Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-2531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Roger J. Michaelides
Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
Julie Z. Miller
Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Related authors
Kristian Chan, Cyril Grima, Anja Rutishauser, Duncan A. Young, Riley Culberg, and Donald D. Blankenship
The Cryosphere, 17, 1839–1852, https://doi.org/10.5194/tc-17-1839-2023, https://doi.org/10.5194/tc-17-1839-2023, 2023
Short summary
Short summary
Climate warming has led to more surface meltwater produced on glaciers that can refreeze in firn to form ice layers. Our work evaluates the use of dual-frequency ice-penetrating radar to characterize these ice layers on the Devon Ice Cap. Results indicate that they are meters thick and widespread, and thus capable of supporting lateral meltwater runoff from the top of ice layers. We find that some of this meltwater runoff could be routed through supraglacial rivers in the ablation zone.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025, https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
Short summary
We measure shoreline change across a 7 km stretch of coastline on the Alaskan Beaufort Sea coast between 2019 and 2022 using multispectral imagery from Planet and satellite altimetry from ICESat-2. We find that shoreline change rates are high and variable and that different shoreline types show distinct patterns of change in shoreline position and topography. We discuss how the observed changes may be driven by both time-varying ocean and air conditions and spatial variations in morphology.
Haokui Xu, Leung Tsang, Julie Miller, Brooke Medley, and Jeol Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2395, https://doi.org/10.5194/egusphere-2024-2395, 2025
Short summary
Short summary
This paper provides a physical model to analyze the brightness temperature time series over the firn aquifer in Greenland and Antarctica. The model can match the V and H SMAP brightness temperature time series well. This model provides a potential to study the aquifer liquid water content with radiometry.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Kristian Chan, Cyril Grima, Anja Rutishauser, Duncan A. Young, Riley Culberg, and Donald D. Blankenship
The Cryosphere, 17, 1839–1852, https://doi.org/10.5194/tc-17-1839-2023, https://doi.org/10.5194/tc-17-1839-2023, 2023
Short summary
Short summary
Climate warming has led to more surface meltwater produced on glaciers that can refreeze in firn to form ice layers. Our work evaluates the use of dual-frequency ice-penetrating radar to characterize these ice layers on the Devon Ice Cap. Results indicate that they are meters thick and widespread, and thus capable of supporting lateral meltwater runoff from the top of ice layers. We find that some of this meltwater runoff could be routed through supraglacial rivers in the ablation zone.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Seyedmohammad Mousavi, Andreas Colliander, Julie Z. Miller, and John S. Kimball
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-297, https://doi.org/10.5194/tc-2020-297, 2020
Manuscript not accepted for further review
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Cited articles
Ashcraft, I. and Long, D.: Observation and Characterization of Radar Backscatter over Greenland, IEEE T. Geosci. Remote, 43, 225–237, https://doi.org/10.1109/TGRS.2004.841484, 2005. a
Ashcraft, I. S. and Long, D. G.: Comparison of Methods for Melt Detection over Greenland Using Active and Passive Microwave Measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. a
Bader, H.: Sorge's Law of Densification of Snow on High Polar Glaciers, J. Glaciol., 2, 319–323, https://doi.org/10.3189/S0022143000025144, 1954. a
Barzycka, B., Błaszczyk, M., Grabiec, M., and Jania, J.: Glacier Facies of Vestfonna (Svalbard) Based on SAR Images and GPR Measurements, Remote Sens. Environ., 221, 373–385, https://doi.org/10.1016/j.rse.2018.11.020, 2019. a, b, c, d
Baumgartner, F., Jezek, K. C., Forster, R. R., Gogineni, S. P., and Zabel, I. H. H.: Spectral and Angular Ground-Based Radar Backscatter Measurements of Greenland Snow Facies, in: 1999 IGARSS, Hamburg, Germany, 28 June–2 July 1999, Congress Centrum Hamburg, Hamburg, Germany, 614, https://doi.org/10.1109/IGARSS.1999.774530, pp. 1053–1055, 1999. a
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., and Hanssen, R. F.: ESA's sentinel missions in support of Earth system science, Remote Sens. Environ., 120, 84–90, 2012. a
Box, J. E., Wehrlé, A., van As, D., Fausto, R. S., Kjeldsen, K. K., Dachauer, A., Ahlstrøm, A. P., and Picard, G.: Greenland Ice Sheet Rainfall, Heat and Albedo Feedback Impacts From the Mid-August 2021 Atmospheric River, Geophys. Res. Lett., 49, e2021GL097356, https://doi.org/10.1029/2021GL097356, 2022. a
Box, J. E., Nielsen, K. P., Yang, X., Niwano, M., Wehrlé, A., van As, D., Fettweis, X., Køltzow, M. A. Ø., Palmason, B., Fausto, R. S., van den Broeke, M. R., Huai, B., Ahlstrøm, A. P., Langley, K., Dachauer, A., and Noël, B.: Greenland Ice Sheet Rainfall Climatology, Extremes and Atmospheric River Rapids, Meteorol. Appl., 30, e2134, https://doi.org/10.1002/met.2134, 2023. a, b
Brangers, I.: Firn aquifer map 1 kilometer (km) based on Sentinel-1 data, Greenland, 2014–2019, Arctic Data Center [data set], https://doi.org/10.18739/A2HD7NS8N, 2020. a
Brils, M., Kuipers Munneke, P., van de Berg, W. J., and van den Broeke, M.: Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G, Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, 2022. a
Brils, M., Munneke, P. K., Jullien, N., Tedstone, A. J., Machguth, H., van de Berg, W. J., and van den Broeke, M. R.: Climatic Drivers of Ice Slabs and Firn Aquifers in Greenland, Geophys. Res. Lett., 51, e2023GL106613, https://doi.org/10.1029/2023GL106613, 2024. a, b, c
Culberg, R., Schroeder, D. M., and Chu, W.: Extreme Melt Season Ice Layers Reduce Firn Permeability across Greenland, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-22656-5, 2021. a, b
Culberg, R., Chu, W., and Schroeder, D. M.: Shallow Fracture Buffers High Elevation Runoff in Northwest Greenland, Geophys. Res. Lett., 49, e2022GL101151, https://doi.org/10.1029/2022GL101151, 2022. a, b
Culberg, R., Michaelides, R., and Miller, J. Z.: Supporting Data – Sentinel-1 Detection of Ice Slabs on the Greenland Ice Sheet (1.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.10892397, 2024. a
Dunmire, D., Banwell, A. F., Wever, N., Lenaerts, J. T. M., and Datta, R. T.: Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet, The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, 2021. a
Enderlin, E., Howat, I., Jeong, S., Noh, M.-J., van Angelen, J. H., and van de Broeke, M. R.: An Improved Mass Budget for the Greenland Ice Sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
European Space Agency: Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling, Google Earth Engine [data set], https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (last access: 8 November 2023), 2023, updated constantly. a
Fahnestock, M. A., Bindschadler, R., Kwok, R., and Jezek, K.: Greenland Ice Sheet Surface Properties and Ice Dynamics from ERS-1 SAR Imagery, Science, 262, 1530–1534, 1993. a
Fischer, G., Jäger, M., Papathanassiou, K. P., and Hajnsek, I.: Modeling the Vertical Backscattering Distribution in the Percolation Zone of the Greenland Ice Sheet With SAR Tomography, IEEE J. Sel. Top. Appl., 12, 4389–4405, https://doi.org/10.1109/JSTARS.2019.2951026, 2019. a
Forster, R. R., Box, J. E., Van Den Broeke, M. R., Miège, C., Burgess, E. W., Van Angelen, J. H., Lenaerts, J. T., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Leuschen, C., and McConnell, J. R.: Extensive Liquid Meltwater Storage in Firn within the Greenland Ice Sheet, Nat. Geosci., 7, 95–98, https://doi.org/10.1038/ngeo2043, 2014. a
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis, in: Intergovernmental Panel on Climate Change Sixth Assessment Report, chap. Chapter 9, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.011.1212, pp. 1211–1362, 2021. a, b
Gerrish, L.: The Coastline of Kalaallit Nunaat/Greenland Available as a Shapefile and Geopackage, Covering the Main Land and Islands, with Glacier Fronts Updated as of 2017, UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation [data set], https://doi.org/10.5285/8cecde06-8474-4b58-a9cb-b820fa4c9429, 2020. a, b, c, d, e, f
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale Geospatial Analysis for Everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.: Greenland Ice-Sheet Contribution to Sea-Level Rise Buffered by Meltwater Storage in Firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566, 2012. a
Harper, J., Saito, J., and Humphrey, N.: Cold Season Rain Event Has Impact on Greenland's Firn Layer Comparable to Entire Summer Melt Season, Geophys. Res. Lett., 50, e2023GL103654, https://doi.org/10.1029/2023GL103654, 2023. a
Herron, M. M. and Langway, C. C.: Firn Densification: An Empirical Model, J. Glaciol., 25, 373–385, https://doi.org/10.3189/s0022143000015239, 1980. a
Hicks, B. R. and Long, D. G.: Inferring Greenland Melt and Refreeze Severity from SeaWinds Scatterometer Data, Int. J. Remote Sens., 32, 8053–8080, https://doi.org/10.1080/01431161.2010.532174, 2011. a
Hoen, W.: A Correlation-Based Approach to Modeling Interferometric Radar Observations of the Greenland Ice Sheet, Doctoral, Stanford University, Stanford, California, USA, 2001. a
Hu, J., Zhang, T., Zhou, X., Jiang, L., Yi, G., Wen, B., and Chen, Y.: Extracting Time-Series of Wet-Snow Facies in Greenland Using Sentinel-1 SAR Data on Google Earth Engine, IEEE J. Sel. Top. Appl., 15, 6190–6196, https://doi.org/10.1109/JSTARS.2022.3192409, 2022. a, b, c
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal Tracking of Meltwater Retention in Greenland's Accumulation Area, J. Geophys. Res.-Earth, 117, 1–11, https://doi.org/10.1029/2011JF002083, 2012. a
Jezek, K. C., Drinkwater, M. R., Crawford, J. P., Bindschadler, R., and Kwok, R.: Analysis of Synthetic Aperture Radar Data Collected over the Southwestern Greenland Ice Sheet, J. Glaciol., 39, 119–132, https://doi.org/10.3189/S002214300001577X, 1993. a
Jezek, K. C., Gogineni, P., and Shanableh, M.: Radar Measurements of Melt Zones on the Greenland Ice Sheet, Geophys. Res. Lett., 21, 33–36, https://doi.org/10.1029/93GL03377, 1994. a, b
Koenig, L. S., Lampkin, D. J., Montgomery, L. N., Hamilton, S. L., Turrin, J. B., Joseph, C. A., Moutsafa, S. E., Panzer, B., Casey, K. A., Paden, J. D., Leuschen, C., and Gogineni, P.: Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet, The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, 2015. a
Langley, K., Hamran, S. E., Høgda, K. A., Storvold, R., Brandt, O., Hagen, J. O., and Kohler, J.: Use of C-band Ground Penetrating Radar to Determine Backscatter Sources within Glaciers, IEEE T. Geosci. Remote, 45, 1236–1245, https://doi.org/10.1109/TGRS.2007.892600, 2007. a, b, c
Langley, K., Hamran, S.-E., Hogda, K. A., Storvold, R., Brandt, O., Kohler, J., and Hagen, J. O.: From Glacier Facies to SAR Backscatter Zones via GPR, IEEE T. Geosci. Remote, 46, 2506–2516, https://doi.org/10.1109/TGRS.2008.918648, 2008. a, b
Langley, K., Lacroix, P., Hamran, S. E., and Brandt, O.: Sources of Backscatter at 5.3 GHz from a Superimposed Ice and Firn Area Revealed by Multi-Frequency GPR and Cores, J. Glaciol., 55, 373–383, https://doi.org/10.3189/002214309788608660, 2009. a, b, c, d
Li, G., Chen, X., Lin, H., Hooper, A., Chen, Z., and Cheng, X.: Glacier Melt Detection at Different Sites of Greenland Ice Sheet Using Dual-Polarized Sentinel-1 Images, Geo-spatial Information Science, 0, 1–16, https://doi.org/10.1080/10095020.2023.2252034, 2023. a
Liang, D., Guo, H., Zhang, L., Cheng, Y., Zhu, Q., and Liu, X.: Time-Series Snowmelt Detection over the Antarctic Using Sentinel-1 SAR Images on Google Earth Engine, Remote Sens. Environ., 256, 112318, https://doi.org/10.1016/j.rse.2021.112318, 2021. a
Lindsley, R. D. and Long, D. G.: ASCAT and QuikSCAT Azimuth Modulation of Backscatter Over East Antarctica, IEEE Geosci. Remote S., 13, 1134–1138, https://doi.org/10.1109/LGRS.2016.2572101, 2016. a
Long, D. G. and Drinkwater, M. R.: Greenland Ice-Sheet Surface Properties Observed by the Seasat-A Scatterometer at Enhanced Resolution, J. Glaciol., 40, 213–230, https://doi.org/10.3189/S0022143000007310, 1994. a, b
Long, D. G. and Miller, J. Z.: Validation of the Effective Resolution of SMAP Enhanced Resolution Backscatter Products, IEEE J. Sel. Top. Appl., 16, 3390–3404, https://doi.org/10.1109/JSTARS.2023.3260726, 2023. a
MacFerrin, M. J., Machguth, H., van As, D., Charalampidis, C., Stevens, C. M., Heilig, A., Vandecrux, B., Langen, P. L., Mottram, R. H., Fettweis, X., van den Broeke, M. R., Pfeffer, W. T., Moussavi, M., and Abdalati, W.: Rapid Expansion of Greenland's Low-Permeability Ice Slabs, Nature, 573, 403–407, https://doi.org/10.1038/s41586-019-1550-3, 2019. a, b, c, d, e, f, g, h
Machguth, H., Macferrin, M., Van As, D., Box, J. E., Charalampidis, C., Colgan, W., Fausto, R. S., Meijer, H. A., Mosley-Thompson, E., and Van De Wal, R. S.: Greenland Meltwater Storage in Firn Limited by Near-Surface Ice Formation, Nat. Clim. Change, 6, 390–393, https://doi.org/10.1038/nclimate2899, 2016. a, b, c, d
Marsh, P. and Woo, M.-K.: Wetting Front Advance and Freezing of Meltwater within a Snow Cover: 1. Observations in the Canadian Arctic, Water Resour. Res., 20, 1853–1864, https://doi.org/10.1029/WR020i012p01853, 1984. a
Miller, J. Z.: SMAP-derived Perennial Firn Aquifer and Ice Slab Extents 2015-2019, Zenodo [data set], https://doi.org/10.5281/zenodo.8380493, 2021. a, b
Miller, J. Z., Culberg, R., Long, D. G., Shuman, C. A., Schroeder, D. M., and Brodzik, M. J.: An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry, The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, 2022a. a, b, c, d, e, f, g
Miller, J. Z., Long, D. G., Shuman, C. A., Culberg, R., Hardman, M. A., and Brodzik, M. J.: Mapping Firn Saturation Over Greenland Using NASA's Soil Moisture Active Passive Satellite, IEEE J. Sel. Top. Appl., 15, 3714–3729, https://doi.org/10.1109/JSTARS.2022.3154968, 2022b. a, b
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauche, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millian, R., Mayer, L., Mouginto, J., Noel, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., Zinglersen, K. B., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017 (data available at: https://sites.ps.uci.edu/morlighem/dataproducts/bedmachine-greenland/, last access: 8 November 2023). a, b, c, d, e, f, g
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-Six Years of Greenland Ice Sheet Mass Balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a
Munneke, P. K., M. Ligtenberg, S. R., van den Broeke, M. R., van Angelen, J. H., and Forster, R. R.: Explaining the Presence of Perennial Liquid Water Bodies in the Firn of the Greenland Ice Sheet, Geophys. Res. Lett., 41, 476–483, https://doi.org/10.1002/2013GL058389, 2014. a
Nagler, T. and Rott, H.: Retrieval of Wet Snow by Means of Multitemporal SAR Data, IEEE T. Geosci. Remote, 38, 754–765, https://doi.org/10.1109/36.842004, 2000. a
Noël, B., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.: Rapid Ablation Zone Expansion Amplifies North Greenland Mass Loss, Science Advances, 5, 2–11, https://doi.org/10.1126/sciadv.aaw0123, 2019. a
Paden, J., Li, J., Rodriguez-Morales, F., and Hale, R.: IceBridge MCoRDS Radar L1B Geolocated Radar Echo Strength Profiles, Version 2 [2015_Greenland_C130], National Snow and Ice Data Center [data set], https://doi.org/10.5067/90S1XZRBAX5N, 2014a. a, b
Paden, J., Li, J., Rodriguez-Morales, F., and Hale, R.: IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles, Version 2 [2017_Greenland_P3], National Snow and Ice Data Center [data set], https://doi.org/10.5067/0ZY1XYHNIQNY, 2014b. a, b
Partington, K. C.: Discrimination of Glacier Facies Using Multi-Temporal SAR Data, J. Glaciol., 44, 42–53, https://doi.org/10.3189/S0022143000002331, 1998. a
Pfeffer, W. T. and Humphrey, N. F.: Formation of Ice Layers by Infiltration and Refreezing of Meltwater, Ann. Glaciol., 26, 83–91, https://doi.org/10.3189/1998aog26-1-83-91, 1998. a
Porter, C., Morin, P., Howat, I., Noh, M., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a, b, c, d
Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration Depth of Interferometric Synthetic-Aperture Radar Signals in Snow and Ice, Geophys. Res. Lett., 28, 3501–3504, https://doi.org/10.1029/2000GL012484, 2001. a
Rignot, E. J., Ostro, S. J., van Zyl, J. J., and Jezek, K. C.: Unusual Radar Echoes from the Greenland Ice Sheet, Science, 261, 1710–1713, https://doi.org/10.1126/science.261.5129.1710, 1993. a
Rizzoli, P., Martone, M., Rott, H., and Moreira, A.: Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data, Remote Sens.-Basel, 9, 315, https://doi.org/10.3390/rs9040315, 2017. a
Ryan, J. C., Smith, L. C., Van As, D., Cooley, S. W., Cooper, M. G., Pitcher, L. H., and Hubbard, A.: Greenland Ice Sheet Surface Melt Amplified by Snowline Migration and Bare Ice Exposure, Science Advances, 5, 1–11, https://doi.org/10.1126/sciadv.aav3738, 2019. a, b, c, d
Swift, C. T., Hayes, P. S., Herd, J. S., Jones, W. L., and Delnore, V. E.: Airborne Microwave Measurements of the Southern Greenland Ice Sheet, J. Geophys. Res.-Sol. Ea., 90, 1983–1994, https://doi.org/10.1029/JB090iB02p01983, 1985. a
Tedesco, M. and Fettweis, X.: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet, The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, 2020. a
Tedstone, A.: Increasing Surface Runoff from Greenland's Firn Areas, Zenodo [data set], https://doi.org/10.5281/zenodo.6472348, 2022. a, b, c
Tedstone, A. J. and Machguth, H.: Increasing Surface Runoff from Greenland's Firn Areas, Nat. Clim. Change, 12, 672–676, https://doi.org/10.1038/s41558-022-01371-z, 2022. a, b, c, d
Ulaby, F. T. and Long, D. G.: Microwave Radar and Radiometric Remote Sensing, The University of Michigan Press, Ann Arbor, MI, ISBN-13 978-0472119356, 2014. a
Van Den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., Van Berg, W. J. D., Van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning Recent Greenland Mass Loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009. a
Vollrath, A., Mullissa, A., and Reiche, J.: Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine, Remote Sens., 12, 1867, https://doi.org/10.3390/rs12111867, 2020. a
Wismann, V.: Monitoring of Seasonal Snowmelt on Greenland with ERS Scatterometer Data, IEEE T. Geosci. Remote, 38, 1821–1826, https://doi.org/10.1109/36.851766, 2000. a
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and change in extent over time. We present a new method for detecting ice slabs in satellite radar data, which we use to map ice slabs at 500 m resolution across the entire ice sheet in winter 2016–2017. Our results provide better spatial coverage and resolution than previous maps from airborne radar and lay the groundwork for long-term monitoring of ice slabs from space.
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to...