Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5277-2024
https://doi.org/10.5194/tc-18-5277-2024
Research article
 | 
19 Nov 2024
Research article |  | 19 Nov 2024

Pan-Arctic sea ice concentration from SAR and passive microwave

Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner

Related authors

The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024,https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary

Cited articles

Allen, M. J., Dorr, F., Gallego, J. A., Martínez-Ferrer, L., Kalaitzis, F., Ramos-Pollan, R., and Jungbluth, A.: Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data, in: NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, https://www.climatechange.ai/papers/neurips2023/76 (last access: 8 November 2024), 2023. a, b
Allen-Zhu, Z. and Li, Y.: Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning, arXiv [preprint], https://doi.org/10.48550/arXiv.2012.09816, 2020. a
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res.-Oceans, 112, C08004, https://doi.org/10.1029/2006JC003543, 2007. a
Asadi, N., Scott, K. A., Komarov, A. S., Buehner, M., and Clausi, D. A.: Evaluation of a Neural Network With Uncertainty for Detection of Ice and Water in SAR Imagery, IEEE T. Geosci. Remote, 59, 247–259, https://doi.org/10.1109/TGRS.2020.2992454, 2021. a
Baordo, F., Vargas, L., and Howe, E.: Algorithm Theoretical Basis Document for Global Sea Ice Concentration Level 2 and Level 3 (OSI-410-a, OSI-401-d, OSI-408-a), https://osisaf-hl.met.no/sites/osisaf-hl/files/baseline_document/osisaf_atbd_ice-conc_l2-3_v1p3.pdf (last access: 8 November 2024), 2023. a
Download
Short summary
Here, we present ASIP: a new and comprehensive deep-learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from satellite-based active and passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and well-established passive-microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.