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Abstract. Surface meltwater runoff is a major factor affect-
ing the trends and interannual variations in the mass bal-
ance of the Greenland ice sheet. During the melting season,
surface meltwater accumulates in low-lying areas, forming
supraglacial lakes (SGLs). Quantitatively characterizing the
spatial and temporal changes in the volume of SGLs can pro-
vide further insights into the surface mass balance changes
of the ice sheet during the melt season. In this paper, we
propose a method for estimating the volume of SGLs by
combining optical imagery (Sentinel-2) and satellite altime-
try data (ICESat-2). First, the area of SGLs is extracted using
a random forest (RF) model based on spectral features from
Sentinel-2 imagery, achieving an intersection over union
(IoU) of 90.20 % compared to manually delineated lake ex-
tents. Second, the depth of SGLs along the ICESat-2 profile
is detected using the kernel density analysis method. Finally,
a multi-layer perceptron (MLP) model constructs the nonlin-
ear relationship between the reflectance ratio from Sentinel-2
imagery and the depth of SGLs detected by ICESat-2 data.
The accuracy of depth inversion based on the MLP model
surpasses traditional empirical formula methods, achieving
a mean absolute error of 0.42 m. The trained MLP model is
then used to estimate the depth over the entire lake areas.
The proposed volume estimation method for SGLs is applied
to southwestern Greenland, capturing the volumetric evolu-
tion of SGLs throughout the entire melt season of 2022. The
results reveal significant variations in the distribution, area,
depth, and volume of SGLs throughout the melt season. Ini-
tially, SGLs form along the coastlines and later spread in-
land, expanding in both area and depth. The maximum to-

tal volume of SGLs is reached on 1 August, amounting to
9.30× 108 m3. Afterward, SGLs above 1200 m continue to
increase in volume, while SGLs below 1200 m begin to de-
crease. In late August, as the melt season draws to a close,
SGLs diminish and retreat to coastal regions, with a notable
reduction in volume. Additionally, according to the evolution
characteristics of SGLs at different elevations, SGLs above
800 m exhibit a similar evolution pattern. A temporal dis-
crepancy in maximum values for both mean area and mean
depth implies differential rates of SGL development in the
horizontal and vertical dimensions. The elevation range of
1200 to 1600 m is the most favorable for the evolution of
SGLs.

1 Introduction

The Greenland ice sheet, the second largest ice sheet in
the world, exerts a significant influence on global sea lev-
els (Shepherd et al., 2020). Since the 1990s, remote sensing
observations have revealed a pronounced acceleration in the
melting of the Greenland ice sheet (Mouginot et al., 2019;
Slater et al., 2020). Research indicated that surface meltwa-
ter runoff was the primary factor affecting the trends and in-
terannual variations in the mass balance of the Greenland ice
sheet between 2000 and 2019 (Box et al., 2022). Through-
out the melt season, a substantial volume of surface meltwa-
ter accumulates in depressions, forming supraglacial lakes
(SGLs). These SGLs, integral to the surface hydrological
system of the Greenland ice sheet, eventually discharge into
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the ocean or infiltrate beneath the ice through various path-
ways, such as surface runoff, crevasses, or moulins (Meier-
bachtol et al., 2013; Poinar and Andrews, 2021; Smith et al.,
2015), thus significantly influencing the mass-energy balance
of the ice sheet (Arthur et al., 2020; Pope et al., 2016). Quan-
titatively characterizing the spatial and temporal changes in
the volume of SGLs can provide further insights into the sur-
face mass balance changes of the ice sheet during the melt
season (Banwell et al., 2012).

The area and depth of SGLs are crucial parameters for esti-
mating their volume. The normalized difference water index
for ice (NDWIice) proposed by Yang and Smith (2013), cal-
culated using red and blue bands, is an effective index for
identifying water features in ice and snow conditions. By ap-
plying a predetermined threshold, supraglacial water bodies
can be effectively highlighted. Moreover, a variety of ma-
chine learning and deep learning methods, such as the ran-
dom forest (RF) algorithm, support vector machines (SVMs),
and convolutional neural networks (CNNs), were used to ex-
tract SGL area (Chouksey et al., 2021; Hu et al., 2022; Jiang
et al., 2022; Lutz et al., 2023; Yuan et al., 2020). These meth-
ods demonstrated high accuracy in SGL area extraction.

In contrast, compared to SGL area extraction, the cal-
culation of lake depth faces greater challenges, which is
also a crucial factor leading to inaccurate volume estima-
tion, unreliable seasonal meltwater accumulation estimation,
and difficulty in analyzing the formation and drainage events
(Melling et al., 2024). To date, the primary methods for ob-
taining the depth of SGLs include field measurements and
remote sensing inversion. Although field depth measurement
is the most accurate method, the harsh environment in Green-
land makes such measurements labor-intensive and limited in
scope, resulting in sparse data coverage which is insufficient
for large-scale scientific research. The primary remote sens-
ing data sources for extracting the depth of SGLs in Green-
land include optical remote sensing imagery and satellite al-
timetry data. Optical remote sensing imagery can compre-
hensively cover entire lakes and has high revisit rates, of-
fering a relatively complete time series for observing lake
changes. To estimate the depth of SGLs using optical re-
mote sensing imagery, the radiative transfer equation pro-
posed by Philpot (1987) was usually adopted (Pope et al.,
2016; Williamson et al., 2018), which established a relation-
ship between water depth and band reflectance based on the
physical properties of light attenuation. On the other hand,
there were also methods for lake depth retrieval through pa-
rameter fitting, which combined in situ measurement data
with optical imagery single band reflectance to fit parame-
ters in an empirical formula, establishing a nonlinear rela-
tionship between lake depth and band reflectance (Box and
Ski, 2007). Moreover, Legleiter et al. (2009, 2014) proposed
the optimal band ratio analysis (OBRA) algorithm, identi-
fying a linear relationship between the logarithmic value of
the ratio of reflectance values in the green and red bands and
lake depth. Although these methods can achieve large-scale

lake depth extraction, it is necessary to parameterize all of the
aforementioned variables. Furthermore, assuming a predeter-
mined relationship between lake depth and spectral observa-
tions carries significant uncertainty when applied across dif-
ferent regions, sensors, and attenuation rates caused by vari-
ations in lake water composition (Melling et al., 2024).

The launch of the Ice, Cloud, and land Elevation Satellite-
2 (ICESat-2) in 2018 provided a new data source for the in-
version of SGL depths. The laser beams of ICESat-2 have
penetrative capability, enabling the acquisition of photons re-
flected from both the surface and bottom of SGLs along the
laser beam’s path (Jasinski et al., 2021). The depth of SGLs
can be calculated by measuring the height difference between
the surface and bottom photons. Fair et al. (2020) proposed
the lake surface–bed separation (LSBS) algorithm based on
ICESat-2 data, which separated the surface and bottom pho-
tons of SGLs by a predefined depth range, successfully ex-
tracting the depth of SGLs. However, the LSBS algorithm is
not automated due to differences in predefined depth between
lakes. Based on the multi-layer photon reflection character-
istics in ICESat-2 data, fully automated algorithms, such as
the Watta algorithm (Datta and Wouters, 2021) and the au-
tomated location and depth retrieval (ALD) algorithm (Xiao
et al., 2023), used kernel density estimation methods to es-
timate the surface and the bottom, thus avoiding parameter
selection for each lake. These data-driven depth inversion
methods based on ICESat-2 data provided high-precision el-
evation data for estimating the depth of SGLs (Fricker et al.,
2021; Lutz et al., 2024; Melling et al., 2024). Nevertheless,
the limited distribution of the ICESat-2 tracks results in lim-
ited coverage of the inversed depth of SGLs.

Recently, there has been research on the inversion of SGL
depths by combining altimetry data and optical imagery to
compensate for the limitations of individual data sources. Ma
et al. (2020) refined ICESat-2 data by using the density-based
spatial clustering of applications with noise (DBSCAN) al-
gorithm, then trained the empirical model by fitting param-
eters in linear band models and band ratio models sepa-
rately, and applied the resulting models to Sentinel-2 im-
agery for shallow water depth retrieval. Thomas et al. (2021)
used ICESat-2 bathymetric photons and Sentinel-2 imagery
to generate bathymetric maps for nearshore coastal areas.
Machine learning methods have also been increasingly ap-
plied in water depth inversion. Lai et al. (2022) proposed a
multilayer perceptron (MLP) model that used lake depths ex-
tracted by ICESat-2 data as a reference, combined with the
spectral information from Landsat 8, to invert the depth of
several shallow water regions in middle to low latitudes. For
high-latitude SGL depth extraction, the amount of available
data is significantly reduced compared to low and middle lat-
itudes, making direct application of the low- and mid-latitude
depth extraction model less effective (Lv et al., 2024). Lv et
al. (2024) combined ICESat-2 and Sentinel-2 data, utilizing a
backpropagation (BP) neural network to extract the depth of
SGLs in southwestern Greenland. They conducted depth ex-
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traction and method validation in a small area and compared
the changes in SGLs during the same period from 2019 to
2023. The use of machine learning to combine optical im-
ages and altimetry data to obtain the depth of SGLs has been
tentatively attempted on a small scale at high latitudes, and
the application on a large scale needs to be further analyzed.
Moreover, existing studies predominantly examine the inter-
annual variations of SGLs, while the intra-seasonal changes
during a single melt season have not been adequately ad-
dressed.

In this paper, we propose a method for inverting SGL
depth on the Greenland ice sheet by combining optical im-
agery (Sentinel-2) and satellite altimetry data (ICESat-2),
leveraging the accuracy of altimetry data with the com-
prehensive coverage of optical images. First, the area of
SGLs is extracted from the Sentinel-2 imagery using the
RF algorithm, allowing for rapid localization of lake areas
along ICESat-2 tracks. Within these areas, lake depths along
ICESat-2 tracks are detected based on kernel density analy-
sis algorithm. Subsequently, an MLP model is employed to
establish relationships between lake depths and various spec-
tral features of SGLs, specifically the ratio between differ-
ent bands’ spectral reflectance. This allows for the inversion
of lake depths outside of the ICESat-2 tracks. The proposed
method is applied in the southwestern region of Greenland,
capturing the spatiotemporal changes in SGL areas, depths,
and volumes over multiple periods within the 2022 melt sea-
son. By analyzing the variations in area, depth, and volume
of SGLs, the substantial fluctuations that occur within a sin-
gle melt season are highlighted. Furthermore, the character-
istics of SGLs at different elevations are compared, which of-
fer valuable support for ongoing research on surface melting
processes in Greenland. This detailed examination of SGL
dynamics contributes to a better understanding of the impacts
of climate change on polar regions, emphasizing the neces-
sity for continuous monitoring and analysis in these sensitive
and vast areas.

2 Study area and data

2.1 Study area

The study area is located on the southwest coast of Greenland
as shown in Fig. 1, which has shown a significant melting
trend over the past few decades (van den Broeke et al., 2016).
It is bounded by the southwest drainage subsystem no. 6.2
(Zwally et al., 2012), covering a total area of 136 902 km2.
During the melt season, typically between June and August,
this region has an active supraglacial hydrological system
(Hu et al., 2022). The excess runoff originates from low-
lying (<2000 m a.s.l.) parts of the ice sheet (Gledhill and
Williamson, 2018), where SGLs normally occur. The total
area of SGLs in the southwest region is the largest among
all other regions (Hu et al., 2022), and the formation and

Figure 1. Study area. Contour lines calculated from ArcticDEM
mosaic version 4.1 (Porter et al., 2023) are visible as grey lines at
400 m intervals. Yellow points indicate the locations of the lakes in
the study area, as shown in Figs. 5 and 13. The study period is from
June to August 2022.

drainage of SGLs in this region have a great impact on the
surface mass balance of the southwest region of Greenland
(Zhang et al., 2023).

2.2 Sentinel-2 imagery

Sentinel-2 consists of two polar-orbiting satellites (Sentinel-
2A and Sentinel-2B), which provides a revisit cycle of about
5 d. The MultiSpectral Instrument (MSI), a push-broom op-
tical sensor on board Sentinel-2, can collect data in 13 spec-
tral bands. Using the significant attenuation characteristics of
light in water, four bands with a spatial resolution of 10 m are
used in this study, specifically the three visible light bands
(blue band with a center wavelength of 0.49 µm, green band
with a center wavelength of 0.56 µm, and red band with a
center wavelength of 0.665 µm) and one near-infrared (NIR)
band with a center wavelength of 0.842 µm. Considering that
SGLs only form below the equilibrium line altitude, only im-
ages covering areas below 2000 m within the basin are se-
lected. To minimize the effect of cloud cover, we limit the
cloud cover when selecting the images. In this study, we use a
total of 81 images, 53 of which have 0 % cloud cover. Among
the remaining 28 images, only one has a cloud coverage rate
of 11.09 %, while the others exhibit minimal cloud coverage,
with an average of 1.62 %. During the whole melt season,
when the SGLs of Greenland undergo the most pronounced
changes, a total of 81 Sentinel-2 level-1C images (orthocor-
rected and geometrically corrected top-of-atmosphere (TOA)
reflectance products) divided into 7 periods, with a period
of approximately 10 d between observations, are included in
this study, covering the study area from 7 June to 28 Au-
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gust 2022. It should be noted that no single day’s imagery
could cover the entire study area during the second and third
study periods (i.e., 15–20 June and 30 June–4 July). There-
fore, we use multiple images from different days to achieve
complete coverage of the study area, denoted by 17 June and
2 July to represent these two periods in the following text.
For overlapping regions from different dates, each individual
image is processed separately, and the final result is obtained
by averaging the processed outcomes.

2.3 ICESat-2

ICESat-2 was launched by the National Aeronautics and
Space Administration (NASA) in September 2018 with polar
exploration as its primary objective. In achieving this objec-
tive, it can provide elevations of sea ice, land ice, and water
height amongst other data (Neumann et al., 2021). Equipped
with the advanced topographic laser altimeter system (AT-
LAS), it is capable of transmitting laser pulses with a wave-
length of 532 nm at a repetition frequency of 10 kHz. AT-
LAS employs three pairs of laser pulses, with each pair sepa-
rated by approximately 3 km in the cross-track direction. The
satellite acquires overlapping light spots with an interval of
approximately 0.7 m and a diameter of approximately 17 m
along its orbit with a 91 d revisiting cycle (Neumann et al.,
2021).

In this study, strong beams in each pair of laser pulses
are selected. The ATLAS version 3 (ATL03) product pro-
vides photon data of surface elevation with latitude and lon-
gitude coordinates using the WGS84 reference ellipsoid with
a spatial resolution of 0.1 and 0.7 m in horizontal and verti-
cal directions, respectively, which is mainly used to extract
the depth of the SGLs. The ATLAS version 6 (ATL06) sur-
face elevation product at a coarser spatial resolution is used
during the preprocessing step to exclude significant height
noise. Both ATL03 and ATL06 products are downloaded
through the National Snow and Ice Data Center website
(https://nsidc.org/data/icesat-2, last access: 11 July 2025).
Considering the changes in SGLs, it is important to minimize
the temporal difference between ICESat-2 data and Sentinel-
2 images. Therefore, the ATL03 product and the correspond-
ing ATL06 product acquired from the orbit of the reference
ground track (RGT) no. 338 on 14 July 2022 are used in this
study, since it is the only day during the entire melt season
of 2022 when both ICESat-2 data and Sentinel-2 images are
available. Then, both ICESat-2 data and Sentinel-2 images
are converted to the UTM zone 22N (EPSG:32622) for fur-
ther analysis.

3 Methods

The proposed framework for the inversion of SGLs, as shown
in Fig. 2, consists of three modules: extraction of SGLs using
Sentinel-2 imagery, detection of SGL depths on the ICESat-2

RGT, and inversion of the entire lake depths using an MLP
model.

3.1 Extraction of SGLs using Sentinel-2 imagery

The RF model, an ensemble learning method composed of
multiple independently trained decision trees, is utilized to
extract the lakes based on the spectral features. The advan-
tage of the RF model is its ability to reduce the risk of
overfitting by constructing decision trees using randomly se-
lected samples and features (Breiman, 2001). The final pre-
diction result of an RF is based on the majority vote from
all decision trees since each decision tree is independent
and complements each other. For feature selection, in addi-
tion to the reflection values of the red, green, blue, and NIR
bands, NDWIice and NDWI are also included, considering
the unique icy and snowy environment of SGLs. The calcu-
lations for NDWIice and NDWI are shown in Eqs. (1) and (2),
where Rr, Rg, Rb, and RNIR represent the reflection values of
the red, green, blue, and near-infrared bands, respectively.

NDWIice =
Rb−Rr

Rb+Rr
(1)

NDWI=
Rg−RNIR

Rg+RNIR
(2)

For each time period, we randomly sample 50 pixels from
SGL areas and 50 pixels from other areas in the mosaicked
Sentinel-2 image as training data and then employ an RF al-
gorithm with 30 decision trees to classify the image into lake
and non-lake. The trained model is then applied to Sentinel-
2 images of seven periods in the study area to extract SGLs.
All the Sentinel-2 image processing tasks are conducted on
the Google Earth Engine (GEE) platform.

3.2 Detection of SGL profile depths along the ICESat-2
RGT

The regions of interest in the ICESat-2 data are identified
based on the extraction results of SGLs from the Sentinel-
2 image. To ensure that the altimetry data further processed
include both data inside and outside the lake, we establish
a 100 m buffer zone around each SGL. Windows based on
ATL06 surface elevation data establish the vertical extent of
the ATL03 photon data used, while buffer zones determine
the range of data along the track direction. Then, the ker-
nel density analysis method is employed to discern the sur-
face and bottom of the lake from the multiple reflections of
ATL03 photons on the various surfaces of the SGL. Sub-
sequently, the precise boundary of the SGL is determined
according to the breakpoints of the surface slope change.
Considering that the surface of the ice sheet has a more
pronounced topographic undulation, while the SGL is wa-
ter surface and therefore horizontal, the extent of the SGL
is determined by detecting the slope change of the surface.
Within this precise boundary of the SGL, a refraction cor-
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Figure 2. Framework of the proposed SGL depth inversion method.

rection (Parrish et al., 2019) is applied to determine the ac-
tual depth of each SGL. The most reliable method to as-
sess the uncertainty in depth oriented from ICESat-2 data is
by comparing inversion results with in situ measurements.
However, due to the harsh environment in Greenland and the
rapid changes of SGLs during the melting season, obtaining
in situ data near the ICESat-2 transit time is challenging. In
this study, the quality of depth data derived from ICESat-2 is
ensured through visual inspection, and the profile depth ex-
tracted from ICESat-2 ATL03 data is the reference for the
Sentinel-2 depth estimation.

3.3 Inversion of the entire lake depths using the MLP
model

Considering the discrepancy in spatial resolution between the
depth estimates obtained by ICESat-2 data and the Sentinel-
2 imagery, we create a dataset by computing the average
depth value from the output of ICESat-2 ATL03 data within
a Sentinel-2 pixel. Inspired by Lai et al. (2022) on optical
shallow water depth inversion in mid- and low-latitude re-
gions, we construct an MLP architecture consisting of three
hidden layers (Fig. 3): the first with 128 nodes, the second
with 32 nodes, and the third with 16 nodes. The three hidden
layers are connected using the rectified linear unit (ReLU)
activation function. A linear activation function is applied
to the output layer, which provides depth estimates corre-
sponding to each pixel. The depth of the SGL exhibits a non-
linear relationship with the ratio of reflectance between blue
and red bands (Legleiter et al., 2014). Motivated by this in-
sight, we opt for a more comprehensive approach by consid-
ering multiple band ratios, specifically the top-of-atmosphere
(TOA) reflectance ratios between the red, green, blue, and
near-infrared bands, derived from Sentinel-2 imagery, as in-
put features for the MLP. Both the depth of SGLs from two
pairs of ICESat-2 RGT no. 338 and the corresponding band

Figure 3. Structure of the MLP model.

ratios within SGL areas from Sentinel-2 images are used to
train the MLP model, and the data in the remaining pair of
ICESat-2 RGT no. 338 are used to test the performance of
the MLP model. Then, the trained MLP model is applied to
invert the depth of SGLs within seven time periods across the
whole study area.

3.4 Evaluation methods

To quantitatively evaluate the performance of the classifica-
tion algorithm, the intersection over union (IoU) metric is
used, which is the proportion of the overlap between the clas-
sification results and manually selected SGLs relative to their
combined area. To evaluate the performance on depth pre-
diction, we compare the effectiveness of both MLP model
and the empirical formula approach (Box and Ski, 2007).
The empirical formula approach establishes an empirical re-
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lationship between SGL reflectance and depth as shown in
Eq. (3). The same training and testing data are adopted, al-
lowing for a comparison of the performance between MLP
and the empirical formula method.

D =
α0

R+α1
+α2, (3)

where D represents the estimated depth of the SGL. R de-
notes the reflectance in the green or red band, and parame-
ters α0, α1, and α2 are empirical coefficients fitted by using
training data.

The mean absolute error (MAE) is adopted to assess the
depth inversion accuracy of both the MLP model and the
empirical formula method. The calculation method for MAE
rmean is

rmean =

∑
|dref− dpred|

N
, (4)

where dref represents the lake depth obtained by ICESat-2,
dpred represents the predicted lake depth value using the MLP
model or empirical formula method, and N is the number of
pixels.

4 Results

4.1 Evaluation of area extraction and depth inversion

We manually selected five SGLs on each image, compare
them with the RF extraction results, as shown in Fig. 4, and
calculate the IoU value for each image. The results are shown
in Table 1. The difference between the manually selected
continuous boundaries and the jagged edges on raster im-
ages significantly affects the accuracy of image IoU. This ef-
fect is particularly noticeable during the early melting stages
(i.e., 7 June) of the SGLs since the area of the SGLs is rel-
atively small. As the melting intensifies and the SGL area
increases, the impact of this difference on IoU evaluation de-
creases in subsequent results, with all IoU values remaining
around 90 %. Overall, the average IoU value for the SGLs
across seven periods is 90.20 %, providing reliable SGL ex-
tents for subsequent experiments.

The detection results of the lake surface and bottom are
shown in Fig. 5; the difference between the two represents
the lake’s depth. The detected lake depth based on ICESat-2
data is considered the reference in this paper since the reli-
ability of this method has been verified (Lutz et al., 2024;
Melling et al., 2024). In the study area, there are a total of
1991 pixels over 28 SGLs in Sentinel-2 imagery, which co-
incide with three laser beams (gt1l, gt2l, gt3l) of ICESat-2
RGT no. 338. Among them, 994 pixels are used as training
samples for the MLP training, while the remaining are used
for evaluating the accuracy of MLP inversion results for lake
depth.

The comparison of the depth inversion accuracy for both
the empirical formula method and the MLP model over

different depths is presented in Table 2, where the results
in bold indicate the highest accuracy in the depth inver-
sion. Although the results based on the empirical formula
method demonstrate superiority in predicting depths within
the ranges of 1–2 and 4–6 m, the MLP model exhibits an
overall MAE of 0.42 m across all depth ranges, significantly
outperforming the empirical formula method. The advan-
tage of the MLP model lies in its ability to leverage multi-
ple inputs for feature selection, which integrates more band
information and can fully utilize the information of differ-
ent bands in the image compared to the single-band inver-
sion of the empirical formula method, thus achieving higher-
accuracy results.

To analyze the distribution of the depth inversion errors,
we plot depth inversion bias maps and assign different col-
ors based on the point density (Fig. 6). The depth inversion
bias distribution of the MLP method is closer to the horizon-
tal axis compared to that of the empirical formula method,
while the depth inversion results obtained by the empirical
formula method almost always have a linear bias. Within the
1–2 m range, the intersection of the linear bias predicted by
the red band with the horizontal axis partly explains why the
empirical formula method achieves the highest accuracy in
this depth interval.

Unlike a physically based depth inversion method, the
MLP model learns the relationship between lake depth and
input features through training data. Therefore, issues such
as the data quality of the dataset and the uneven distribution
of the number of data samples at each depth will greatly af-
fect the inversion results of the MLP. As can be seen from
Fig. 6, the number of sample points at depths above 3 m is
significantly less than the number of sample points at depths
below 3 m, with the lowest number of points at the 5–6 m
depth interval. The combination of the above reasons leads to
the inversion results of the MLP model at 5–6 m being infe-
rior to the inversion results of the empirical formula method.

4.2 The spatiotemporal variation characteristics of
SGL parameters during the 2022 melt season

The results of the SGL area extraction and depth inversion
over our studied time periods are depicted in Fig. 7. The
spatial and temporal distribution of SGLs extracted at dif-
ferent periods shows significant variation. During the entire
melt season, SGLs appear at different elevation ranges at
different stages, with varying areas and depths. On 7 and
17 June, the SGLs primarily distribute in the coastal areas
around and below an elevation of 800 m (Fig. 7a). However,
the SGLs on 7 June are smaller in area and shallower in
depth, with no significant large lakes. By 17 June, the area
and depth of the SGLs have increased, and notable lakes ap-
pear near the 800 m contour line (Figs. 7b, 8a). In contrast,
the SGLs on 2 July show significant differences from the pre-
vious two periods, primarily occupying the 800 to 1200 m
region, with noticeable increases in area and depth (Figs. 7c,
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Figure 4. The comparison between the extracted extents and manually delineated contours for five different SGLs randomly selected from
each study period, using the corresponding Sentinel-2 images as a background for each period. Each row represents a different time period.

Table 1. Accuracy assessment of extraction results of SGLs showing the intersection over union (IoU) of each time period’s SGLs.

Date 7 June 17 June 2 July 14 July 1 August 13 August 28 August Overall

IoU (%) 75.55 89.44 87.39 94.77 93.30 94.74 96.24 90.20

8a, b). SGLs larger than 3× 106 m2 begin to appear (red out-
lines in Fig. 7c). On 14 July, the SGLs further advance to
higher elevations, extensively distributed between 800 and
1600 m (Fig. 7d). The area and depth of the SGLs continue
to grow, with several large lakes around the 1200 m contour
line (Fig. 8b). The number of lakes larger than 3× 106 m2

increases from one to three (red outlines in Fig. 7d). On
1 August, the trend in SGLs advancing to higher elevations
slows, with most SGLs distributed between 1200 and 1600 m
(Fig. 7e). The overall area and volume slightly increase, with
the number of lakes larger than 3× 106 m2 reaching nine (red
outlines in Fig. 7e). By 13 August, the SGLs do not continue
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Figure 5. Panels (a), (b), and (c) show three examples of lake surface and bottom detection results based on ICESat-2 ATL03 data. The
locations of these three lakes are shown in Fig. 1.

Table 2. MAE of lake depth inversed by the empirical formula method and the MLP model at different depths, where the results in bold
indicate the highest accuracy for each depth range.

Depth range Empirical formula method Empirical formula method MLP model
(m) based on green band (m) based on red band (m) (m)

0–1 0.52 0.52 0.37
1–2 0.52 0.30 0.43
2–3 0.73 0.74 0.43
3–4 0.59 0.76 0.57
4–5 0.18 0.22 0.19
5–6 0.19 0.32 0.56

Overall 0.56 0.51 0.42

to expand to higher elevations, mainly occupying the 1200
to 1600 m range (Fig. 7f). As the melt season approaches its
end, some SGLs are covered by snow and ice, reducing their
numbers. However, large and deep SGLs are still around the
1600 m contour line (Fig. 8c). On 28 August, the number of
SGLs significantly decreases, showing some variation in spa-
tial distribution (Fig. 7g). A few deep and large lakes remain
above 1200 m, while more shallow and small SGLs appear in
coastal areas below 800 m.

To mitigate the impact of differences in the number of
available images across different periods, the maximum and
average values of area, depth, and volume of the SGLs are
compared in Table 3. At the beginning of the development
of the SGLs (7–17 June), due to the relatively small amount
of melting, there are a number of small areas of water on
the edge of the ice sheet. At this time, the area and volume of
each individual SGL are relatively small, measuring less than
1× 106 m2 and 1× 106 m3, respectively, with a mean depth
of less than 1 m. Afterward, the SGLs enter a period of rapid
melting, where the maximum area of the individual lake in-
creases from 0.38× 106 to 3.22× 106 m2 with a growth rate
of +747 % from 17 June to 2 July, and the maximum vol-
ume of the SGL increases from 0.52× 106 to 10.60× 106 m3

with a growth rate of +1938 %. Similarly, the average area,
depth, and volume increase rapidly with a growth rate of
+340 %, +84 %, and +1215 %, respectively, which is sig-

nificantly different from the previous period and implies that
the SGL had begun to enter the peak of its development as
the melt season progressed.

After entering the peak period of development, the maxi-
mum and mean area of the SGLs show a sustained upward
trend between 2 and 14 July, with a growth rate of +49 %
and +85 %, respectively. However, the maximum and mean
depth show decreasing trends. Overall, the maximum and
mean volume of the SGLs show an increasing trend, with
rises of +28 % and +44 %, respectively. The growth rate of
the area of the SGLs is higher than the growth rate of the vol-
ume, indicating that a large number of large and shallower-
depth SGLs appeared during this period. Then, the mean area
and volume of the SGLs reach the maximum on 1 August,
with the growth rate of +3 % and +68 %, respectively, in-
dicating that the mean area of the SGLs has already stabi-
lized at that time, while the mean volume is still in the stage
of high-speed growth. On 13 August, although the depth of
SGLs continues to increase, the area shows a significant de-
creasing trend, resulting in the volume remaining comparable
to that on 1 August. Between 13 and 28 August, the maxi-
mum and mean values of areas, depth, and volume of SGLs
show a decreasing trend, indicating that the lakes begin to
recede as time progresses toward the end of the melt sea-
son. And the rate of decline of the mean values of the SGLs
(−39 %) exceeds that of maximum values (−23 %), indicat-
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Figure 6. The depth inversion bias maps obtained by the empirical formula method based on the green (a) or red (b) band and the MLP
model (c). Each point in each of the plots corresponds to an SGL pixel.

ing that most of the SGLs are frozen or drained overall, but
there are a few lakes with large areas and volumes of water
that still existed.

The depth distribution of SGLs in each period is plotted
as a violin plot (Fig. 9), ignoring lakes above 4 m, which ac-
counted for less than 2 % of the total. To demonstrate the dif-
ference in distribution between the two adjacent periods, we
differentiate the violin plots of the previous time (blue) and
the later time (brown) by color; i.e., the distribution of the
statistical plots on the remaining time except the first and last
time is compared with its previous and subsequent periods,
respectively. The major difference is between the 17 June
and 2 July plots, where the peak position clearly shifts up-
ward, and the distribution of depth data between the upper
and lower quartiles is more concentrated; i.e., the depth of
the SGL begins to develop more steadily on the existing base
rather than melting randomly, corresponding to the transi-
tion from the early to the peak period of SGL development.
Subsequently, the distribution of maximum depths during the
peak period of SGL development is relatively concentrated

with obvious peaks, while the median is similar to the trend
in average depths, also appearing to decrease and then in-
crease, indicating that more shallow SGLs are formed during
2 to 14 July. The median peak on 1 August shows the most
concentrated distribution shape of all periods, suggesting that
the development of SGLs has reached a relative peak and that
the maximum depth has stabilized. The subsequent distribu-
tion on 13 August differs significantly from that of 1 August.
Although the median value still increases, there is no longer a
prominent peak, and the upper and lower quartiles show ob-
vious dispersion. The increase in the median value indicates
that some deeper SGLs still exist, but the overall dispersion
of the data still indicates that the development of SGLs has
entered a period of decline, and the distribution of maximum
depths on 28 August is more toward shallower water.

A density map of the distribution of the area of each SGL
and its corresponding average depth over different time peri-
ods is created to further examine the distribution and changes
in area and depth of SGLs over the melting seasons. For bet-
ter display of figures, only the SGLs with an area less than
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Figure 7. SGL area extraction and depth inversion results on 7 June (a), 17 June (b), 2 July (c), 14 July (d), 1 August (e), 13 August (f), and
28 August (g). The background map is Sentinel-2 images from each respective period. Contour lines from ArcticDEM mosaic version 4.1
(Porter et al., 2023) are also shown in grey at 400 m intervals.

Table 3. Statistics of the maximum and mean values of the SGL area, depth, and volume for the seven study periods, with the growth rate
against the previous period given in parentheses.

Date Maximum area Mean area Maximum depth Mean depth Maximum volume Mean volume
(× 106 m2) (× 104 m2) (m) (m) (× 106 m3) (× 104 m3)

7 June 0.62 0.23 4.82 0.72 0.30 0.16

17 June 0.38 0.25 5.09 0.88 0.52 0.13
(−39 %) (+9 %) (+6 %) (+22 %) (+73 %) (−19 %)

2 July 3.22 1.10 5.80 1.62 10.60 1.71
(+747 %) (+340 %) (+14 %) (+84 %) (+1938 %) (+1215 %)

14 July 4.80 2.04 5.71 1.21 13.54 2.46
(+49 %) (+85 %) (−2 %) (−25 %) (+28 %) (+44 %)

1 August 6.42 2.11 5.71 1.96 20.93 4.14
(+34 %) (+3 %) (0 %) (+62 %) (+55 %) (+68 %)

13 August 5.90 1.65 5.85 2.46 21.75 4.06
(−8 %) (−22 %) (+2 %) (+26 %) (+4 %) (−2 %)

28 August 4.53 1.01 5.04 1.61 15.02 1.63
(−23 %) (−39 %) (−14 %) (−35 %) (−31 %) (−60 %)
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Figure 8. Zoomed-in view of the evolution of SGL area and depth at elevations of around 800 m (a), 1200 m (b), and 1600 m (c). The
background map is Sentinel-2 images from each respective period. Contour lines from ArcticDEM mosaic version 4.1 (Porter et al., 2023)
are also shown in grey at 400 m intervals.

5× 104 m2 and an average depth below 3 m, which covers
more than 90 % of the SGLs within each period, are shown
in Fig. 10. Each data point on the density map represents a
single SGL, and brighter colors indicate higher density, cor-
responding to a greater number of SGLs.

The distribution of SGLs across all periods exhibits a
clear trend from scattered to concentrated and then back to

scattered. During the initial development phase (as seen in
Fig. 10a, b), the brighter regions cluster near the origin, in-
dicating a higher abundance of small and shallow SGLs. Be-
ginning with 2 July, a distinct peak appears, with SGL depths
gradually concentrating between 0.5 and 1 m, as shown in
Fig. 10c. By 14 July, the number of SGLs increases signifi-
cantly. A significant portion of these lakes have an average
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Figure 9. Violin plots of SGL depth distribution over our seven study periods.

Figure 10. The area–depth distribution map of each individual SGLs on 7 June (a), 17 June (b), 2 July (c), 14 July (d), 1 August (e),
13 August (f), and 28 August (g).

depth distribution in the range of 0.2 to 1 m, with a pro-
nounced peak near 0.3 m, as indicated in Fig. 10d. In addi-
tion, there is a notable increase in the number of SGLs with
areas greater than 2× 104 m2 and relatively shallow depths.
This observation is consistent with the overall decrease in
mean depth during the development of SGLs as shown in
Table 3. On 1 August, the distribution of SGLs becomes
more concentrated. The brighter regions shift to deeper mean
depths, reaching about 0.8 m, as presented in Fig. 10e. Many
SGLs now have mean depths of around 0.9 m. Compared

to 14 July, there is a significant increase in the number of
SGLs with mean depths exceeding 2 m. By 13 August, the
distinct peak diminishes, and the distribution of SGLs is no
longer concentrated around a single point. Instead, it gradu-
ally spreads out, as shown in Fig. 10f. The number of lakes
with average depths greater than 2 m continues to increase.
At this stage, SGLs show variability; i.e., some evolve into
larger, deeper lakes, while others retreat into smaller, shal-
lower lakes. This characteristic marks the transition to the
late stage of development. Even within small regions, in-
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dividual SGLs show significant variation. Within the same
area, some lakes may grow larger, while others may freeze or
drain (as shown in the fifth and sixth rows in Fig. 7c). Dur-
ing the late stage of SGL development, extensive drainage
or freezing leads to reductions in area, depth, and the total
number of lakes, as shown in Fig. 10g. The brighter regions
converge to smaller areas and shallower depths, and the num-
ber of SGLs with average depths greater than 2 m rapidly de-
creases.

Finally, Fig. 11 illustrates the volume distributions and
the total volume of SGLs at each of the seven periods. The
boxplots encapsulate the interquartile range (IQR), with the
median volumes denoted by red lines within the turquoise
boxes, and the whiskers extending to 1.5 times the IQR.
Outliers, which are defined as the first and the last 1 % of
the data, are indicated by grey points, while the red trian-
gles connected by a dotted line represent the mean volumes.
Throughout the observation period, the median volume of
the SGLs exhibits minor fluctuations; the largest median vol-
ume is on 14 July, which is around 10 m3. Conversely, the
mean volumes show a discernible increasing trend from early
June, peaking on 1 August, before slightly declining towards
the end of August. This divergence between the median and
mean suggests that while the majority of lakes maintain sta-
ble volumes, a subset of lakes experience significant volume
increases, thus elevating the mean. The persistent presence
of high-volume outliers across all dates further corroborates
this observation, indicating the existence of lakes with sub-
stantially larger volumes compared to the majority. The con-
sistency in the volume range and outliers underscores the dy-
namic nature of supraglacial lakes, likely influenced by vary-
ing melting rates, precipitation, and drainage patterns. This
analysis highlights the complex behavior of supraglacial lake
volumes over the summer months, with a few lakes signifi-
cantly impacting the overall mean despite the general stabil-
ity in median volumes. Meanwhile, the total volume of the
SGLs during the seven study periods is also presented by the
blue line in Fig. 11. Starting from 2 July, the total volume
of the SGLs shows a sharp increase, reaching its maximum
value of 9.30× 108 m3 on 1 August. Afterward, the volume
of the SGLs begins to decrease until the end of August.

4.3 The evolution characteristics of SGLs at different
elevations

To further analyze the spatial distribution of SGL develop-
ment in relation to elevation, we divide the elevation range
from 0 to 2000 m into five intervals of 400 m each and cal-
culated the average area, depth, and volume of SGLs within
each interval. Figure 12 illustrates these statistics, with col-
ors representing elevation from light to dark, grey dashed
lines indicating the overall average, and red stars marking
the maximum values for each line.

Generally, there is a significant difference between SGLs
above and below 800 m. The average area, depth, and volume

of SGLs below 800 m remain relatively stable with mini-
mal fluctuations. In contrast, SGLs above 800 m exhibit more
variability and dominate the overall trends of various statis-
tics. The most drastic changes in area, depth, and volume oc-
cur between 1200 and 1600 m, indicating this elevation range
is the most favorable for SGL formation.

According to the average area at different elevations
(shown in Fig. 12a), the overall peak area is reached around
early August, specifically on 1 August, driven primarily
by lakes in the 1200–1600 m range, with the highest value
recorded at 3.5× 104 m2 on 13 August. Each elevation band
shows a similar trend with varying magnitudes, peaking
mostly between late July and early August, suggesting mid-
summer as the period of maximum lake expansion. After
14 July, the area of SGLs between 1200 and 1600 m con-
tinues to increase until peaking on 13 August and then de-
creases, while the average area of SGLs above 1600 m de-
creases and then stabilizes.

Figure 12b presents the average depth of SGLs across dif-
ferent elevations. Peaks in mean depths for the 0–400 and
400–800 m ranges occurred on 2 July, with mean depths in
the 400–800 m range significantly higher than those in the
0–400 m range. Before 2 July, the overall mean depth change
is dominated by SGLs between 400 and 1200 m. After 2 July,
the mean depth change is dominated by SGLs above 800 m.
Mean depths in all elevation segments decrease between 2
and 14 July, except for those between 1200 and 1600 m. Be-
tween 14 July and 1 August, the mean depths of SGLs above
800 m increase rapidly, creating a more pronounced differ-
ence with those below 800 m, with mean depths in the 800–
1200 m range reaching a peak. From 1 to 13 August, the
mean depth of SGLs above 1200 m continue to increase, al-
beit at a slower rate, reaching its maximum mean depth on
13 August, while the mean depth of SGLs between 800 and
1200 m begin to decrease. After 13 August, the mean depth
of SGLs decreases across all elevation bands as the ablation
season approached its end.

The average volume of SGLs in different elevation zones
generally follows a trend of increasing and then decreasing,
with the exception of SGLs between 800 and 1200 m, which
show a smaller decrease on 2 July and then increase again (as
shown in Fig. 12c). The higher the elevation of the SGL, the
later its average volume reaches its peak, reflecting the spa-
tial distribution of SGLs. As the melt season advances, SGLs
gradually push inland from the coast, reaching elevations of
1800 m or higher. The volume change of SGLs between 1200
and 1600 m is particularly notable, with the peak average vol-
ume significantly larger than that of other elevation intervals.
This is due to the cumulative advantage of depth and area,
making the probability of large and deep lakes significantly
higher in this elevation interval compared to others.

In summary, the elevation range of 1200–1600 m is the
most conducive for the development of SGLs, with signifi-
cant changes in area, depth, and volume, especially during
the mid-summer peak. This range sees the most substantial
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Figure 11. Boxplots of each individual SGL volume and the total volume during the seven study periods.

Figure 12. SGL average area (a), depth (b), and volume (c) at different elevation intervals.

lake formation and expansion, with the highest occurrence
of large and deep lakes.

5 Discussion

5.1 The uncertainty in SGL depth inversion

The presence of ice and snow cover on the surface of SGLs
significantly influences the reliability of depth inversion. As
shown in Fig. 13a, a distinct SGL is partially covered with
ice or snow. The ICESat-2 track passes over this lake and the
covered areas. In the segment from P2 to P3, the Sentinel-
2 image provides band reflection information from the ice
surface. This situation presents a significant challenge for
both the empirical formula method and the MLP method. As
shown in Fig. 13c, depth measurement methods relying on
optical images face obstructions in this segment, leading to
an abrupt change in depth and a significant underestimation
of depth in ice/snow-covered areas. As for ICESat-2 data, the
sparse bathymetric photons, influenced by ice or snow in this

segment, as shown in Fig. 13b, complicates the depth mea-
surements. Although fitting a continuous bottom (red line in
Fig. 13b) makes the depth results appear more reasonable,
using interpolated depth as a reference does not provide an
accurate evaluation of the empirical formula method and the
MLP model. Therefore, we manually remove this type of
segments to ensure the reliability of depth from ICESat-2
data. In the segment from P3 to P4, although the lake surface
is covered by floating ice, the MLP-based depth inversion
method can partially overcome this impact. This improves
the estimation of lake depth, providing results closer to those
obtained using ICESat-2 data.

5.2 The development characteristics of SGLs in the
horizontal and vertical directions

By comparing the change characteristics of the SGL aver-
age area, depth, and volume over time, we find that there is a
difference in the trend in lateral area development and verti-
cal depth development throughout the development of SGLs
from their incipient stages to their peak during the melt sea-
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Figure 13. An example of the uncertainty in depth inversion in ice/snow-covered areas. (a) Sentinel-2 image obtained on 17 June overlaid
with the ICESat-2 RGT 338. (b) The depth detection results by using kernel density estimation. (c) The depth inversion results by using the
empirical formula and the MLP model.

Figure 14. The trend in lateral area development and vertical depth
development throughout the melt season.

son (Fig. 14). From the initial melt period of 7 June to 2 July,
the mean area and the mean depth develop together. How-
ever, from 2 to 14 July, the mean area continues to grow,
while the mean depth decreases, implying that more new,
shallow SGLs appear. This disparity is the causative factor
for the observed trend of a decline in average depth before
attaining its peak value. Before reaching the greatest mean
depth, SGLs undergo lateral expansion in area, as evidenced
by the fact that the rate of increase in mean area was faster
than the growth in mean volume from 2 to 14 July. After this
period, SGLs develop vertically in depth. From 14 July to
1 August, the mean volume continues to grow, reaching its
maximum on 1 August. This result is similar to the findings
of Pitcher and Smith (2019), who observed that supraglacial
streams first incise, resulting in large changes in depth rela-
tive to width, and then ablation along channel walls results in
lateral expansion, increasing width relative to depth. In addi-
tion to the variations in supraglacial lake development result-
ing from the topography of different regions, further investi-
gation is required to better understand the rate of horizontal
and vertical development during the ablation season.

6 Conclusions

A method for inverting the volume of SGLs by integrat-
ing optical imagery (Sentinel-2) and satellite altimetry data
(ICESat-2) is proposed in this paper. It is indicated that the
accuracy of SGL area extraction by using an RF model based
on Sentinel-2 imagery is 90.20 %. And the mean absolute er-
ror of depth inversion by using an MLP model based on the
ratio of reflectance oriented from Sentinel-2 imagery and the
depth of SGLs detected by ICESat-2 data is 0.42 m, surpass-
ing that of traditional empirical formula methods. The pro-
posed volume inversion method for SGLs is applied to south-
western Greenland, thereby obtaining the volumetric evolu-
tion of SGLs throughout the entire melt season of 2022. It re-
veals that SGLs vary significantly in distribution, area, depth,
and volume throughout the melt season. The SGLs evolve
along coastlines and later spread inland, expanding in area
and depth. The maximum total volume of SGLs is reached
on 1 August, amounting to 9.30× 108 m3. Afterwards, SGLs
above 1200 m continue to increase in volume, while SGLs
below 1200 m begin to decrease. In late August, as the melt
season draw to a close, SGLs diminish and retreat to coastal
regions, with a notable reduction in volume. Moreover, the
evolution characteristics of SGLs at different elevations are
also investigated. It is found that the mean area, mean depth,
and mean volume of SGLs below 800 m remain relatively
stable throughout the entire melt season. SGLs above 800 m
exhibit a similar evolution pattern, and the elevation range
of 1200 to 1600 m is the most favorable for the evolution of
SGLs. Moreover, our research indicates a temporal lag in the
maximization of mean area and depth. At the onset of devel-
opment, the area and depth evolve concurrently. Then, before
the instance when the total volume of meltwater reaches its
maximum (1 August), the mean area reaches its peak before
the mean depth. This suggests that the SGLs exhibit veloci-
ties of morphological evolution along horizontal and vertical
dimensions. The quantitative parameter inversion and analy-
sis of SGLs in southwestern Greenland presented in this pa-
per contribute to a better understanding of the mass balance
of the Greenland ice sheet. However, when the surface of an
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SGL is covered with ice/snow, the depth may be underesti-
mated, which could further lead to an underestimation of its
volume. It may be possible to improve the accuracy of vol-
ume estimation by incorporating the temporal changes of the
SGL over the time series.
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