Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1085-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1085-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Larger lake outbursts despite glacier thinning at ice-dammed Desolation Lake, Alaska
Natalie Lützow
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, 14476, Germany
Bretwood Higman
Ground Truth Alaska, Seldovia, AK, USA
Martin Truffer
Geophysical Institute and Department of Physics, University of Alaska Fairbanks, Fairbanks, AK, USA
Bodo Bookhagen
Institute of Geosciences, University of Potsdam, 14476 Potsdam-Golm, Germany
Friedrich Knuth
University of Washington, Civil and Environmental Engineering, Seattle, WA, USA
Oliver Korup
Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, 14476, Germany
Institute of Geosciences, University of Potsdam, 14476 Potsdam-Golm, Germany
Katie E. Hughes
Victoria University of Wellington, Wellington, Aotearoa / New Zealand
Marten Geertsema
Ministry of Forests, Prince George, BC, Canada
John J. Clague
Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada
Georg Veh
Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, 14476, Germany
Related authors
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Miaomiao Qi, Shiyin Liu, Zhifang Zhao, Yongpeng Gao, Fuming Xie, Georg Veh, Letian Xiao, Jinlong Jing, Yu Zhu, and Kunpeng Wu
Hydrol. Earth Syst. Sci., 29, 969–982, https://doi.org/10.5194/hess-29-969-2025, https://doi.org/10.5194/hess-29-969-2025, 2025
Short summary
Short summary
Here we propose a new mathematically robust and cost-effective model to improve glacial lake water storage estimation. We have also provided a dataset of measured water storage in glacial lakes through field depth measurements. Our model incorporates an automated calculation process and outperforms previous ones, achieving an average relative error of only 14 %. This research offers a valuable tool for researchers seeking to improve the risk assessment of glacial lake outburst floods.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Douglas Brinkerhoff, Brandon Tober, Michael Daniel, Victor Devaux-Chupin, Michael Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell Mitchell, and Martin Truffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2354, https://doi.org/10.5194/egusphere-2024-2354, 2024
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1086, https://doi.org/10.5194/egusphere-2024-1086, 2024
Short summary
Short summary
In a study of eight landslides adjacent to glaciers in Alaska, we found that landslide movement increased as the glacier retreated past the landslide at four sites. Movement at other sites coincided with heavy precipitation or increased glacier thinning, and two sites showed little-to-no motion. We suggest that landslides next to water-terminating glaciers may be especially vulnerable to acceleration, which we guess is due to faster retreat rates and water replacing ice at the landslide edge.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Monika Pfau, Georg Veh, and Wolfgang Schwanghart
The Cryosphere, 17, 3535–3551, https://doi.org/10.5194/tc-17-3535-2023, https://doi.org/10.5194/tc-17-3535-2023, 2023
Short summary
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, https://doi.org/10.5194/esurf-7-859-2019, 2019
Short summary
Short summary
We develop and test new methods for counting pebble-size distributions in photos of gravel-bed rivers. Our open-source algorithms provide good estimates in complex imagery from high-energy mountain rivers. We discuss methods of river cross-section photo collection and processing into seamless georeferenced imagery. Application of a semi-automated version of the algorithm in small patches can be used as validation data for upscaling to entire survey sites using a fully automated version.
Sebastian von Specht, Ugur Ozturk, Georg Veh, Fabrice Cotton, and Oliver Korup
Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019, https://doi.org/10.5194/se-10-463-2019, 2019
Short summary
Short summary
We show the landslide response to the 2016 Kumamoto earthquake (Mw 7.1) in central Kyushu (Japan). Landslides are concentrated to the northeast of the rupture, coinciding with the propagation direction of the earthquake. This azimuthal variation in the landslide concentration is linked to the seismic rupture process itself and not to classical landslide susceptibility factors. We propose a new ground-motion model that links the seismic radiation pattern with the landslide distribution.
Katalyn A. Voss, Bodo Bookhagen, Dirk Sachse, and Oliver A. Chadwick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-534, https://doi.org/10.5194/hess-2018-534, 2018
Preprint withdrawn
Short summary
Short summary
Water supply in the Himalayas is derived from rainfall, snowpack, glacial melt, and groundwater that vary spatially and seasonally. This study provides new data collected from rain, snow, and glacial-sourced surface waters over a 5000 m elevation range from April to October 2016. We identify water sourced from the summer monsoon versus winter westerly storms and track major snow and glacial melt events to elucidate the sourcing and timing of Himalayan streamflow and inform water management.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018, https://doi.org/10.5194/esurf-6-971-2018, 2018
Short summary
Short summary
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer TanDEM-X dataset from ~ 2015. We difference the datasets over hillslopes and gravel-bed channels to extract vertical land-level changes. These signals are associated with incision, aggradation, and landsliding. This requires careful correction of the SRTM-C biases using the TanDEM-X and propagation of significant uncertainties. The method can be applied to moderate relief areas with SRTM-C coverage.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
M. N. Hanshaw and B. Bookhagen
The Cryosphere, 8, 359–376, https://doi.org/10.5194/tc-8-359-2014, https://doi.org/10.5194/tc-8-359-2014, 2014
Related subject area
Discipline: Glaciers | Subject: Natural Hazards
Refining lake volume estimation and critical depth identification for enhanced glacial lake outburst flood (GLOF) event anticipation
Brief communication: Rapid ∼ 335 × 106 m3 bed erosion after detachment of the Sedongpu Glacier (Tibet)
Lake volume and potential hazards of moraine-dammed glacial lakes – a case study of Bienong Co, southeastern Tibetan Plateau
Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau
Controls of outbursts of moraine-dammed lakes in the greater Himalayan region
Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?
Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau
Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina
Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet
Nazir Ahmed Bazai, Paul A. Carling, Peng Cui, Wang Hao, Zhang Guotao, Liu Dingzhu, and Javed Hassan
The Cryosphere, 18, 5921–5938, https://doi.org/10.5194/tc-18-5921-2024, https://doi.org/10.5194/tc-18-5921-2024, 2024
Short summary
Short summary
We explored the growing threat of glacier lake outburst floods (GLOFs) driven by glacier surges in the Karakoram. Using advanced remote sensing and field data, we identified key lake volumes and depths that indicate potential GLOFs. Our findings improve early warning systems by providing rapid methods to assess lake volumes in remote areas. This research seeks to protect vulnerable communities and contribute to global efforts in predicting and mitigating catastrophic flood risks.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Hongyu Duan, Xiaojun Yao, Yuan Zhang, Huian Jin, Qi Wang, Zhishui Du, Jiayu Hu, Bin Wang, and Qianxun Wang
The Cryosphere, 17, 591–616, https://doi.org/10.5194/tc-17-591-2023, https://doi.org/10.5194/tc-17-591-2023, 2023
Short summary
Short summary
We conducted a comprehensive investigation of Bienong Co, a moraine-dammed glacial lake on the southeastern Tibetan Plateau (SETP), to assess its potential hazards. The maximum lake depth is ~181 m, and the lake volume is ~102.3 × 106 m3. Bienong Co is the deepest known glacial lake with the same surface area on the Tibetan Plateau. Ice avalanches may produce glacial lake outburst floods that threaten the downstream area. This study could provide new insight into glacial lakes on the SETP.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Cited articles
Agisoft: Agisoft Metashape version 1.6.0, Agisoft [software], http://www.agisoft.com/downloads/installer/ (last access: 31 December 2019), 2019.
Anderson, S. P., Walder, J. S., Anderson, R. S., Kraal, E. R., Cunico, M., Fountain, A. G., and Trabant, D. C.: Integrated hydrologic and hydrochemical observations of Hidden Creek Lake jökulhlaups, Kennicott Glacier, Alaska, J. Geophys. Res.-Earth, 108, 6003, https://doi.org/10.1029/2002JF000004, 2003.
Arimitsu, M. L., Piatt, J. F., and Mueter, F.: Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords, Mar. Ecol. Prog. Ser., 560, 19–40, https://doi.org/10.3354/meps11888, 2016.
Benn, D. and Evans, D. J. A.: Glaciers and glaciation, 2nd edn., Routledge, ISBN 9780340905791, 2010.
Bien, J.: Alaskan Boundary Sheet #16, NOAA's Office of Coast Survey Historical Map & Chart Collection, https://historicalcharts.noaa.gov/ (last access: 16 August 2022), 1903.
Bigelow, D. G., Flowers, G. E., Schoof, C. G., Mingo, L. D. B., Young, E. M., and Connal, B. G.: The role of englacial hydrology in the filling and drainage of an ice-dammed lake, Kaskawulsh Glacier, Yukon, Canada, J. Geophys. Res.-Earth, 125, e2019JF005110, https://doi.org/10.1029/2019JF005110, 2020.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts of glacier outburst floods, Global Planet. Change, 144, 1–16, https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Carrivick, J. L., Tweed, F. S., Ng, F., Quincey, D. J., Mallalieu, J., Ingeman-Nielsen, T., Mikkelsen, A. B., Palmer, S. J., Yde, J. C., Homer, R., Russell, A. J., and Hubbard, A.: Ice-dammed lake drainage evolution at Russell Glacier, West Greenland, Front. Earth Sci., 5, 100, https://doi.org/10.3389/feart.2017.00100, 2017.
Chen, Y. and Medioni, G.: Object modelling by registration of multiple range images, Image Vision Comput., 10, 145–155, https://doi.org/10.1016/0262-8856(92)90066-C, 1992.
Clague, J. J. and O'Connor, J. E.: Chapter 14 – Glacier-related outburst floods, in: Snow and Ice-Related Hazards, Risks, and Disasters, 2nd edn., edited by: Haeberli, W. and Whiteman, C., Elsevier, 467–499, https://doi.org/10.1016/B978-0-12-817129-5.00019-6, 2021.
Clarke, G. K. C.: Glacier outburst floods from “Hazard Lake”, Yukon Territory, and the problem of flood magnitude prediction, J. Glaciol., 28, 3–21, https://doi.org/10.3189/S0022143000011746, 1982.
CloudCompare: Cloud-Compare version 2.12.3, CloudCompare [software], https://www.danielgm.net/cc/ (last access: 14 June 2022), 2022.
Dømgaard, M., Kjeldsen, K. K., Huiban, F., Carrivick, J. L., Khan, S. A., and Bjørk, A. A.: Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland, The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, 2023.
Evans, S. G. and Clague, J. J.: Recent climatic change and catastrophic geomorphic processes in mountain environments, in: Geomorphology and Natural Hazards, edited by: Morisawa, M., Elsevier, Amsterdam, 107–128, https://doi.org/10.1016/B978-0-444-82012-9.50012-8, 1994.
Geertsema, M. and Clague, J. J.: Jökulhlaups at Tulsequah Glacier, northwestern British Columbia, Canada, The Holocene, 15, 310–316, https://doi.org/10.1191/0959683605hl812rr, 2005.
Geertsema, M., Menounos, B., Bullard, G., Carrivick, J. L., Clague, J. J., Dai, C., Donati, D., Ekstrom, G., Jackson, J. M., Lynett, P., Pichierri, M., Pon, A., Shugar, D. H., Stead, D., Del Bel Belluz, J., Friele, P., Giesbrecht, I., Heathfield, D., Millard, T., Nasonova, S., Schaeffer, A. J., Ward, B. C., Blaney, D., Blaney, E., Brillon, C., Bunn, C., Floyd, W., Higman, B., Hughes, K. E., McInnes, W., Mukherjee, K., and Sharp, M. A.: The 28 November 2020 landslide, tsunami, and outburst flood – A hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada, Geophys. Res. Lett., 49, e2021GL096716, https://doi.org/10.1029/2021GL096716, 2022.
Google Earth Engine Data Catalog: https://developers.google.com/earth-engine/datasets/catalog/landsat, last access: 1 December 2023.
Grinsted, A., Hvidberg, C. S., Campos, N., and Dahl-Jensen, D.: Periodic outburst floods from an ice-dammed lake in East Greenland, Sci. Rep.-UK, 7, 9966, https://doi.org/10.1038/s41598-017-07960-9, 2017.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global Planet. Change, 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6, 1996.
Hata, S., Sugiyama, S., and Heki, K.: Abrupt drainage of Lago Greve, a large proglacial lake in Chilean Patagonia, observed by satellite in 2020, Commun. Earth Environ., 3, 190, https://doi.org/10.1038/s43247-022-00531-5, 2022.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High mountain areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157964.004, 2019.
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation models by means of robust statistical methods, ISPRS J. Photogramm., 64, 398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Huss, M., Bauder, A., Werder, M., Funk, M., and Hock, R.: Glacier-dammed lake outburst events of Gornersee, Switzerland, J. Glaciol., 53, 189–200, https://doi.org/10.3189/172756507782202784, 2007.
Jansson, P., Hock, R., and Schneider, T.: The concept of glacier storage: a review, J. Hydrol., 282, 116–129, https://doi.org/10.1016/S0022-1694(03)00258-0, 2003.
Jordan, G. F.: Redistribution of sediments in Alaskan bays and inlets, Geogr. Rev., 52, 548–558, https://doi.org/10.2307/212613, 1962.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kienholz, C., Pierce, J., Hood, E., Amundson, J. M., Wolken, G. J., Jacobs, A., Hart, S., Wikstrom Jones, K., Abdel-Fattah, D., Johnson, C., and Conaway, J. S.: Deglacierization of a marginal basin and implications for outburst floods, Mendenhall Glacier, Alaska, Front. Earth Sci., 8, 137, https://doi.org/10.3389/feart.2020.00137, 2020.
Kjeldsen, K. K., Khan, S. A., Bjørk, A. A., Nielsen, K., and Mouginot, J.: Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion, Geophys. Res. Lett., 44, 7320–7327, https://doi.org/10.1002/2017GL074081, 2017.
Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C., Dehecq, A., Florentine, C., and O'Neel, S.: Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis, Remote Sens. Environ., 285, 113379, https://doi.org/10.1016/j.rse.2022.113379, 2023.
Kochtitzky, W., Copland, L., Painter, M., and Dow, C.: Draining and filling of ice-dammed lakes at the terminus of surge-type Dań Zhùr (Donjek) Glacier, Yukon, Canada, Can. J. Earth Sci., 57, 1337–1348, https://doi.org/10.1139/cjes-2019-0233, 2020.
Lander, J. F.: Tsunamis affecting Alaska: 1737–1996, U. S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, 1996.
Larsen, C. F., Motyka, R. J., Arendt, A. A., Echelmeyer, K. A., and Geissler, P. E.: Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res.-Earth, 112, F01007, https://doi.org/10.1029/2006JF000586, 2007.
Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., and Kienholz, C.: Surface melt dominates Alaska glacier mass balance, Geophys. Res. Lett., 42, 5902–5908, https://doi.org/10.1002/2015GL064349, 2015.
Lemaire, E., Dufresne, A., Hamdi, P., Higman, B., Wolken, G. J., and Amann, F.: Back-analysis of the paraglacial slope failure at Grewingk Glacier and Lake, Alaska, Landslides, 21, 775–789, https://doi.org/10.1007/s10346-023-02177-6, 2024.
Liestøl, O.: Glacier dammed lakes in Norway, Norsk Geogr. Tidsskr., 15, 122–149, https://doi.org/10.1080/00291955608542772, 1956.
Lützow, N.: Extended data – Desolation Lake, Alaska, Zenodo [data set], https://doi.org/10.5281/zenodo.13683729, 2024.
Lützow, N. and Veh, G.: Glacier lake outburst flood database (4.0), http://glofs.geoecology.uni-potsdam.de/ (last access: 8 December 2024), 2024.
Mader, C. and Gittings, M.: Modeling the 1958 Lituya Bay mega-tsunami, II, Science of Tsunami Hazards, 20, 241–246, 2002.
Marcus, M. G.: Periodic drainage of glacier-dammed Tulsequah Lake, British Columbia, Geogr. Rev., 50, 89, https://doi.org/10.2307/212337, 1960.
Mathews, W. H.: Two self-dumping ice-dammed lakes in British Columbia, Geogr. Rev., 55, 46–52, https://doi.org/10.2307/212854, 1965.
Mathews, W. H. and Clague, J. J.: The record of jökulhlaups from Summit Lake, northwestern British Columbia, Can. J. Earth Sci., 30, 499–508, https://doi.org/10.1139/e93-039, 1993.
Mayer, C., Lambrecht, A., Hagg, W., Helm, A., and Scharrer, K.: Post-drainage ice dam response at Lake Merzbacher, Inylchek Glacier, Kyrgyzstan, Geogr. Ann. A, 90, 87–96, https://doi.org/10.1111/j.1468-0459.2008.00336.x, 2008.
Mernild, S. H., Holland, D. M., Holland, D., Rosing-Asvid, A., Yde, J. C., Liston, G. E., and Steffen, K.: Freshwater flux and spatiotemporal simulated runoff variability into Ilulissat Icefjord, West Greenland, linked to salinity and temperature observations near tidewater glacier margins obtained using instrumented ringed seals, J. Phys. Oceanogr., 45, 1426–1445, https://doi.org/10.1175/JPO-D-14-0217.1, 2015.
Miller, D. J.: Giant waves in Lituya Bay, Alaska, USGS Professional Paper, 51–86, https://doi.org/10.3133/pp354C, 1960.
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm, K., and Jakob, M.: Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality, Hydrol. Process., 23, 42–61, https://doi.org/10.1002/hyp.7162, 2008.
Motyka, R. J., O'Neel, S., Connor, C. L., and Echelmeyer, K. A.: Twentieth century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off, Global Planet. Change, 35, 93–112, https://doi.org/10.1016/S0921-8181(02)00138-8, 2003.
Motyka, R. J., Truffer, M., Kuriger, E. M., and Bucki, A. K.: Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA, Geophys. Res. Lett., 33, L24504, https://doi.org/10.1029/2006GL028467, 2006.
NASA its-live: https://its-live.jpl.nasa.gov/, last access: 1 June 2024.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Nye, J. F.: Water flow in glaciers: jökulhlaups, tunnels and veins, J. Glaciol., 17, 181–207, https://doi.org/10.3189/S002214300001354X, 1976.
OpenAltimetry Explorer: https://openaltimetry.earthdatacloud.nasa.gov/, last access: 11 November 2024.
Otto, J.-C.: Proglacial lakes in high mountain environments, in: Geomorphology of proglacial systems: Landform and sediment dynamics in recently deglaciated alpine landscapes, edited by: Heckmann, T. and Morche, D., Springer International Publishing, Cham, 231–247, https://doi.org/10.1007/978-3-319-94184-4_14, 2019.
Painter, M., Copland, L., Dow, C., Kochtitzky, W., and Medrzycka, D.: Patterns and mechanisms of repeat drainages of glacier-dammed Dań Zhùr (Donjek) Lake, Yukon, Arctic Science, 10, 583–595, https://doi.org/10.1139/as-2023-0001, 2024.
Planet Explorer: https://www.planet.com/products/explorer/, last access: 1 December 2023.
Porter, C., Howat, I., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: ArcticDEM – Strips, Version 4.1 (V1), https://doi.org/10.7910/DVN/C98DVS, 2022.
Post, A. and Mayo, L. R.: Glacier dammed lakes and outburst floods in Alaska, USGS Hydrologic Atlas, U.S. Geological Survey, 455, https://doi.org/10.3133/ha455, 1971.
QGIS: QGIS version 3.30.0, QGIS [software], https://qgis.org/download/ (last access: 4 March 2023), 2023.
Rabot, C.: Glacial reservoirs and their outbursts, Geogr. J., 25, 534–548, https://doi.org/10.2307/1776694, 1905.
R Project: R version 4.2.2, R Project [software], https://cran.r-project.org/src/base/R-4/ (last access: 31 October 2022), 2022.
RGI Consortium: Randolph glacier inventory version 6.0, http://www.glims.org/RGI/ (last access: 29 October 2022), 2017.
Rick, B., McGrath, D., Armstrong, W., and McCoy, S. W.: Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019, The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, 2022.
Rick, B., McGrath, D., McCoy, S. W., and Armstrong, W. H.: Unchanged frequency and decreasing magnitude of outbursts from ice-dammed lakes in Alaska, Nat. Commun., 14, 6138, https://doi.org/10.1038/s41467-023-41794-6, 2023.
Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C., and Williams, M.: A new cycle of jökulhlaups at Russell Glacier, Kangerlussuaq, West Greenland, J. Glaciol., 57, 238–246, https://doi.org/10.3189/002214311796405997, 2011.
Scherler, D., Wulf, H., and Gorelick, N.: Supraglacial debris cover (V.1.0), https://doi.org/10.5880/GFZ.3.3.2018.005, 2018.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R., Porter, C., and Morin, P.: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery, ISPRS J. Photogramm., 116, 101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and Osmanoglu, B.: A systematic, regional assessment of high mountain asia glacier mass balance, Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363, 2020.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change, 10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Sturm, M. and Benson, C. S.: A history of jökulhlaups from Strandline Lake, Alaska, U.S.A., J. Glaciol., 31, 272–280, https://doi.org/10.3189/S0022143000006602, 1985.
Thorarinsson, S.: Chapter IX. The ice dammed lakes of Iceland with particular reference to their values as indicators of glacier oscillations, Geogr. Ann., 21, 216–242, https://doi.org/10.1080/20014422.1939.11880679, 1939.
Thorarinsson, S.: Some new aspects of the Grímsvötn problem, J. Glaciol., 2, 267–275, https://doi.org/10.3189/S0022143000025454, 1953.
Tober, B. S., Holt, J. W., Christoffersen, M. S., Truffer, M., Larsen, C. F., Brinkerhoff, D. J., and Mooneyham, S. A.: Comprehensive radar mapping of Malaspina Glacier (Sít' Tlein), Alaska – The world's largest piedmont glacier – Reveals potential for instability, J. Geophys. Res.-Earth, 128, e2022JF006898, https://doi.org/10.1029/2022JF006898, 2023.
Trüssel, B. L., Motyka, R. J., Truffer, M., and Larsen, C. F.: Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA, J. Glaciol., 59, 149–161, https://doi.org/10.3189/2013J0G12J081, 2013.
Tweed, F. S.: Jökulhlaup initiation by ice-dam flotation: the significance of glacier debris content, Earth Surf. Proc. Land., 25, 105–108, https://doi.org/10.1002/(SICI)1096-9837(200001)25:1<105::AID-ESP73>3.0.CO;2-B, 2000.
Tweed, F. S. and Russell, A. J.: Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics, Progress in Physical Geography: Earth and Environment, 23, 79–110, https://doi.org/10.1177/030913339902300104, 1999.
U.S. Coast Survey: From Lituya Bay to Yakutat Bay, NOAA's Office of Coast Survey Historical Map & Chart Collection, https://historicalcharts.noaa.gov/ (last access: 16 August 2022), 1882.
U.S. Geological Survey: Mt. Fairweather, Alaska, Alaska topographic series, N5800-W13600/60X150, 1951.
U.S. Geological Survey: Mt. Fairweather, Alaska, Alaska topographic series, N5800-W13600/60X150, 1961.
USGS Earth Explorer: https://earthexplorer.usgs.gov/, last access: 1 December 2023.
Veh, G., Lützow, N., Tamm, J., Luna, L. V., Hugonnet, R., Vogel, K., Geertsema, M., Clague, J. J., and Korup, O.: Less extreme and earlier outbursts of ice-dammed lakes since 1900, Nature, 614, 701–707, https://doi.org/10.1038/s41586-022-05642-9, 2023.
Vilca, O., Mergili, M., Emmer, A., Frey, H., and Huggel, C.: The 2020 glacial lake outburst flood process chain at Lake Salkantaycocha (Cordillera Vilcabamba, Peru), Landslides, 18, 2211–2223, https://doi.org/10.1007/s10346-021-01670-0, 2021.
Walder, J. S. and Costa, J. E.: Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude, Earth Surf. Proc. Land., 21, 701–723, https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2, 1996.
Walder, J. S., Trabant, D. C., Cunico, M., Anderson, S. P., Anderson, R. S., Fountain, A. G., and Malm, A.: Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake, Ann. Glaciol., 40, 174–178, https://doi.org/10.3189/172756405781813456, 2005.
Ward, S. N. and Day, S.: The 1958 Lituya Bay landslide and tsunami – A tsunami ball approach, J. Earthq. Tsunami, 4, 285–319, https://doi.org/10.1142/S1793431110000893, 2010.
Wendler, G., Gordon, T., and Stuefer, M.: On the precipitation and precipitation change in Alaska, Atmosphere-Basel, 8, 253, https://doi.org/10.3390/atmos8120253, 2017.
Willis, I. and Bonvin, J.-M.: Climate change in mountain environments: Hydrological and water resource implications, Geography, 80, 247–261, 1995.
Yang, R., Hock, R., Kang, S., Shangguan, D., and Guo, W.: Glacier mass and area changes on the Kenai Peninsula, Alaska, 1986–2016, J. Glaciol., 66, 603–617, https://doi.org/10.1017/jog.2020.32, 2020.
Zhang, T., Wang, W., and An, B.: Heterogeneous changes in global glacial lakes under coupled climate warming and glacier thinning, Commun. Earth Environ., 5, 374, https://doi.org/10.1038/s43247-024-01544-y, 2024.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.: Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nat. Clim. Change, 11, 411–417, https://doi.org/10.1038/s41558-021-01028-3, 2021.
Zhou, Q.-Y., Park, J., and Koltun, V.: Open3D: A modern library for 3D data processing, arXiv [code], https://doi.org/10.48550/arXiv.1801.09847, 2018.
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some...