and SnowModel, because no
dataset alone spans our full period of record; both datasets
were used as features in the RF model. Specifically, we
used the 4 km IMS dataset (2004—2023) and the 3 km Snow-
Model (1988-2003) to calculate annual snow-off using a 10d
moving window. We then evaluated these outputs against
the YRB training dataset to assess their performance rela-
tive to the RF results. For the period from 2004-2023, the
IMS dataset achieved an MAE of 15.87d and an RMSE of
21 d. During this same period, the RF-based snow-off dataset
achieved an MAE of 16.03 d and an RMSE of 19.2d.

For the earlier period (1988-2003), the SnowModel
dataset produced an MAE of 13.6 d and an RMSE of 16.42d
for snow-off timing. In comparison, the RF snow-off dataset
during this period produced an MAE of 18.56d and an
RMSE of 21.2d. These results reflect the performance of
each dataset over their respective timeframes and provide
insight into the reliability of the RF-based snow-off model
across different periods.

To assess the consistency and variability between the
two input datasets, we compared overlapping IMS- and
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SnowModel-derived snow-off dates for three representative
years (2008, 2012, and 2016) (Fig. A3). These years span a
range of snow conditions during the period of dataset over-
lap (2004-2020). We found strong agreement in the spatial
patterns and distributions of snow-off timing. For example,
the median snow-off date in 2008 was DOY 132 for IMS
and DOY 135 for SnowModel. In 2012, both datasets re-
ported a median DOY of 135, and in 2016, IMS had a median
DOY of 126 compared to DOY 125 for SnowModel. This
close agreement suggests that although the IMS and Snow-
Model datasets originate from different methodologies, they
produce comparable snow-off estimates when applied over
the same regions and timeframes. This general consistency
indicates that our use of these datasets as temporally seg-
mented predictors does not introduce significant bias and the
RF model performance is stable across the full record.

5.3 QAQC maps

The QAQC maps provide a discrete qualitative index for as-
sessing model output quality. These maps were generated by
classifying the predicted model error into four categories —
“best”, “good”, “moderate”, and “low” — using a quantile
classification. This classification divides the full range of pre-
dicted error into bins such that each category contains close
to equal numbers of valid pixels. Because the QAQC maps
represent relative predicted error across the domain rather
than fixed error thresholds, a quantile classification scheme
was used to ensure consistent and interpretable comparisons
between snowmelt and snow-off model performance (Fig. 5).
The land-cover-derived QAQC map for snowmelt onset iden-
tified the mouth of the Yukon and lowlands of the YRB as
principal regions of lower model quality. This is likely due
to the abundant small lakes and wetlands in this region and
its comparatively lower elevation and closer ocean proxim-
ity, delivering periodic systems, more ephemeral snowmelt
events, and LWC to the snowpack.

In the snow-off QAQC map, the spatial distributions for
snow-off differ from snowmelt onset due to differences in
the seasonal dynamics of the two events. Snow-off typically
occurs more gradually and can span a longer duration, es-
pecially in mountainous terrain, where persistent late-season
snow and greater terrain and microclimate heterogeneity
contribute to larger model error. The snow-off QAQC map
identified the upper headwaters of the YRB as having lower
quality. However, lower-quality pixels are more prevalent at
higher elevations and ridgelines. Given that snow cover at
higher elevations can linger for extended periods and even
through the summer months, it is not surprising that these
pixels are ranked as “low”. The OLS models explained only
35% and 42 % of the variability in error for snowmelt on-
set and snow-off, respectively. The relatively low explanatory
power is likely due to the testing data not fully capturing the
landscape heterogeneity across the YRB.

The Cryosphere, 19, 2797-2819, 2025



2808

C. G. Pan et al.: 35-year snow phenology record reveals climate trends

QAQC: Snowoff

QAQC: Snowmelt Onset

(a)

Il Best I Good I Moderate Low

Figure 5. Snowmelt onset (a) and snow-off (b) QAQC maps were developed to identify regions of relative high- to low-quality classification

results in relation to land cover characteristics.

5.4 Snow phenology climatology, anomalies, and trends

5.4.1 Climatology of snowmelt onset, snow-off, and
snowmelt duration

The climatology of snow phenology metrics — snowmelt on-
set, snow-off, and snowmelt duration (SMD) — offers valu-
able insights into seasonal patterns across the YRB, where
snow phenology shows later snowmelt onset and snow-
off as well as longer snow duration in headwaters and
higher elevations; this pattern contrasts with generally ear-
lier dates for these metrics at lower elevations and valley
bottoms (Fig. 6). On average, snowmelt onset (MMOD) oc-
curs around DOY 115+7.7 (~ 24 April), with the earli-
est onset recorded on DOY 100 (~9 April) and the lat-
est on DOY 136 (~ 15 May). Snow-off typically occurs
around DOY 139 +4.9 (~ 18 May), with the earliest snow-
off observed around DOY 125 (~ 4 May) and the latest on
DOY 168 (~ 16 June). The snowmelt duration, defined as
the period between snowmelt onset and snow-off, spans ap-
proximately 22 +4.6d.

5.4.2 Anomalous years

Several anomalous years in snow phenology stand out, de-
viating from the climatological averages. In 2016, a record-
breaking warm year (Walsh et al., 2017), snowmelt onset oc-
curred ~ 9d earlier than average and snow-off 6d earlier,
lengthening snowmelt duration by 3 d beyond the mean. Con-
versely, in 2013, a cooler year, snowmelt onset was 12 d later
and snow-off 7 d later, shortening the snowmelt duration by
5d. These anomalies likely reflect broader climatic drivers,
such as temperature fluctuations and abnormal precipitation,
affecting snowmelt dynamics in these years. While these de-
viations are seen in other records (Pan et al., 2021), the RF
model successfully reproduced the timing and magnitude of
the anomalies, indicating its sensitivity to interannual climate
variability.
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5.4.3 Change in area over time

Temporal changes in area for the “earlier” class from 1988—
2023 (Fig. A4) showed no significant correlations for any
snow metric. However, the Mann—Kendall test revealed pos-
itive and statistically significant (p < 0.05) tau values for
both snow-off and SMD, though these were modest at 0.2
and 0.25, respectively. To further examine potential trends,
we segmented the data into two periods — 1988-2005 and
2006-2023 — and performed trend analysis on each segment
independently (Fig. 7).

Annual changes in the snow metric’s “earlier” class dur-
ing the first half of the data record (1988-2005) identi-
fied a strong negative trend toward later snowmelt onset
(r =—-0.65, p < —0.05, tau = —0.35, p < 0.05). This im-
plies that in the initial period of record, snowmelt onset
was occurring earlier across the YRB relative to later years
of this period. Conversely, SMD showed a modest positive
trend (r = 0.55, p < 0.05, tau = 0.39, p < 0.05), which sug-
gested a longer snowmelt duration during years with ear-
lier snowmelt onset. Snow-off exhibited no significant trends
during this period, with an r value of —0.24, indicating min-
imal directional change.

In the second half of the data record (2006-2023), an-
nual changes in snowmelt onset displayed a shift to a pos-
itive trend, with an r value of 0.54 (p < 0.05) and tau trend
of 0.42 (p < 0.05). This shift suggested that snowmelt on-
set had been occurring progressively earlier. Snow-off during
this period also exhibited a positive trend, with an r value
of 0.69 (p < 0.05) and tau of 0.50 (p < 0.05), indicating an
earlier occurrence of snow-off as well. Interestingly, SMD
did not show any significant trends during this period due to
compensating changes in snowmelt onset and snow-off tim-
ing.

To determine whether the temporal patterns we observed
were consistent with previous threshold-based snow phe-
nology records, we conducted the same trend analysis us-
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Figure 6. Climatologies produced for snowmelt onset (a, d, g), snow-off (b, e, h), and snowmelt duration (c, f, i) for the years 1991-2020 in
the top row. Panels (d)—(f) and (g)—(i) include the snow phenology for the years 2013 and 2016.

ing the threshold-based dataset for the period 1988-2018.
This record was similarly subdivided into two sub-periods:
1988-2002 and 2003-2018. During the first period, both
snowmelt onset and snow-off area exhibited statistically sig-
nificant negative trends. Snowmelt onset had a Pearson corre-
lation of r = —0.62 (p < 0.05) and tau = —0.37 (p > 0.05),
while snow-off showed a stronger decline with r = —0.66
(p <0.05) and tau = —0.52 (p < 0.05), indicating a de-
creasing extent of earlier transitions across the basin. In con-
trast, SMD during this period showed no significant trend
(r =-0.25, p > 0.05; tau = —0.18, p > 0.05). For the sec-
ond period (2003-2018), none of the snow metrics exhib-
ited statistically significant trends. These results suggest that
while some temporal changes were evident in earlier decades
— particularly for snow-off — the RF model captures more
consistent and recent trends (2006-2023).

5.5 Temperature and snow depth trends across the
YRB

Seasonal temperatures and annual snowfall in the YRB were
analyzed using in situ measurements from GHCNd stations.
For the period 1988-2023, no significant trends were iden-
tified in winter, spring, summer, or spring/summer tempera-
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tures or in annual median snow depth on the day of snowmelt
onset. In the following sections, we present trend analysis re-
sults for annual snowfall and seasonal temperatures across
the two sub-periods — 1988-2005 and 2006-2023 — as well
as correlations with the annual snow metrics.

5.5.1 Snow depth at snowmelt onset

Between 1998 and 2005, median snow depth on the day
of snowmelt onset exhibited a moderately strong negative
correlation with time (r = —0.58, p < 0.05; tau = —0.40,
p < 0.05), indicating a decrease in snowfall totals during
this period (Fig. 8). In contrast, from 2006 to 2023, me-
dian snow depth displayed positive and significant correla-
tions and trends (r = 0.68, p < 0.001; tau = 0.40, p < 0.05).
We did not examine correlations between snow depth at
snowmelt onset and snow phenology metrics, as these anal-
yses would likely introduce bias due to the use of the day of
year (DOY) of snowmelt onset in both training and testing
datasets.
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Figure 8. Harmonized median snow depth on the day of snowmelt onset across the YRB as measured from GHCNd stations.

5.5.2 Seasonal temperature

Trends in seasonal temperatures from 1988-2005 identified
a significant increase in winter temperatures, with an r value
of 0.46 (p < 0.1) and tau of 0.35 (p < 0.05) (Fig. 9). Winter
temperatures were also negatively correlated with snowmelt
onset (r = —0.47, p < 0.05), indicating that warmer winters
were associated with earlier snowmelt. Additionally, snow-
off showed a strong positive correlation with spring tempera-
tures (r = 0.69, p < 0.01). Summer temperatures during this
period were moderately correlated with both snowmelt on-
set and snow-off, with r values of 0.52 and 0.58 (p < 0.05),
respectively.

From 2006-2023, no seasonal temperatures exhibited sig-
nificant trends over time. However, winter and spring/sum-
mer temperatures had positive tau values of 0.33 and 0.32
(p < 0.05), suggesting a slight warming trend. Interestingly,
snowmelt onset and snow-off were positively correlated with
spring/summer temperatures, with » values of 0.49 and 0.65

The Cryosphere, 19, 2797-2819, 2025

(p < 0.01), respectively. A significant correlation was also
identified between spring temperatures and snowmelt onset
(r =0.41, p < 0.1), indicating that warmer springs may con-
tribute to earlier snowmelt.

6 Discussion
6.1 Model performance and limitations

The RF model classified daily snow conditions effectively,
achieving high precision and recall scores, underscoring its
reliability in predicting snowmelt onset and snow-off. This
performance is particularly noteworthy in the complex land-
scape of the YRB, where traditional threshold-based meth-
ods often struggle due to heterogeneous land cover and at-
mospheric conditions (Pan et al., 2021). By incorporating
dynamic time series data, such as cumulative TDD and TBD,
the model produced favorable predictions of snow phenology

https://doi.org/10.5194/tc-19-2797-2025
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Figure 9. Harmonized seasonal temperatures across the YRB as measured from GHCNd stations.

events. The inclusion of a temporal dimension within the RF
framework further enabled the model to track the seasonal
evolution of snow cover, enhancing model accuracy in pre-
dicting both snowmelt onset and snow-off.

In comparing bootstrapped performance metrics, the
snow-off model outperformed the snowmelt onset model, a
result anticipated due to the greater variability and influenc-
ing factors associated with detecting snowmelt onset. How-
ever, errors calculated by comparing in situ observations with
full model outputs showed that snow-off predictions had a
higher MAE and RMSE. Notably, when RF snow-off errors
were compared with errors derived from IMS and Snow-
Model snow-off data, they were found to be similar. This sug-
gests that (1) accurately capturing snow-off at a single point
location remains challenging due to high spatial variability
at the 3.125 km spatial scale, (2) the RF snow-off model per-
forms on par with other established snow-off datasets, and
(3) similar uncertainties and bias are also present in other
available snow products.

The RF model also faces challenges related to sampling
bias due to the uneven distribution of ground-based snow
depth measurements used for training and testing (Tedesco
and Jeyaratnam, 2016; Tsai et al., 2019). The GHCNd sta-
tions are mostly located in accessible, lower-elevation ar-
eas and represent a very small relative local area within a
coarser grid cell being evaluated. This also introduces bias
into the modeled predictions for underrepresented regions,
such as higher elevations or areas of higher FW in the YRB.
The scarcity of in situ observations in these areas further
limits the ability of the model to generalize across different
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land cover features. However, emerging technologies, such
as camera traps, have shown promise in measuring seasonal
snow depth at varying elevations (Breen et al., 2023, 2024).
These tools could expand the spatial distribution of snow
measurements while reducing potential spatial bias, offering
a valuable enhancement for future snow phenology studies.

We found that the RF model predicted snowmelt onset on
average 3d later than an established satellite snow phenol-
ogy record derived from a Ty threshold method (Pan et al.,
2021). This earlier onset predicted by the previous record
is likely due to the threshold algorithm misinterpreting sea-
sonal melt events as the main snowmelt onset event. Address-
ing this misinterpretation was one of the primary motiva-
tions for exploring ML in snowmelt onset detection. The RF
model, with its logical structure and ancillary data, is likely
better able to distinguish between transient melt events and
the true seasonal melt onset. Additionally, the coarser resolu-
tion of the previous dataset (6.25 km) may introduce bias by
failing to capture finer landscape heterogeneity, particularly
at higher elevations. These high-altitude areas, which are a
smaller portion of the domain, tend to exhibit a lag in spring
snow metrics compared to lower elevations. Importantly, the
RF model incorporates predictors such as topographic vari-
ability and total precipitable water from MERRA-2, which
help account for topographic complexity and atmospheric
water vapor content — two major sources of 7 error and
cloud-related signal contamination in PMW retrievals. This
allows for lower ML uncertainty in high-relief regions where
terrain-driven heterogeneity and atmospheric interference are
common.
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The RF models showed greater uncertainty in certain YRB
sub-regions, particularly at higher elevations and in coastal
areas. These regions likely pose challenges due to their to-
pographic complexity and proximity to large water bodies,
which can introduce both 7}, noise and variability in snow-
pack LWC (Du et al., 2016; Nagler and Rott, 2000). The
QAQC maps highlighted areas with higher RF prediction er-
rors and indicate the need for further model improvements in
these regions. Incorporating higher-resolution satellite data
like SAR and other predictors to better account for landscape
heterogeneity and other influential features could improve fu-
ture iterations of the model and address some of the scale-
dependent uncertainties (Darychuk et al., 2023; Gagliano et
al., 2023; Marin et al., 2020).

Although the RF model achieved MAE values like or
slightly higher than those from previous threshold-based
methods, it offers distinct advantages not reflected in sum-
mary metrics alone. The bootstrapping results indicate that
when the prediction data are well-represented within the
training dataset — such as under similar climate or land cover
conditions — the RF model yields substantially lower errors.
This highlights the model’s ability to generalize effectively
when sufficient representative training data are available.

Furthermore, the RF approach reduces false detections of
snowmelt onset caused by transient warming events by learn-
ing from multivariate seasonal context, rather than relying
on fixed thresholds. It also performs more reliably in hetero-
geneous and hydrologically complex regions, such as areas
near lakes or coastlines, where PMW land signals are often
confounded by water contamination. Finally, the RF flexibil-
ity allows for seamless integration of new predictors, such as
SAR data or reanalysis-based forcings, enabling continuous
model refinement. Together, these strengths — daily classifi-
cation of snow state, spatially explicit uncertainty, improved
seasonal tracking, and enhanced adaptability — represent a
meaningful advancement over traditional thresholding meth-
ods for operational snow monitoring in the YRB.

6.2 Implications of changes in snow phenology

Annual changes in snow phenology are closely tied to current
climate conditions, with snowmelt onset and snow-off gen-
erally occurring later in cooler years and earlier in warmer
years. Notably, during warm years, snowmelt occurred ear-
lier — by ~ 9d — while in cooler years, the delay was ~ 12d,
relative to the climatology. And the difference in snowmelt
onset between a warm year and cool year could be as much
as 21d. Earlier occurrence in snowmelt onset during warm
years also generally translated into a longer melt duration, as
noted from previous studies (Musselman et al., 2017).

Our analysis revealed that snowmelt onset trended toward
a later date from 1988-2005, a result that might seem coun-
terintuitive given the warming temperatures typically ob-
served at northern latitudes. However, during this period,
annual snowfall was particularly high at the beginning of
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the period (especially before 1994), and seasonal temper-
atures showed small changes. The deeper snowpack meant
that more snow was available for melting earlier in the sea-
son, as reflected in the RF model outputs. This suggests that
snowmelt onset is influenced more by the quantity of accu-
mulated snow than by temperature alone (Barnett et al., 2005;
Frei and Henry, 2022; Trujillo et al., 2012), except in cases of
anomalously warm years, where elevated temperatures tend
to override other factors (Musselman et al., 2017).

With temperatures remaining relatively stable from 1988—
2005, snow-off timing followed typical seasonal patterns, ex-
plaining why we observed no significant changes during this
period. Here we demonstrated the important role of winter
snowfall in shaping springtime snow phenology, yet trends
in snowfall patterns across Alaska are complex. From 1957
to 2021, winter snowfall equivalent increased across Alaska.
However, northern and southern regions have seen a decline
in snowfall during the spring and fall shoulder seasons, ef-
fectively shortening the snow cover duration (Ballinger et al.,
2023).

We also showed an acceleration toward earlier snowmelt
onset and snow-off timing during the latter half of the data
record (2005-2023). These changes align with recent warm-
ing trends in average spring/summer air temperature mea-
surements in the YRB. Over the last century, Alaska has ex-
perienced varying increases in temperature across different
climate divisions (Bieniek et al., 2014), with record-breaking
warmth in recent years (Lara et al., 2021; Swanson et al.,
2021; Walsh et al., 2017).

7 Conclusion

This study introduced an application of an RF approach to
derive a 35-year snow phenology record across the YRB, de-
livering new insights into the timing and variability of sea-
sonal snowmelt onset and snow-off across Alaska’s largest
drainage basin. Designed for enhanced delineation of spatial
and temporal heterogeneity in snow metrics over more es-
tablished satellite and model data records, the RF model ef-
fectively classified daily snow conditions, achieving reason-
able accuracy in delineating snow phenology metrics across
a highly varied landscape. By working with an improved
spatial resolution of 3.125km, the RF model was able to
provide a more detailed representation of landscape features
than previous T; threshold-based snow phenology datasets,
supporting more precise predictions across the YRB’s di-
verse terrain. The enhanced spatial resolution proved espe-
cially valuable in depicting snow phenology in the region’s
remote, high-latitude environments, allowing the RF model
to capture nuances in snowmelt timing across varying to-
pographies, elevation ranges, and vegetation covers.

One significant advantage of the RF approach over tradi-
tional thresholding methods is the reduction in sensitivity to
transient melt events and atmospheric fluctuations, making a
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more reliable identification of primary snowmelt onset rather
than temporary thaw and early melt events caused by brief
warming episodes. Additionally, the integration of dynamic
predictions within the RF model, including cumulative thaw
degree days and snow cover presence, allowed the captur-
ing of the seasonal evolution of snow conditions, while re-
maining less prone to errors related to isolated atmospheric
warming events. However, certain challenges emerged, par-
ticularly in areas with complex topography, such as in high-
elevation and coastal zones, where model prediction errors
were greater. These challenges likely reflect the difficulties
in addressing highly localized factors, like changes in snow-
pack liquid water content, or terrain-induced microclimate
variability.

As with many remote sensing models, sample bias in the
RF model due to uneven ground-based data coverage poses a
limitation, as in situ snow depth measurements are predom-
inantly collected in accessible, lower-elevation regions. This
bias suggests the need for continuous updates to the in situ
training dataset, particularly by expanding measurements in
higher-altitude and coastal areas within the YRB. Incorpo-
rating more extensive in situ observations would improve
the model’s accuracy in underrepresented regions, allowing
for a more comprehensive understanding of snow phenol-
ogy across the YRB. By overcoming these current limita-
tions and incorporating higher-resolution remotely sensed
data sources, such as SAR, future iterations of the model
could further enhance snow phenology monitoring in the
YRB, making it a critical tool for understanding snow-related
dynamics in response to climate change.

Finally, this study produced an extended snow phenology
record spanning more than 30 years to better distinguish cli-
mate normals and quantify long-term climate trends in the
YRB. By segmenting the 35-year record into two timeframes
(1988-2005 and 2006-2023), we were able to detect dis-
tinct temporal trends in the spring snow metrics that corre-
sponded to changes in seasonal temperatures and snowfall
patterns. The analysis revealed that in earlier years, snowmelt
onset tended toward later dates, influenced largely by higher
snowfall amounts and stable seasonal temperatures. How-
ever, in more recent years (2006-2023), both snowmelt on-
set and snow-off timing have advanced significantly, coin-
ciding with rising spring and summer temperatures across
the YRB. These phenological shifts, along with the lengthen-
ing of the snow-free season, align with observed patterns of
earlier spring onset and more frequent anomalous warming
events in recent years. The resulting snow phenology trends
offer valuable insight into the YRB’s changing climate and
highlight the increasing influence of warming on snowpack
dynamics, which hold implications for regional water avail-
ability, ecosystem health, and community resilience in the
face of accelerated climate change.
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Appendix A

Table A1. Descriptions of datasets used in this study and their sources.

Dataset Spatial Spatial domain Temporal  Period of Use Reference/source
resolution resolution  record
19V and 19 H (K band) 6.25km Northern Hemisphere Daily 1988—present RF prediction Brodzick et al. (2018)
37V and 37 H (Ka band) 3.125km  Northern Hemisphere Daily 1988—present RF prediction Brodzick et al. (2018)
Daymet 1 km OCONUS Daily 1980-present RF prediction Thornton et al. (2021)
IMS 4km Northern Hemisphere Daily 2004—present RF prediction Helfrich et al. (2007)
SnowMod 3km Alaska and NW Canada  Daily 1980-2020 RF prediction Liston et al. (2020)
MERRA2 TQV 50km Global Daily 1980-present RF prediction Gelaro et al. (2017)
Fractional water (FW) 6.25km Alaska Static 2003-2015 RF prediction and uncertainty analysis  Du et al. (2017)
Fractional tree cover (TC) 250 m Alaska Static 2011 RF prediction and uncertainty analysis ~ Carroll et al. (2011)
Elevation (GTOPO) 1km Alaska Static RF prediction and uncertainty analysis ~ USGS
Elevation (ALOS) 30m Global Static 2006-2011 RF prediction and uncertainty analysis ~ Tadono et al. (2014)
Proximity 1km Alaska Static RF prediction and uncertainty analysis ~ GTOPO
Aspect 1km Alaska Static RF prediction and uncertainty analysis ~GTOPO
Glaciers vector Alaska/Canada Static Indicate permanent ice Pfeffer et al. (2014)
GHCNd in situ Alaska Daily < 1988-present  RF prediction — testing/training Menne et al. (2012)
MMOD 6.25km Alaska Annual 1988-2018 RF comparison Pan et al. (2021)
Snow-off 6.25km Alaska Annual 1988-2018 RF comparison Pan et al. (2021)
Table A2. Grid search results for RF hyperparameters.
Values tested Snowmelt onset ~ Snow-off
n_estimators 8, 100, 200, 300, 1000 100 100
min_samples_leaf 1,2, 4 4 4
max_depth None, 10, 20, 30 10 10
max_{features auto, sqrt, log log2 log2
min_samples_split 2,5, 10 5 10
Snowmelt Onset Snowoff
doy tdd
tdd doy
snowcover
tqv
tqv
snowcaover
ma_tbd ma_thd
daily_tbd daily_tbd
elev_std
ma_grp
daily_arp ) prox
prox daily_grp
elev_std gtopo
gtopo ma_grp
fe ftc
aspect_rank aspect_rank
fw fw

T T T T T
T T T T T T T 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Mean Feature Importance

Figure Al. Snowmelt onset variable feature importance with =+ 1
standard deviation over 20 bootstrap iterations.
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Mean Feature Importance

Figure A2. Snow-off variable feature importance with = 1 standard
deviation over 20 bootstrap iterations.
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Figure A3. Histogram comparison of snow-off detection from SnowModel (orange) and IMS (blue) over three overlapping years including

2008, 2012, and 2016.
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Figure A4. Snowmelt onset climatology binned into two classes,
“earlier” and “later”. This climatology was used to assess annual
changes in snowmelt onset.
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