Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5391-2023
https://doi.org/10.5194/tc-17-5391-2023
Research article
 | 
19 Dec 2023
Research article |  | 19 Dec 2023

Surging of a Hudson Strait-scale ice stream: subglacial hydrology matters but the process details mostly do not

Matthew Drew and Lev Tarasov

Related authors

North American Pleistocene Glacial Erosion and Thin Pliocene Regolith Thickness Inferred from Data-Constrained Fully Coupled Ice-Climate-Sediment modelling
Matthew Drew and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-620,https://doi.org/10.5194/egusphere-2024-620, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
Joshua Cuzzone, Matias Romero, and Shaun A. Marcott
The Cryosphere, 18, 1381–1398, https://doi.org/10.5194/tc-18-1381-2024,https://doi.org/10.5194/tc-18-1381-2024, 2024
Short summary
Using specularity content to evaluate eight geothermal heat flow maps of Totten Glacier
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024,https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023,https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023,https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Biases in ice sheet models from missing noise-induced drift
Alexander Robel, Vincent Verjans, and Aminat Ambelorun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2546,https://doi.org/10.5194/egusphere-2023-2546, 2023
Short summary

Cited articles

Alley, R.: Water-Pressure Coupling of Sliding and Bed Deformation: I. Water System, J. Glaciol., 35, 108–118, https://doi.org/10.3189/002214389793701527, 1989. a
Alley, R. B.: How can low-pressure channels and deforming tills coexist subglacially?, J. Glaciol., 38, 200–207, https://doi.org/10.3189/s0022143000009734, 1992. a
Alley, R. B., Anandakrishnan, S., Bentley, C. R., and Lord, N.: A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica, Ann. Glaciol., 20, 187–194, https://doi.org/10.3189/1994aog20-1-187-194, 1994. a
Anandakrishnan, S. and Alley, R. B.: Stagnation of Ice Stream C, West Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268, https://doi.org/10.1029/96gl04016, 1997. a
Anderson, R. S., Hallet, B., Walder, J., and Aubry, B. F.: Observations in a cavity beneath grinnell glacier, Earth Surf. Proc. Land., 7, 63–70, https://doi.org/10.1002/esp.3290070108, 1982. a
Download
Short summary
The interaction of fast-flowing regions of continental ice sheets with their beds governs how quickly they slide and therefore flow. The coupling of fast ice to its bed is controlled by the pressure of meltwater at its base. It is currently poorly understood how the physical details of these hydrologic systems affect ice speedup. Using numerical models we find, surprisingly, that they largely do not, except for the duration of the surge. This suggests that cheap models are sufficient.