Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2635-2025
https://doi.org/10.5194/tc-19-2635-2025
Research article
 | 
22 Jul 2025
Research article |  | 22 Jul 2025

Volumetric evolution of supraglacial lakes in southwestern Greenland using ICESat-2 and Sentinel-2

Tiantian Feng, Xinyu Ma, and Xiaomin Liu

Related authors

Analysis of Long-Term Dynamic Changes of Subglacial Lakes in the Recovery Ice Stream, Antarctica
Tiantian Feng, Hui Dong, Yangyang Chen, and Tong Hao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1632,https://doi.org/10.5194/egusphere-2025-1632, 2025
Short summary
New large subglacial lake in Princess Elizabeth Land, East Antarctica, detected by airborne geophysical observations
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332,https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
COMPARISON OF MULTI-IMAGES DEEP LEARNING SUPER RESOLUTION FOR PASSIVE MICROWAVE IMAGES OF ARCTIC SEA ICE
X. Shen, X. Liu, Y. Yao, and T. Feng
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 497–502, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-497-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-497-2021, 2021
AN AUTOMATIC EXTRACTION METHOD FOR ANTARCTIC SUBGLACIAL LAKE BASED ON RADIO ECHO SOUNDING DATA
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021

Cited articles

Arthur, J. F., Stokes, C., Jamieson, S. S., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geog., 44, 837–869, https://doi.org/10.1177/0309133320916114, 2020. 
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., and Ahlstrøm, A. P.: Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet, J. Geophys. Res.-Earth, 117, F04012, https://doi.org/10.1029/2012JF002393, 2012. 
Box, J. E. and Ski, K.: Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics, J. Glaciol., 53, 257–265, https://doi.org/10.3189/172756507782202883, 2007. 
Box, J. E., Hubbard, A., Bahr, D. B., Colgan, W. T., Fettweis, X., Mankoff, K. D., Wehrlé, A., Noël, B., van den Broeke, M. R., Wouters, B., Bjørk, A. A., and Fausto, R. S.: Greenland ice sheet climate disequilibrium and committed sea-level rise, Nat. Clim. Change, 12, 808–813, https://doi.org/10.1038/s41558-022-01441-2, 2022. 
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
During the melting season, substantial quantities of surface meltwater converge in topographically depressed regions, forming supraglacial lakes (SGLs). We extract SGL area and profile depth using remote sensing data and then invert the depth of entire SGLs based on the machine learning method. By applying the above-mentioned methods, we capture the volumetric evolution of SGLs throughout the entire melt season of 2022 in southwestern Greenland.
Share