Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2457-2025
https://doi.org/10.5194/tc-19-2457-2025
Research article
 | 
08 Jul 2025
Research article |  | 08 Jul 2025

The role of snowmelt, glacier melt and rainfall in streamflow dynamics on James Ross Island, Antarctic Peninsula

Ondřej Nedělčev, Michael Matějka, Kamil Láska, Zbyněk Engel, Jan Kavan, and Michal Jenicek

Related authors

Rain-on-snow events in mountainous catchments under climate change
Ondrej Hotovy, Ondrej Nedelcev, Jan Seibert, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2274,https://doi.org/10.5194/egusphere-2024-2274, 2024
Short summary

Cited articles

Abram, N. J., Mulvaney, R., Wolff, E. W., Triest, J., Kipfstuhl, S., Trusel, L. D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nat. Geosci., 6, 404–411, https://doi.org/10.1038/ngeo1787, 2013. 
Ambrozova, K., Laska, K., Hrbacek, F., Kavan, J., and Ondruch, J.: Air temperature and lapse rate variation in the ice-free and glaciated areas of northern James Ross Island, Antarctic Peninsula, during 2013–2016, Int. J. Climatol., 39, 643–657, https://doi.org/10.1002/joc.5832, 2019. 
Bozkurt, D., Bromwich, D. H., Carrasco, J., and Rondanelli, R.: Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations, Clim. Dynam., 56, 3853–3874, https://doi.org/10.1007/s00382-021-05667-2, 2021. 
Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Wulff, A., Schloss, I. R., Falk, U., Deregibus, D., Lefaible, N., Torstensson, A., Al-Handal, A., Wenzhöfer, F., and Vanreusel, A.: Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy, Commun. Biol., 4, 1–11, https://doi.org/10.1038/s42003-021-01673-6, 2021. 
Bui, M. T., Lu, J., and Nie, L.: A review of hydrological models applied in the permafrost-dominated Arctic region, Geosciences, 10, 1–27, https://doi.org/10.3390/geosciences10100401, 2020. 
Download
Short summary
The annual variability of runoff has not been analysed in the maritime Antarctic. Thus, we simulated and analysed rain, snow and glacier contributions to runoff related to climate variability in a small catchment over 11 years. The majority of the runoff came from snowmelt. Inter-annual variability in total runoff was associated with large variability in glacier runoff. Between October and May, 92 % of the runoff occurred, with significant runoff events outside the usual measurement season.
Share