Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-591-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-591-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lake volume and potential hazards of moraine-dammed glacial lakes – a case study of Bienong Co, southeastern Tibetan Plateau
Hongyu Duan
College of Geography and Environment Science, Northwest Normal
University, Lanzhou, 730070, China
Xiaojun Yao
CORRESPONDING AUTHOR
College of Geography and Environment Science, Northwest Normal
University, Lanzhou, 730070, China
Yuan Zhang
College of Geography and Environment Science, Northwest Normal
University, Lanzhou, 730070, China
Huian Jin
Gansu Forestry Polytechnic, Tianshui, 741020, China
Qi Wang
China Renewable Energy Engineering Institute, Power China, Beijing, 100038, China
Zhishui Du
Northwest Engineering Corporation Limited, Power China, Xi'an, 710065,
China
Jiayu Hu
College of Geography and Environment Science, Northwest Normal
University, Lanzhou, 730070, China
Bin Wang
Xinjiang Transport Planning Survey and Design Institute Company
Limited, Urumqi, 830006, China
Qianxun Wang
Capital Urban Planning and Design Consulting Development Company
Limited, Beijing, 100038, China
Related authors
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022, https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Short summary
The available remote-sensing data are increasingly abundant, and the efficient and rapid acquisition of glacier boundaries based on these data is currently a frontier issue in glacier research. In this study, we designed a complete solution to automatically extract glacier outlines from the high-resolution images. Compared with other methods, our method achieves the best performance for glacier boundary extraction in parts of the Tanggula Mountains, Kunlun Mountains and Qilian Mountains.
Meiping Sun, Sugang Zhou, Xiaojun Yao, Hongyu Duan, and Yuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-765, https://doi.org/10.5194/egusphere-2022-765, 2022
Preprint withdrawn
Short summary
Short summary
For understanding the occurrence mechanism of surging glaciers in High Mountain Asia, it is essential to ascertain their amounts, distribution and periodicity. Based on images from Landsat satellite from 1986–2021, we identified 244 surging glaciers with high confidence and 2802 events of glacier surge. We also analyzed the periodicity of 36 glaciers which experienced two or more surges. The findings will benefit to enrich dataset and provide basic information of surging glaciers in HMA.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Preprint under review for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022, https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Short summary
The available remote-sensing data are increasingly abundant, and the efficient and rapid acquisition of glacier boundaries based on these data is currently a frontier issue in glacier research. In this study, we designed a complete solution to automatically extract glacier outlines from the high-resolution images. Compared with other methods, our method achieves the best performance for glacier boundary extraction in parts of the Tanggula Mountains, Kunlun Mountains and Qilian Mountains.
Meiping Sun, Sugang Zhou, Xiaojun Yao, Hongyu Duan, and Yuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-765, https://doi.org/10.5194/egusphere-2022-765, 2022
Preprint withdrawn
Short summary
Short summary
For understanding the occurrence mechanism of surging glaciers in High Mountain Asia, it is essential to ascertain their amounts, distribution and periodicity. Based on images from Landsat satellite from 1986–2021, we identified 244 surging glaciers with high confidence and 2802 events of glacier surge. We also analyzed the periodicity of 36 glaciers which experienced two or more surges. The findings will benefit to enrich dataset and provide basic information of surging glaciers in HMA.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Related subject area
Discipline: Glaciers | Subject: Natural Hazards
Predicting the Risk of Glacial Lake Outburst Floods in Karakorum
Brief communication: Rapid ∼ 335 × 106 m3 bed erosion after detachment of the Sedongpu Glacier (Tibet)
Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau
Controls of outbursts of moraine-dammed lakes in the greater Himalayan region
Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?
Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau
Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina
Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet
Nazir Ahmed Bazai, Paul A. Carling, Peng Cui, Wang Hao, Zhang Guotao, Liu Dingzhu, and Javed Hassan
EGUsphere, https://doi.org/10.5194/egusphere-2024-565, https://doi.org/10.5194/egusphere-2024-565, 2024
Short summary
Short summary
Research on ice-dammed glacier lake outburst floods (GLOFs) tackles the growing global threat. Identifying field-based key factors and promoting and establishing a 95 % accurate empirical model unveils the relationship between lake volume and glacier surge, which controls lake size and level. Critical findings, including GLOF likelihood, triggering depth, and risk zones, provide insights for global early warning systems, highlighting the need to address cryospheric risks and protect communities.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Cited articles
Bezak, N., Sodnik, J., and Mikoš, M.: Impact of a random sequence of
Debris flows on torrential fan formation, Geosciences, 9, 64,
https://doi.org/10.3390/geosciences9020064, 2019.
Bolch, T., Peters, J., Yegorov, A., Pradhan, B., Buchroithner, M., and
Blagoveshchensky, V.: Identification of potentially dangerous glacial lakes
in the northern Tien Shan, Nat. Hazards, 59, 1691–1714,
https://doi.org/10.1007/s11069-011-9860-2, 2011.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999,
2017.
Brunner, G. W.: HEC-RAS River Analysis System: User's Manual. US Army Corps
of Engineers, Institute for Water Resources, Hydrologic Engineering Center,
2002.
Byers, A. C., Rounce, D. R., and Shugar, D. H.: A rockfall-induced glacial
lake outburst flood, Upper Barun Valley, Nepal, Landslides, 16, 533–549,
https://doi.org/10.1007/s10346-018-1079-9, 2018.
Byers, A. C., Chand, M. B., and Lala, J.: Reconstructing the history of
glacial lake outburst floods (GLOF) in the Kanchenjunga conservation area,
east Nepal: an interdisciplinary approach, Sustainability, 12, 5407,
https://doi.org/10.3390/su12135407, 2020.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal
impacts of glacier outburst floods, Global. Planet. Change., 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Cesca, M. and D'Agostino, V.: Comparison between FLO-2D and RAMMS in
debris-flow modelling: a case study in the Dolomites, WIT Trans. Eng. Sci.,
60, 197–206, https://doi.org/10.2495/DEB080201, 2008.
Cheng, Z. L., Zhu, P., Dang, C., and Liu, J. J.: Hazards of debris flow due
to glacier lake outburst in Southeastern Tibet, J. Glaciol.
Geocryol., 30, 954–959,
2008.
Cheng, Z. L., Liu, J. J., and Liu, J. K.: Debris flow induced by
glacial-lake break in Southeast Tibet, Earth Sci. Front., 16,
207–214, https://doi.org/10.2495/DEB100091, 2009.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol.,
63, 1–14, 2010.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.:
Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya,
Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Coon, W. F.: Estimation of roughness coefficients for natural stream
channels with vegetated banks, United States Geological Survey water-supply
paper, 2441, 1998.
Cui, P., Ma, D. T., and Chen, N. S.: The initiation, motion and mitigation
of debris flow caused by glacial lake outburst, Quaternary Sci., 23,
621–628, https://doi.org/10.1016/S0955-2219(02)00073-0, 2003.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, https://doi.org/10.1038/s41561-018-0271-9,
2019.
Duan, H. Y., Yao, X. J., Zhang, D. H., Qi, M. M., and Liu, J.: Glacial lake
changes and identification of potentially dangerous glacial lakes in the
Yi'ong Zangbo River Basin, Water-Sui, 12, 538,
https://doi.org/10.3390/w12020538, 2020.
Emmer, A. and Cochachin, A.: The causes and mechanisms of moraine-dammed
lake failures in the Cordillera Blanca, North American Cordillera and
Himalaya, AUC. Geogr., 48, 5–15, https://doi.org/10.14712/23361980.2014.23,
2013.
Emmer, A. and Vilímek, V.: New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru, Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, 2014.
Emmer, A., Allen, S. K., Carey, M., Frey, H., Huggel, C., Korup, O., Mergili, M., Sattar, A., Veh, G., Chen, T. Y., Cook, S. J., Correas-Gonzalez, M., Das, S., Diaz Moreno, A., Drenkhan, F., Fischer, M., Immerzeel, W. W., Izagirre, E., Joshi, R. C., Kougkoulos, I., Kuyakanon Knapp, R., Li, D., Majeed, U., Matti, S., Moulton, H., Nick, F., Piroton, V., Rashid, I., Reza, M., Ribeiro de Figueiredo, A., Riveros, C., Shrestha, F., Shrestha, M., Steiner, J., Walker-Crawford, N., Wood, J. L., and Yde, J. C.: Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective, Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, 2022.
Evans, S. G.: The maximum discharge of outburst floods caused by the
breaching of man-made and natural dams, Can. Geotech. J., 24, 385–387,
https://doi.org/10.1139/t87-062, 1987.
Fujita, K., Sakai, A., Takenaka, S., Nuimura, T., Surazakov, A. B., Sawagaki, T., and Yamanokuchi, T.: Potential flood volume of Himalayan glacial lakes, Nat. Hazards Earth Syst. Sci., 13, 1827–1839, https://doi.org/10.5194/nhess-13-1827-2013, 2013.
Geological Survey of India: Geology environmental hazards and remedial
measures of the Lunana Area, Gasa Dzongkhang, Report of 1995 Indo-Bhutan
Expedition, Bhutan Unit, Geological Survey of India, Samtse, 1995.
Ghozlani, B., Zouhaier, H., and Khlifa, M.: Numerical study of sur- face
water waves generated by mass movement, Fluid Dyn. Res., 45, 055506,
https://doi.org/10.1088/0169-5983/45/5/055506, 2013.
Gong, P., Liu, H., Zhang, M. N., Li, C. C., Wang, J., Huang, H. B., Clinton, N., Ji, L. Y., Li, W. Y., Bai, Y. Q., Chen, B., Xu, B., Zhu, Z. L., Yuan, C., Suen, H. P., Guo, L., Xu, N., Li, W. J., Zhao, Y. Y., Yang, J., Yu, C. Q., Wang, X., Fu, H. H., Yu, L., Dronova, I., Hui, F. M., Cheng, X., Shi, X. L., Xiao, F. J., Liu, Q. F., and Song, L. C.: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017, Sci. Bull., 64, 370–373, https://doi.org/10.1016/j.scib.2019.03.002, 2019 (data available at: http://data.ess.tsinghua.edu.cn/fromglc10_2017v01.html, last access: 31 January 2023).
Haeberli, W., Kääb, A., Vonder Mühll, D., and Teysseire, P.:
Prevention of outburst floods from periglacial lakes at Grubengletscher,
Valais, Swiss Alps, J. Glaciol., 47, 111–122,
https://doi.org/10.3189/172756501781832575, 2001.
Haritashya, U. K., Kargel, J. S., Shugar, D. H., Leonard, G. J., Strattman,
K., Watson, C. S., Shean, D., Harrison, S., Mandli, K. T., and Regmi, D.:
Evolution and controls of large glacial lakes in the Nepal Himalaya, Remote Sens.-Basel, 10, 798, https://doi.org/10.3390/rs10050798, 2018.
Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., Emmer, A., Glasser, N., Haritashya, U. K., Klimeš, J., Reinhardt, L., Schaub, Y., Wiltshire, A., Regmi, D., and Vilímek, V.: Climate change and the global pattern of moraine-dammed glacial lake outburst floods, The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, 2018.
Heller, V. and Hager, W. H.: Impulse product parameter in landslide
generated impulse waves, J. Waterw. Port. Coast., 136, 145–155,
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010.
Huang, L., Zhu, L. P., Wang, J. B., Ju, J. T., Wang, Y., Zhang, J. F., and
Yang, R. M.: Glacial activity reflected in a continuous lacustrine record
since the early Holocene from the proglacial Laigu Lake on the southeastern
Tibetan Plateau, Palaeogeogr. Palaeocl., 456, 37–45,
https://doi.org/10.1016/j.palaeo.2016.05.019, 2016.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.:
Remote sensing based assessment of hazards from glacier lake outbursts: a
case study in the Swiss Alps, Can. Geotech. J., 39, 316–330,
https://doi.org/10.1139/t01-099, 2002.
Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.:
An assessment procedure for glacial hazards in the Swiss Alps, Can. Geotech.
J., 41, 1068–1083, https://doi.org/10.1139/t04-053, 2004.
International Centre for Integrated Mountain Development (ICIMOD): Glacial
lakes and glacial lake outburst floods in Nepal, ICIMOD, Kathmandu, 99,
2011.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324,
2012.
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, 2015.
Kafle, J., Pokhrel, P. R., Khattri, K. B., Kattel, P., Tuladhar, B. M., and
Pudasain, S. P.: Landslide-generated tsunami and particle transport in
mountain lakes and reservoirs, Ann. Glaciol., 57, 232–244, https://doi.org/10.3189/2016AoG71A034, 2016.
Ke, C. Q., Kou, C., Ludwig, R., and Qin, X.: Glacier velocity measurements
in the eastern Yigong Zangbo basin, Tibet, China, J. Glaciol., 59,
1060–1068, https://doi.org/10.3189/2013jog12j234, 2013.
Ke, C. Q., Han, Y. F., and Kou, C.: Glacier change in the Yigong Zangbu
Basin, Tibet, China (1988 to 2010), Dragon 3Mid Term Results, 724,
https://articles.adsabs.harvard.edu/pdf/2014ESASP.724E..16K (last access: 29 January 2023), 2014.
Khanal, N. R., Hu, J. M., and Mool, P.: Glacial lake outburst flood risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas, The International Mountain Society Department of Psychology, Indiana University, Bloomington, 4, 47405, https://doi.org/10.1659/MRD-JOURNAL-D-15-00009, 2015.
Lala, J. M., Rounce, D. R., and McKinney, D. C.: Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho's hazard, Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018, 2018.
Larrazabal, J. M. and Peñas, M. S.: Intelligent rudder control of an
unmanned surface vessel, Expert. Syst. Appl., 55, 106–117,
https://doi.org/10.1016/j.eswa.2016.01.057, 2016.
Li, D., Shangguan D. H., Wang, X. Y., Ding, Y. J., Su, P. C., Liu, R. L., and
Wang, M. X.: Expansion and hazard risk assessment of glacial lake Jialong Co
in the central Himalayas by using an unmanned surface vessel and remote
sensing, Sci. Total. Environ., 784, 147249,
https://doi.org/10.1016/j.scitotenv.2021.147249, 2021.
Li, J. J., Zheng, B. X., Yang, X. J., Xie, Y. Q., Zhang, L. Y., Ma, Z. H., Xu, S. Y., and Zhu, S. T. (Eds.): Glaciers in Tibet, Science Press, Beijing, China, 13–14 pp., ISBN 130313274, 1986.
LIGG/WECS/NEA: Report on first expedition to glaciers and glacier lakes in
the Pumqu (Arun) and Poiqu (Bhote-Sun Koshi) River Basins, Xizang (Tibet),
China, Sino-Nepalese Joint Investigation of Glacier Lake Outburst Flood in
Himalayas in 1987, 192, 1988.
Liu, J. K., Zhang, J. J., Gao, Bo., Li, Y. L., Li, M. Y., Wujin, D. J., and
Zhou, L. X.: An overview of glacial lake outburst flood in Tibet, China,
J. Glaciol. Geocryol., 41, 1335–1347,
https://doi.org/10.7522/j.issn.1000-0240.2019.0073, 2019.
Liu, J. K., Zhou, L. X., Zhang, J. J., and Zhao, W. Y.: Characteristics of
Jiwencuo GLOF, Lhari county, Tibet, Geol. Rev., 67, 17–18,
https://doi.org/10.16509/j.georeview.2021.s1.007, 2021.
Liu, S. Y., Pu, J. C., Deng, X. F., Su, Z., Zhao, J. D., and He, J. C.: Glaciers and Glacier Landscapes in China. Shanghai Popular Science Press, Shanghai, China, 38–41 pp., ISBN 9787542759924, 2014.
Liu, W. M., Lai, Z. P., Hu, K. H., Ge, Y. G, Cui, P., Zhang, X. G., and Liu,
F.: Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge
in the Tibetan Plateau, Geomorphology, 246, 370–376,
https://doi.org/10.1016/j.geomorph.2015.06.034, 2015.
Liu, Z. X., Zhang, Y. M., Yu, X., and Yuan, C.: Unmanned surface vehicles:
an overview of developments and challenges, Annu. Rev. Control., 41, 71–39,
https://doi.org/10.1016/j.arcontrol.2016.04.018, 2016.
Lliboutry, L.: Glaciological problems set by the control of dangerous lakes
in Cordillera Blanca, Peru, II. Movement of a covered glacier embedded
within a rock glacier, J. Glaciol., 18, 255–274,
https://doi.org/10.3189/S0022143000021341, 1977.
Lv, R. R., Tang, X. B., and Li, D. J.: Glacial lake outburst mudslide in
Tibet, Chengdu University of Science and Technology Press, Chengdu, 69–105,
1999.
Mckillop, R. J. and Clague, J.: Statistical, remote sensing-based approach
for estimating the probability of catastrophic drainage from moraine-dammed
lakes in southwestern British Columbia, Global Planet. Change, 56, 153–171,
https://doi.org/10.1016/J.GLOPLACHA.2006.07.004, 2007.
Mergili, M. and Pudasaini, S. P.: r.avaflow-The open source mass flow
simulation model, r.avaflow [code], https://www.avaflow.org/ (last access: 1 October 2021), 2020.
Mergili, M. and Schneider, J. F.: Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS, Nat. Hazards Earth Syst. Sci., 11, 1447–1462, https://doi.org/10.5194/nhess-11-1447-2011, 2011.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mikoš, M. and Bezak, N.: Debris flow modelling using RAMMS model in the
Alpine environment with focus on the model parameters and main
characteristics, Front. Earth Sci., 8, 605061,
https://doi.org/10.3389/feart.2020.605061, 2021.
Mool, P. K., Bajracharya, S. R., and Joshi, S. P.: Inventory of glaciers,
glacial lakes and glacial lake outburst floods, monitoring and early warning
systems in the Hindu Kush- Himalayan region: Nepal, ICIMOD & UNEP RRC-AP,
363, 2001.
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER DEM Product, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/ASTER/AST14DEM.003, 2001.
National Platform for Common Geospatial Information Services:
https://www.tianditu.gov.cn/, last access: 29 January 2023.
Neckel, N., Kropáček, J., Bolch, T., and Hochschild, V.: Glacier
mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser
altimetry measurements, Environ. Res. Lett., 9, 468–475,
https://doi.org/10.1088/1748-9326/9/1/014009, 2014.
Nie, Y., Liu, Q., Wang, J. D., Zhang, Y. L., Sheng, Y. W., and Liu, S. Y.:
An inventory of historical glacial lake outburst floods in the Himalayas
based on remote sensing observations and geo-morphological analysis,
Geomorphology, 308, 91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
O'Connor, J. E., Hardison, J. H., and Costa, J. E.: Debris flows from
failures of neoglacial-age moraine dams in the Three Sisters and Mount
Jefferson wilderness areas, Oregon, United States Geological Survey
Professional Paper, 1606, 11–40, https://doi.org/10.1007/BF01211117, 2001.
Osti, R. and Egashira, S.: Hydrodynamic characteristics of the Tam Pokhari
glacial lake outburst flood in the Mt. Everest region, Nepal, Hydrol.
Process., 23, 2943–2955, https://doi.org/10.1002/hyp.7405, 2009.
Prakash, C. and Nagarajan, R.: Outburst susceptibility assessment of
moraine-dammed lakes in Western Himalaya using an analytic hierarchy
process, Earth. Surf. Proc. Land., 42, 2306–2321,
https://doi.org/10.1002/esp.4185, 2017.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.,
117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Mergili, M.: A multi-phase mass flow model, J. Geophys.
Res.-Sol. Ea., 124, 2920–2942, https://doi.org/10.1029/2019jf005204, 2019.
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial Foundation, http://qgis.org (last access: 1 November 2017), 2016.
Qi, M. M., Liu, S. Y., Yao, X. J., Grünwald, R., and Liu, J.: Lake
inventory and potentially dangerous glacial lakes in the Nyang Qu Basin of
China between 1970 and 2016, J. Mt. Sci.-Engl., 17, 851–870,
https://doi.org/10.1007/s11629-019-5675-5, 2020.
Qi, M. M., Liu, S. Y., Wu, K. P., Zhu, Y., Xie, F. M., Jin, H. A., Gao, Y.
P., and Yao, X. J.: Improving the accuracy of glacial lake volume
estimation: a case study in the Poiqu basin, central Himalayas, J. Hydrol.,
610, 127973, https://doi.org/10.1016/j.jhydrol.2022.127973, 2022.
Qin, D. H., Dong, W. J., and Luo, Y.: Climate and environment change in
China, China Meteorological Press, Beijing, 116–121, 2012.
RAMMS: AVALANCHE User Manual, v1.70, Switzerland: ETH,
https://ramms.slf.ch/ramms/downloads/RAMMS_AVAL_Manual.pdf (last access: 29 January 2023), 2017.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the
Himalayas, Quatern. Int., 65, 31–47,
https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Risio, M., Girolamo, P. D., and Beltrami, G. M.: Forecasting landslide
generated Tsunamis: a review, the Tsunami threat-research and technology,
81–106, https://doi.org/10.5772/13767, 2011.
Rounce, D. R., McKinney, D. C., Lala, J. M., Byers, A. C., and Watson, C. S.: A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya, Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, 2016.
Sakai, A.: Glacial lakes in the Himalayas: a review on formation and
expansion processes, Global Environ. Res., 16, 23–30, 2012.
Sakai, A., Yamada, T., and Fujita, K.: Volume change of Imja Glacial Lake in
the Nepal Himalayas, International Symposium on Disaster Mitigation &
Basin Wide Water Management, 7–10 December 2003, Niigata, 556–561, 2003.
Sattar, A., Goswami, A., and Kulkarni, A. V.: Hydrodynamic moraine-breach
modeling and outburst flood routing – a hazard assessment of the South
Lhonak lake, Sikkim, Sci. Total. Environ., 668, 362–378,
https://doi.org/10.1016/j.scitotenv.2019.02.388, 2019.
Sattar, A., Haritashya, U. K., Kargel, J. S., Leonard, G. J., and Chase, D.
V.: Modeling lake outburst and downstream hazard assessment of the Lower
Barun Glacial Lake, Nepal Himalaya, J. Hydrol., 598, 126208,
https://doi.org/10.1016/j.jhydrol.2021.126208, 2021.
Schneider, D., Bartelt, P., Caplan-Auerbach, J., Christen, M., Huggel, C.,
and W. McArdell, B.: Insights into rock-ice avalanche dynamics by combined
analysis of seismic recordings and a numerical avalanche model, J. Geophys.
Res., 115, F04026, https://doi.org/10.1029/2010JF001734, 2010.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155, https://doi.org/10.5194/adgeo-35-145-2014, 2014.
Sharma, R. K., Pradhan, P., Sharma, N. P., and Shrestha, D. G.: Remote
sensing and in situ-based assessment of rapidly growing South Lhonak glacial
lake in eastern Himalaya, India, Nat. Hazards., 93, 393,
https://doi.org/10.1007/s11069-018-3348-2, 2018.
Shi, W. L., Yang, C. T., You, G. X., and Jin, M. X.: The measurement of
reserve of glacier block lake on the upper stream of Yerqiang river and the
calculation of its maximum flood, Arid Land Geography, 14, 31–35, 1991.
Shugar, D., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change.,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Singh, V. P.: Dam Breach Modelling Technology, Kluwer Academic Publishers,
Dordrecht, Boston, London, ISBN 978-94-015-8747-1, https://doi.org/10.1007/978-94-015-8747-1, 1996.
Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., Portocarrero, C., and McKinney, D. C.: Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru, Hydrol. Earth Syst. Sci., 20, 2519–2543, https://doi.org/10.5194/hess-20-2519-2016, 2016.
Song, C. Q., Sheng, Y. W., Ke, L. H., Nie, Y., and Wang, J. D.: Glacial lake
evolution in the southeastern Tibetan Plateau and the cause of rapid
expansion of proglacial lakes linked to glacial-hydrogeomorphic processes,
J. Hydrol., 540, 504–514, https://doi.org/10.1016/j.jhydrol.2016.06.054,
2016.
Specht, M., Specht, C., Lasota, H., and Cywiński, P.: Assessment of the
steering precision of a hydrographic unmanned surface vessel (USV) along
sounding profiles using a low-cost multi-global navigation satellite system
(GNSS) receiver supported autopilot, Sensors-Basel, 19, 3939,
https://doi.org/10.3390/s19183939, 2019.
Sun, M. P., Liu, S. Y., Yao, X. J., and Li, L.: The cause and potential
hazard of glacial lake outburst flood occurred on July 5, 2013 in Jiali
County, Tibet, J. Glaciol. Geocryol., 36, 158–165,
https://doi.org/10.7522/j.issn.1000-0240.2014.0020, 2014.
Thompson, S., Benn, D. I., Mertes, J., and Luckman, A.: Stagnation and mass
loss on a Himalayan debris-covered glacier: Processes, patterns and rates,
J. Glaciol., 62, 467–485, https://doi.org/10.1017/jog.2016.37, 2016.
United States Geological Survey: https://earthexplorer.usgs.gov/, last access: 29 January 2023.
Veh, G., Korup, O., Specht, S. V., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change., 9, 379–383, https://doi.org/10.1038/s41558-019-0437-5,
2019.
Vetsch, D., Siviglia, A., Bürgler, M., Caponi, F., Ehrbar, D., Facchini,
M., Faeh, R., Farshi, D., Gerber, M., Gerke, E., Kammerer, S., Koch, A.,
Mueller, R., Peter, S., Rousselot, P., Vanzo, D., Veprek, R., Volz, C.,
Vonwiller, L., and Weberndorfer, M.: System manuals of BASEMENT, Version
2.8.2 Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zurich,
http://www.basement.ethz.ch, last access: 3 October 2022.
Vilímek, V., Emmer, A., Huggel, C., Schaub, Y., and Würmli, S.:
Database of glacial lake outburst floods (GLOFs)-IPL project no. 179,
Landslides, 11, 161–165, https://doi.org/10.1007/s10346-013-0448-7, 2013.
Wang, S. J., Che, Y. J., and Ma, X. G.: Integrated risk assessment of
glacier lake outburst flood (GLOF) disaster over the Qinghai-Tibetan Plateau
(QTP), Landslides, 17, 2849–2863,
https://doi.org/10.1007/s10346-020-01443-1, 2020.
Wang, S. J., Yang, Y., Gong, W., Che, Y., Ma, X., and Xie, J.: Reason
analysis of the Jiwenco glacial lake outburst flood (GLOF) and potential
hazard on the Qinghai-Tibetan Plateau, Remote Sens.-Basel, 13, 3114,
https://doi.org/10.3390/rs13163114, 2021.
Wang, W. C., Yang, X. X., and Yao, T. D.: Evaluation of ASTER GDEM and SRTM
and their suitability in hydraulic modelling of a glacial lake outburst
flood in southeast Tibet, Hydrol. Process., 26, 213–225,
https://doi.org/10.1002/hyp.8127, 2011a.
Wang, W. C., Yao, T. D., Gao, Y., Yang, X. X., and Kattel, D. B.: A
first-order method to identify potentially dangerous glacial lakes in a
region of the southeastern Tibetan Plateau, Mt. Res. Dev., 31, 122–130,
https://doi.org/10.1659/MRD-JOURNAL-D-10-00059.1, 2011b.
Wang, W. C., Yao, T. D., Yang, W., Joswiak, D., and Zhu, M. L.: Methods for
assessing regional glacial lake variation and hazard in the southeastern
Tibetan Plateau: a case study from the Boshula mountain range, China,
Environ. Earth. Sci., 67, 1441–1450, https://doi.org/10.1007/s12665-012-1589-z, 2012.
Wang, W. C., Gao, Y., Anacona, P. I., Lei, Y. B., Xiang, Y., Zhang G. Q.,
Li, S. H., and Lu, A. X.: Integrated hazard assessment of Cirenmaco glacial
lake in Zhangzangbo valley, Central Himalayas, Geomorphology, 306, 292–305,
https://doi.org/10.1016/j.geomorph.2015.08.013, 2015.
Wang, X.: Methodology and application of moraine lake outburst hazard
evaluation in the Chinese Himalayas, Science Press, Beijing, edited by: Zhou, W.,
ISBN 978-7-03-042004-6, 2016.
Wang, X., Liu, S., Ding, Y., Guo, W., Jiang, Z., Lin, J., and Han, Y.: An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data, Nat. Hazards Earth Syst. Sci., 12, 3109–3122, https://doi.org/10.5194/nhess-12-3109-2012, 2012a.
Wang, X., Liu, S. Y., Guo, W. Q., Yao, X. J., Jiang, Z. L., and Han, Y. S.:
Using remote sensing data to quantify changes in glacial lakes in the
Chinese Himalaya, Mt. Res. Dev., 32, 203–212,
https://doi.org/10.1659/MRD-JOURNAL-D-11-00044.1, 2012b.
Wang, X., Chai, K. G., Liu, S. Y., Wei, J. F., Jiang, Z. L., and Liu, Q. H.:
Changes of glaciers and glacial lakes implying corridor-barrier effects and
climate change in the Hengduan Shan, southeastern Tibetan Plateau, J.
Glaciol., 63, 535–542, https://doi.org/10.1017/jog.2017.14, 2017.
Watson, C. S., Quincey, D. J., Carrivick, J. L., Smith, M. W., Rowan, A. V.,
and Richardson, R.: Heterogeneous water storage and thermal regime of
supraglacial ponds on debris covered glaciers, Earth. Surf. Proc. Land., 43,
229–241, https://doi.org/10.1002/esp.4236, 2018.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D.
J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed
glacial lakes, Earth-Sci. Rev., 134, 137–159,
https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Wong, M. and Parker, G.: Reanalysis and correction of bed-load relation of
meyer-peter and müller using their own database, J. Hydraul. Eng., 132, 1159–1168,
https://doi.org/10.1111/j.1600-0587.1978.tb00950.x, 2006.
Worni, R., Huggel, C., and Stoffel, M.: Glacial lakes in the Indian
Himalayas – from an area-wide glacial lake inventory to an on-site and
modeling based risk assessment of critical glacial lakes, Sci. Total
Environ., 468, S71–S84, https://doi.org/10.1016/j.scitotenv.2012.11.043,
2013.
Worni, R., Huggel, C., Clague, J. J., Schaub, Y., and Stoffel, M.: Coupling
glacial lake impact, dam breach, and flood processes: A modeling
perspective, Geomorphology, 224, 161–176,
https://doi.org/10.1016/j.geomorph.2014.06.031, 2014.
Yamada, T.: Glacier lake and its outburst flood in the Nepal Himalaya, Data
Center for Glacier Research, Japanese Society of Snow and Ice, 1, 96, 1998.
Yamada, T., Naito, N., Kohshima, S., Fushimi, H., Nakazawa, F., Segawa, T.,
Uetake, J., Suzuki, R., Sato, N., Karma, Chhetri, I. K., Gyenden, L.,
Yabuki, H., and Chikita, K.: Outline of 2002: research activity on glaciers
and glacier lakes in Lunana region, Bhutan Himalayas, Bull. Glaciol. Res.,
21, 79–90, 2004.
Yan, R. J., Pang, S., Sun, H. B., and Pang, Y. J.: Development and missions
of unmanned surface vehicle, J. Mar. Sci. Appl., 9, 451–457,
https://doi.org/10.1007/s11804-010-1033-2, 2010.
Yang, W., Yao, T. D., Xu, B. Q., Wu, G. J., Ma, L. L., and Xin, X. D.: Quick
ice mass loss and abrupt retreat of the maritime glaciers in the Kangri
Karpo Mountains, southeast Tibetan Plateau, Chin, Sci. Bull., 53,
2547–2551, https://doi.org/10.1007/s11434-008-0288-3, 2008.
Yao, X. J., Liu, S. Y., Sun, M. P., Wei, J. F., and Guo, W. Q.: Volume
calculation and analysis of the changes in moraine-dammed lakes in the north
Himalaya: a case study of Longbasaba lake, J. Glaciol., 58, 753–760,
https://doi.org/10.3189/2012JoG11J048, 2012.
Yao, X. J., Liu, S. Y., Sun, M. P., and Zhang, X. J.: Study on the glacial
lake outburst flood events in Tibet since the 20th century, J.
Nat. Resour., 8, 1377–1390,
https://doi.org/10.11849/zrzyxb.2014.08.010, 2014.
Yuan, G. and Zeng, Q.: Glacier-dammed Lake in Southeastern Tibetan Plateau
during the Last Glacial Maximum, J. Geol. Soc. India., 79, 295–301,
https://doi.org/10.1007/s12594-012-0041-z, 2012.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gartner-Roer, I., Thomson,
L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier
mass changes and their contributions to sea-level rise from 1961 to 2016,
Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhang, B., Liu, G. X., Zhang, R., Fu, Y., and Li, Z. L.: Monitoring dynamic
evolution of the glacial lakes by using time series of Sentinel-1A SAR
images, Remote Sens.-Basel, 13, 1313, https://doi.org/10.3390/rs13071313,
2021.
Zhang, D. H., Zhou, G., Li, W., Han, L., Zhang, S., Yao, X. J., and Duan, H.
Y.: A robust glacial lake outburst hazard assessment system validated by
GLOF event in 2020 in the Nidu Zangbo Basin, Tibetan Plateau, Catena, 220,
106734, https://doi.org/10.2139/ssrn.3962879, 2023.
Zhang, M., Chen, F., Tian, B., Liang, D., and Yang, A.: High-frequency glacial lake mapping using time series of Sentinel-1A/1B SAR imagery: An assessment for southeastern Tibetan Plateau, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2019-219, 2019.
Zhang, Y., Yao, X. J., Duan, H. Y., and Wang, Q.: Simulation of glacial lake
outburst flood in Southeastern Qinghai-Tibet plateau – a case study of Jiwen
Co Glacial Lake, Front. Earth Sci., 10, 1–13, https://doi.org/10.3389/feart.2022.819526, 2022.
Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment, The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, 2021.
Zhou, G. G. D., Zhou, M. J., Shrestha, M. S., Song, D. R., Choi, C. E., Cui,
K. F. E., Peng, M., Shi, Z. M., Zhu, X. H., and Chen, H. Y.: Experimental
investigation on the longitudinal evolution of landslide dam breaching and
outburst floods, Geomorphology, 334, 29–43,
https://doi.org/10.1016/j.geomorph.2019.02.035, 2019.
Zhou, L. X., Liu, J. K., and Li, Y. L.: Calculation method of mathematical
model of the moraine dammed lake storage capacity, Sci. Technol.
Eng., 20, 9804–9809, 2020.
Short summary
We conducted a comprehensive investigation of Bienong Co, a moraine-dammed glacial lake on the southeastern Tibetan Plateau (SETP), to assess its potential hazards. The maximum lake depth is ~181 m, and the lake volume is ~102.3 × 106 m3. Bienong Co is the deepest known glacial lake with the same surface area on the Tibetan Plateau. Ice avalanches may produce glacial lake outburst floods that threaten the downstream area. This study could provide new insight into glacial lakes on the SETP.
We conducted a comprehensive investigation of Bienong Co, a moraine-dammed glacial lake on the...