Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2847-2024
https://doi.org/10.5194/tc-18-2847-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Quantifying frost-weathering-induced damage in alpine rocks

Till Mayer, Maxim Deprez, Laurenz Schröer, Veerle Cnudde, and Daniel Draebing

Data sets

Micro Computational Tomography, Acoustic Emission and rock temperature data from frost weathering tests on Dachstein Limestone Till Mayer et al. https://doi.org/10.24416/UU01-OLMSN0

Model code and software

Code for frost cracking modelling Till Mayer https://doi.org/10.5281/zenodo.11574002

Download
Short summary
Frost weathering drives rockfall and shapes the evolution of alpine landscapes. We employed a novel combination of investigation techniques to assess the influence of different climatic conditions on high-alpine rock faces. Our results imply that rock walls exposed to freeze–thaw conditions, which are likely to occur at lower elevations, will weather more rapidly than rock walls exposed to sustained freezing conditions due to winter snow cover or permafrost at higher elevations.