Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-499-2023
https://doi.org/10.5194/tc-17-499-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Predicting ocean-induced ice-shelf melt rates using deep learning

Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson

Model code and software

MELTNET model code Sebastian H. R. Rosier https://doi.org/10.5281/zenodo.7018247

GHilmarG/UaSource: Ua2019b (Version v2019b) G. Hilmar Gudmundsson https://doi.org/10.5281/zenodo.3706623

Download
Short summary
Future ice loss from Antarctica could raise sea levels by several metres, and key to this is the rate at which the ocean melts the ice sheet from below. Existing methods for modelling this process are either computationally expensive or very simplified. We present a new approach using machine learning to mimic the melt rates calculated by an ocean model but in a fraction of the time. This approach may provide a powerful alternative to existing methods, without compromising on accuracy or speed.