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Abstract. Through their role in buttressing upstream ice
flow, Antarctic ice shelves play an important part in regulat-
ing future sea-level change. Reduction in ice-shelf buttress-
ing caused by increased ocean-induced melt along their un-
dersides is now understood to be one of the key drivers of ice
loss from the Antarctic ice sheet. However, despite the im-
portance of this forcing mechanism, most ice-sheet simula-
tions currently rely on simple melt parameterisations of this
ocean-driven process since a fully coupled ice–ocean mod-
elling framework is prohibitively computationally expensive.
Here, we provide an alternative approach that is able to cap-
ture the greatly improved physical description of this process
provided by large-scale ocean-circulation models over cur-
rently employed melt parameterisations but with trivial com-
putational expense. This new method brings together deep
learning and physical modelling to develop a deep neural net-
work framework, MELTNET, that can emulate ocean model
predictions of sub-ice-shelf melt rates. We train MELTNET
on synthetic geometries, using the NEMO ocean model as
a ground truth in lieu of observations to provide melt rates
both for training and for evaluation of the performance of
the trained network. We show that MELTNET can accu-
rately predict melt rates for a wide range of complex syn-
thetic geometries, with a normalised root mean squared er-
ror of 0.11 myr−1 compared to the ocean model. MELTNET
calculates melt rates several orders of magnitude faster than
the ocean model and outperforms more traditional parame-
terisations for > 96 % of geometries tested. Furthermore, we
find MELTNET’s melt rate estimates show sensitivity to es-
tablished physical relationships such as changes in thermal
forcing and ice-shelf slope. This study demonstrates the po-
tential for a deep learning framework to calculate melt rates
with almost no computational expense, which could in the

future be used in conjunction with an ice sheet model to pro-
vide predictions for large-scale ice sheet models.

1 Introduction

Ocean-induced melting of ice shelves is currently the main
driver of ice mass balance change in Antarctica and repre-
sents a major source of uncertainty for predictions of future
sea-level rise (Pritchard et al., 2012; Gudmundsson et al.,
2019; Edwards et al., 2021; De Rydt et al., 2021; IPCC,
2021). Enhanced melting, resulting in a decrease in ice-shelf
thickness, can lead to a reduction in the buttressing force that
ice shelves impose on the ice sheet and thereby a net in-
crease in mass loss (Thomas, 1979; Dupont and Alley, 2005;
Gudmundsson et al., 2012). Strong feedbacks between melt
rates, the cavity geometry, and ocean circulation can lead to
complex temporal and spatial heterogeneity at many different
scales, so modelling these processes is challenging (Donat-
Magnin et al., 2017; De Rydt et al., 2014; Jordan et al., 2018;
Smith et al., 2021; Kreuzer et al., 2021). The current gener-
ation of ice sheet models employs different approaches to
deal with this problem, and these can broadly be split into
three main categories: (1) simple parameterisations that de-
pend on one or more local quantities (e.g. ice-shelf draft),
(2) intermediate-complexity parameterisations that incorpo-
rate local and nonlocal processes and include some basic
physics of the circulation in an ice-shelf cavity (some ex-
amples are described later) and (3) ocean general circulation
models that are able to capture most of the processes leading
to melting at the ice-shelf base (Favier et al., 2019). Each of
these approaches comes with advantages and disadvantages,
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but broadly speaking the main tradeoff is computational ex-
pense vs. fidelity to our best current understanding of ocean
circulation within an ice-shelf cavity.

Difficulties in capturing complex physical processes
within large-scale models is not a problem unique to glaciol-
ogy. A large source of uncertainty in global climate models
running at standard resolution arises from an inability to re-
solve important cloud processes or accurately calculate con-
vection (Stevens and Bony, 2013). Higher-resolution mod-
els that do, running at up to 1 km resolution, are too expen-
sive to run for longer than 1 year (e.g. Khairoutdinov and
Randall, 2003). A very recent innovation in these fields is
to train a neural network, using high-resolution models, to
parameterise these processes more accurately in a coarser-
resolution model (e.g. Rasp et al., 2018; O’Gorman and
Dwyer, 2018; Brenowitz and Bretherton, 2018, 2019). In this
way, the fidelity of physical models running at lower resolu-
tion, tractable for long-term global prediction, can be greatly
improved with almost no additional computational cost.

In a similar vein, a major hurdle for modelling efforts
of the Antarctic ice sheet is the considerable difference in
timescales at which changes occur in the ice sheet and the
surrounding ocean. To provide accurate prediction and re-
tain numerical stability, large-scale ocean models typically
require time steps of O (102–103 s), whereas ice sheet mod-
els can often be run at time steps of O (107 s) or more. This
disparity means that simulations that couple an ocean model
to an ice sheet model are severely constrained in simulation
time and are typically restricted to making predictions for
hundreds of years (e.g. Jordan et al., 2018; Thoma et al.,
2015; Seroussi et al., 2017; Naughten et al., 2021). That re-
striction is pertinent, since the full extent of committed sea-
level rise arising from a changing climate takes millennia to
manifest itself in ice sheet models (Garbe et al., 2020). In
addition, the computational cost of the ocean models is re-
strictive, and coupled ice–ocean models are often limited to
regional simulations, precluding the ability to model how re-
treat of one basin affects a neighbouring basin. A third and
perhaps most important drawback of this high computational
cost is that coupled studies typically rely on a smaller set
of simulations which cannot properly sample the model pa-
rameter space, making it very hard to calculate uncertainty
estimates, which are now widely recognised as a vital com-
ponent of predictions.

Despite the numerous drawbacks in using a coupled ap-
proach, ocean models present a significant advantage in their
ability to reproduce the complex physical processes that lead
to melt rate patterns beneath an ice shelf. Capturing the spa-
tial distribution accurately is important because relatively
small regions of an ice shelf are disproportionately important
to the transient response of ice flow (Goldberg et al., 2019).
Simpler parameterisations can be tuned to better match ob-
servations to some extent, but it is not clear that these tuned
models remain valid for longer simulations as the ice sheet
geometry and ocean conditions diverge significantly from

their present-day configuration. Were a parameterisation to
exist that did not require tuning, this would represent a ma-
jor step forward in long-term predictions for the future of the
Antarctic ice sheet.

Given the current gulf between ocean models and lower-
complexity parameterisations often used in ice sheet mod-
els, and the aforementioned problems with making long-
term forecasts for the Antarctic ice sheet using a fully cou-
pled approach, there is a clear need for an alternative mid-
dle ground. This should retain the ability to predict complex
spatial patterns of melting but be computationally efficient
in order to be able to run it synchronously with an ice sheet
model without inhibiting the size of the domain or the du-
ration of the simulation. Here, we propose using deep learn-
ing to emulate ocean model behaviour for the prediction of
sub-ice-shelf melt rates. Since the computational cost of a
machine learning algorithm is insignificant once it has been
trained, this could provide an alternative modelling approach.
By treating the ocean model as a ground truth and running
ocean simulations on a wide variety of ice-shelf configura-
tions and ocean conditions, a network can be trained to ap-
proximate the behaviour of an ocean model. As a first step
towards this goal, we demonstrate a deep learning framework
that can accurately reproduce melt rate patterns as predicted
by the NEMO ocean model and shows significantly better
performance than existing intermediate-complexity param-
eterisations. This predictive ability comes despite a drasti-
cally lower computational cost that is not only several or-
ders of magnitude faster than the ocean model it emulates
but also faster than the intermediate-complexity parameteri-
sations that we have used for comparison.

2 Models and methods

In the absence of sufficiently large observational melt rate
training data sets for effective deep learning, we generate ran-
dom and synthetic geometries, together with temperature and
salinity forcing, for several thousand ice shelves. These in-
puts are used as forcings for NEMO, a general circulation
ocean model, which gives a simulated ice-shelf melt rate.
The inputs and resulting NEMO melt rates are then applied
within our deep learning framework, MELTNET, to train a
model that can predict melt rates that closely resemble those
predicted by the NEMO ocean model. We follow a standard
approach in machine learning in which the inputs are split
into training, validation and test sets: the training set is used
exclusively to train the network; the validation set is used to
select and optimise model hyperparameters; and the test set,
not seen by the network during either training or validation,
is used to evaluate the performance of MELTNET and the
other melt rate parameterisations selected for comparison.

We begin by describing the NEMO ocean model, followed
by our deep learning methodology. We then explain how
the synthetic input fields, consisting of ice-shelf geometry,
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bathymetry, temperature and salinity fields, are generated.
Finally, we introduce the two intermediate-complexity melt
rate parameterisations, commonly used in the ice sheet mod-
elling community, that we compare MELTNET performance
against.

2.1 NEMO ocean modelling

The ocean general circulation model used in this study is
version v4.0.4 of the Nucleus for European Modelling of
Ocean model (NEMO; Gurvan et al., 2019). NEMO solves
the incompressible, Boussinesq, hydrostatic primitive equa-
tions with a split-explicit free-surface formulation. NEMO
here uses a z∗ coordinate (varying cell thickness) C grid with
partial cells at the bottommost and topmost ocean layers in
order to provide more realistic representation of bathymetry
(Barnier et al., 2006) and the ice-shelf geometry, respectively.
Our model settings include a 55-term polynomial approxima-
tion of the reference Thermodynamic Equation Of Seawa-
ter (TEOS-10; Intergovernmental Oceanographic Commis-
sion et al., 2015), nonlinear bottom friction, a free-slip con-
dition at the lateral boundaries (at both land and ice-shelf in-
terfaces), an energy- and enstrophy-conserving momentum
advection scheme and a prognostic turbulent kinetic energy
scheme for vertical mixing (Madec et al., 1998). Laterally,
we have spatially varying eddy coefficients (according to lo-
cal mesh size) with a Laplacian operator for iso-neutral dif-
fusion of tracers and a biharmonic operator for lateral dif-
fusion of momentum. Our model setup utilises the ice-shelf
module that was developed by Mathiot et al. (2017). Calcu-
lation of the ice-shelf melt rate follows the standard three-
equation parameterisation as described in Asay-Davis et al.
(2016), with heat exchange and salt exchange coefficients of
0T = 6×10−2 and 0s = 1.7×10−3, respectively. Addition-
ally, the top drag coefficient is Cd = 2.5×10−3. The conser-
vative temperature, absolute salinity, and velocity are aver-
aged over the top mixed layer, defined here as a 20 m layer at
the top of the cavity (or the entire top level where top levels
are thicker than 20 m). The ice-shelf thickness is static, so it
is assumed that the ice dynamics instantaneously compensate
melt-induced thinning.

The modelling domain is on a beta-plane with 64 regu-
larly spaced points in both x and y, spanning∼ 502 km (hor-
izontal resolution of ∼ 8 km). The ocean floor is limited to
2000 m and is represented by 45 evenly spaced vertical lev-
els. Walls exist on all four boundaries where the only exter-
nal forcing is a restoring condition at the northern boundary,
where the restoring is towards the initial state. The simula-
tions are initialised from rest, with initial conditions taken
from the synthetic temperature and salinity fields described
in Sect. 2.3.2; these fields then also set the northern restoring
condition as the simulation evolves. The configuration has
no surface forcing, sea ice and tides but is inspired by the
idealised ISOMIP+ experiments of Asay-Davis et al. (2016),
where the interest here was to have a simple system in which

to test the capabilities of a neural network to predict melt
rates within drastically idealised ice-shelf cavities. Future
work will look at extending the neural network to more com-
plex systems. Following Holland et al. (2008), all simulations
in this paper have a common spin-up of 10 years, where the
time-mean values of the final year are used for all analysis.
Sensitivity tests (not shown) suggest that a 10-year spin-up is
sufficient to capture the equilibrated response of the ice shelf
to the forcing.

2.2 Deep learning methodology

Our deep learning approach consists of two separate neural
networks, trained to perform the two steps required to go
from input fields to a melt rate field. All network design and
training was done using MATLAB’s deep learning toolbox
(The MathWorks, 2021). In the first step, input geometries
and ocean conditions (Sect. 2.3), together with NEMO melt
rates (Sect. 2.1), are used to train a segmentation network
that learns to classify regions of an ice shelf, with labels rep-
resenting the magnitude of melting or refreezing. Secondly,
a denoising autoencoder network is trained to convert from
these discrete labelled melt rates to a continuous melt rate
field. Hereafter, we refer to the combination of these two net-
works working in tandem, which together form our proposed
melt rate parameterisation, as MELTNET. More discussion
on the use of two networks and comparison to more typi-
cal architectures can be found in Sect. 4 and Appendix E.
Figure 1 shows the workflow for training each network and
predicting melt rates, and each of these steps is described in
more detail below.

2.2.1 Segmentation

The primary network, designed to classify melt rates from an
input image, is a modified version of the U-Net architecture,
originally proposed by Ronneberger et al. (2015) and har-
nessing subsequent extensions by Jha et al. (2019). A seg-
mentation network takes images as input and assigns a la-
bel or category to each pixel of that image. That input im-
age may have different numbers of bands; for example, a
black and white image would have one input band, and a
standard colour image would have three. In our case, we use
input images with 64× 64 pixels and four bands represent-
ing bathymetry, ice-shelf draft, temperature and salinity and
output N melt rate categories representing different regimes,
for example, strong melting or weak refreezing. Note that the
methodology is completely flexible with regards to the size
of the image and the number of bands, so more information
could be coded into additional bands, as discussed later. In
MELTNET, each pixel may have a value from 0 to 255, and
the mapping from synthetic input fields to pixel values is ex-
plained in Sect. 2.3.

The target melt rate field output by NEMO (Sect. 2.1) must
be converted to a labelled image with N classes in order to
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Figure 1. Workflow diagram for the proposed deep learning framework, split into training and prediction. Synthetic ice-shelf geometries
(Sect. 2.3.1) and synthetic temperature and salinity profiles generated from WOA data (Sect. 2.3.2) are used (1) as inputs for the NEMO
model which predicts a melt rate field and (2) to create a four-channel input image for training of the segmentation network. NEMO melt
rates are converted into a labelled image, and the segmentation network trains to segment input images that match labelled NEMO output.
Separately, the autoencoder network takes the melt rate map and labelled melt rates from NEMO and learns to map between the two. In both
of these networks, ∼ 18 % of inputs and NEMO melt rates are withheld to form the test and validation sets. Once the networks are trained,
melt rate prediction proceeds by passing input images to the segmentation net and the resulting labelled images to the autoencoder, leading
to a melt rate field. Note that the GAN is only used for generation of input fields and not needed for melt rate prediction, as described in
Sect. 2.3 and Appendix D.

be used to train the segmentation network. A tradeoff exists
when selecting the number of classes for the segmentation
network and the final performance of MELTNET in terms of
predicting melt rates. With fewer classes, the segmentation
net accuracy goes up, but the inverse classification net strug-
gles to infer complex melt rate patterns, whereas with more
classes the segmentation net accuracy drops, also resulting
in a drop in overall MELTNET performance. We tested net-
works using N = 5 to 12 classes, and the resulting NRMSE
(normalised root mean squared error, described later) varied
from 0.15 to 0.11. Based on this testing, an optimal num-
ber of classes for our training set was found to be N = 10.
Melting (or freezing) rates were converted toN discrete melt
labels by calculating N − 2 quantiles of melt rates for every
pixel in the training set and assigning labels to melt rates that
fall between each quantile, with the last label reserved for re-
gions of the image with no melt/refreezing (i.e. outside of the
ice shelf).

The segmentation network takes these input images and
the corresponding set of target melt rate labels from NEMO

and learns to reproduce the labelled melt rate distribution. At
its core are convolutions, consisting of sets of filters that op-
erate on the image. The weights that make up these filters
are learned during the training, by calculating their gradients
with respect to a cost function and updating them iteratively
to reduce the misfit to NEMO model targets. Layers of fil-
ters learn to extract useful features at different scales within
the image, for example, the outline of the coast or the local
slope of the ice-shelf base. The final training set, once a small
subset of anomalous NEMO simulations with extreme tem-
peratures were removed, consisted of ∼ 9000 images, with
a further ∼ 2000 retained for validation and testing. MELT-
NET accuracy increases with an increasingly large number of
training images, but by testing incrementally larger training
sets this number was found to be sufficient (Fig. B2). More
details on the architecture, loss function and training of the
segmentation net can be found in Appendix B.
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2.2.2 Inverse classification

We use another deep learning approach to perform the task
of converting from discrete melt labels, output by the Seg-
Net, to a continuous melt rate field. We found that a modified
denoising autoencoder (DAE) architecture, based on the net-
work proposed by Zhang et al. (2017), was able to perform
this task effectively. DAEs take partially corrupted input and
are trained to extract features that capture useful structure
in order to recover the uncorrupted original. In this case,
the corruption is the process of categorising melt rates into
N discrete labels, which results in images that retain much
of the original melt rate pattern but lose fine-scale detail and
magnitude information. The segmentation net is trained on
these labelled melt rate images rather than the NEMO out-
put directly, and itself outputs the same labels which need to
be converted back to a continuous melt rate field in order to
provide useful output for an ice sheet model.

The training set consists of labelled NEMO melt rates as
inputs and true NEMO rates as outputs; i.e. the DAE learns
to map from discrete labels to a continuous melt rate field.
The specific experiments that comprised training, validation
and test sets were the same as those used to train the segmen-
tation network. This ensured that the DAE did not get any
unfair advantage from having already seen similar melt rate
patterns during its training as those output by the segmenta-
tion net. The DAE architecture consists of several layers of
2D convolutions, batch normalisations, and swish layers, as
shown in Fig. C1 and described further in Appendix C.

2.3 Synthetic input generation

A major hurdle to overcome with this deep learning ap-
proach is to generate synthetic inputs that are realistic but
also show sufficient variability to be useful analogues to real
ice shelves. This problem can be broken down into two main
steps: generation of the ice-shelf geometry and generation of
the temperature and salinity fields which set both the ocean
initial conditions and far-field restoring condition. Through
the procedure described below, we generate ∼ 11 000 syn-
thetic inputs. These are divided into a training set (∼ 9000),
a validation set (∼ 1000) and a test set (∼ 1000).

2.3.1 Ice-shelf and coastline geometry

Two of the four input bands that serve as inputs for the
segmentation network consist of (1) ice-shelf draft (i.e. ice
thickness below water level defined within the ice-shelf ex-
tent) and (2) ocean bathymetry, both beneath the ice shelf
and in the open ocean. Generating these fields begins by
defining three polylines: a randomly generated coastline, the
ice-shelf front position and the continental shelf boundary.
Along the ice-shelf boundary, a grounding line thickness is
defined, with deeper grounding lines far from the ocean and
in narrow embayments to mimic ice stream inflow to the ice

shelf. Ice-shelf thickness is advected from the grounding line
to the coast using an analytical solution, and finally a ran-
domly generated bathymetry is defined based on the conti-
nental shelf boundary while ensuring that a cavity persists
beneath the ice shelf. These steps are described in more detail
in Appendix A. The result of this algorithm is two 64× 64
arrays of ice-shelf draft and bathymetry which are linearly
rescaled to pixel values from 0–255 in the first two bands of
the segmentation input.

A sample of 36 synthetic domain geometries is shown in
(Fig. 2). The algorithm that generates synthetic ice-shelf ge-
ometries must be capable of creating a wide variety of con-
figurations. Validating these geometries is not possible; how-
ever the resulting configurations are visually similar to ice
shelves typically found around Antarctica, and the generation
of ice thicknesses for each geometry, which melt rates are
highly sensitive to, is based on analytical solutions for ice-
shelf flow. The final 64× 64 grids result in each domain hav-
ing an area of ∼ 252 000 km. Given that much of the domain
is taken up by grounded ice/ocean, this results in maximum
ice-shelf areas which are less than the two largest ice shelves
in Antarctica (the Ross and Filchner-Ronne ice shelves) but
comparable to the next largest, such as the Amery and Larsen
ice shelves.

2.3.2 Temperature and salinity forcing

The geometrical inputs described above, that we vary spa-
tially but not temporally, can be directly used as inputs to
both MELTNET and NEMO since they both operate within
the same 2HD space. In contrast, NEMO only uses tempera-
ture and salinity forcing at its boundary and as initial condi-
tions, allowing these fields to evolve within the domain with
time and contributing to the spatially varying melt rate field.
Thus, temperature and salinity T/S inputs for the two models
need to be treated slightly differently. We first address how
a forcing is generated for the ocean model and then explain
how this boundary forcing is mapped to the 2D inputs used
by the segmentation network.

The ocean model configuration used here (Sect.2.1) re-
quires a temperature/salinity (T/S) restoring condition de-
signed to imitate the far-field ocean forcing of an ice shelf. In
this case, the restoring condition is only applied at the north-
ern boundary, similar to the ISOMIP+ experiments (Asay-
Davis et al., 2016). We thus need T/S fields that represent
the variety of conditions that might be found in this loca-
tion around Antarctica. To this end, we use the World Ocean
Atlas 2018 (hereafter WOA; Boyer et al., 2018) to extract
T/S profiles around all of Antarctica. For each meridian in
the gridded data, we take data from the first ocean grid cell
north of the Antarctic coast that has a depth of more than
2000 m. While this results in several hundred vertical pro-
files that could be used directly to force our synthetic ge-
ometries, the WOA dataset is still inherently a finite source
of T/S data. As an alternative, we use these data as a start-

https://doi.org/10.5194/tc-17-499-2023 The Cryosphere, 17, 499–518, 2023



504 S. H. R. Rosier et al.: Predicting ocean-induced ice-shelf melt rates using deep learning

Figure 2. Sample of synthetic geometries produced using the algorithm outlined in Sect. 2.3.1. Grey delineates grounded ice, and the colour
map represents seafloor bathymetry. White lines show ice-shelf draft, contoured from 200 to 800 m at 100 intervals, and black lines show the
outline of the ice sheet and ice-shelf regions.

ing point to generate synthetic T/S profiles that share the
same characteristics but can be unlimited in number and va-
riety. This is accomplished with a generative adversarial net-
work (GAN; Goodfellow et al., 2014). Details on this GAN
network, together with a comparison between observed and
generated T/S profiles, can be found in Appendix D.

The depth-varying T/S fields, generated by a GAN used
as inputs to NEMO as described above, need to be mapped
to the same 64× 64 grid as the geometry for input to MELT-
NET. We explored several methods, most notably (1) map-
ping T/S profiles that NEMO is forced (prescribed) with
at the boundary directly to the ice-shelf base at equivalent
depth and (2) using the average T/S profile, as simulated by
NEMO at the ice front, and mapping this to the ice-shelf base
in the same way as (1). In practice, we found that it made lit-
tle difference to the segmentation network accuracy (92.6 %
classification accuracy vs. 93.4 %, respectively). We decided
that taking average temperature and salinity conditions at the
ice-shelf front after model spin-up was most consistent with
existing melt rate parameterisations, since this is akin to forc-
ing our model with observations near the relevant ice shelf.
Furthermore, we view this as more useful to ice sheet mod-
ellers who might use MELTNET for future projections since

it is generally believed that changes at the ice front (e.g. ther-
mocline depth) are most closely related to the future evolu-
tion of Antarctica. These mapped T/S fields are then linearly
rescaled to pixel values of 0–255 and form the remaining two
bands of our input image.

2.4 Alternative melt rate parameterisations: PICO and
PLUME

The performance of MELTNET is compared to two
intermediate-complexity melt rate parameterisations, where
all models are judged on their ability to match NEMO’s melt
rate fields. The parameterisations are the Potsdam Ice-shelf
Cavity mOdel (PICO; Reese et al., 2018a) and a 2D im-
plementation of the plume model (Jenkins, 1991) based on
Lazeroms et al. (2018) (referred to hereafter as PLUME).
The PICO model includes a representation of the vertical
overturning circulation within an ice-shelf cavity with a se-
ries of boxes that transfer heat and salt from the grounding
line to the ice front. The PLUME model adapts 1-D plume
theory by selecting a melt plume origin at any given ice-shelf
point and determining melt rate as a function of properties at
this plume origin and local ice-shelf conditions. Plume origin
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Figure 3. Input geometry (row 1) for a sample of synthetic ice shelves and the resulting melt rates (myr−1) as calculated by NEMO (row 2),
MELTNET (row 3), PICO (row 4) and PLUME (row 5). Experiments were selected by sampling evenly from the distribution of MELTNET
scores. Scores, calculated as a combination of NRMSE and correlation coefficient, are shown in blue in row 6, and the sampled experiments
are highlighted in red. Only geometries from the test set are included in this figure. Background colour map for the geometries shows ocean
bathymetry (scale on the right-hand side), and white lines show ice-shelf draft, contoured from 200 to 800 m at 100 m intervals. Melt rate
results all use the same colour map, with red and blue indicating melting and refreezing, respectively. Note the colour map gradient is not
linear but is greatest around zero, to make it easier to distinguish the magnitude of melting/refreezing over the bulk of the ice shelves.
Numbers in red and blue at the top of each melt rate column show the area-averaged sub-ice-shelf temperature and salinity, respectively.
Numbers in the bottom left corner of each melt rate panel show the averaged melt rate as calculated by each model. Both the PICO and
PLUME models show results using optimised parameters (Table F1).

for every ice-shelf point is selected as the closest grounding
line point, scaled by grounding line depth so that deeper ori-
gin points are favoured. Many other melt rate parameterisa-
tions exist, but these were selected since they are generally
regarded as the more advanced parameterisations, includ-
ing physics related to cavity circulation while still remaining
computationally inexpensive (Favier et al., 2019; Jourdain
et al., 2020). For both parameterisations, a high-resolution
version of the synthetic geometries was converted to a finite
element mesh, and the Úa ice-flow model implementation of
each model was used to calculate melt rates.

In order to make our comparison to the PLUME and
PICO models as fair as possible, two uncertain parameters in
each model were optimised using the training set of NEMO
outputs. For the PICO model, these two parameters were
the overturning strength (C) and the heat exchange coef-
ficient (γ ∗T ), which are also treated as tuneable parameters
in the original PICO paper (Reese et al., 2018a). For the
PLUME model, the heat exchange parameter 0T S (similar
but not the same as the γ ∗T parameter for PICO) was selected,

together with the plume entrainment coefficient (E0). The
PLUME and PICO models were run using the input geom-
etry, temperature and salinity fields and then a cost function
as calculated as the total normalised root mean squared error
(NRMSE) compared to NEMO melt rates. This cost func-
tion was then minimised using the constrained optimisation
function “fmincon” in MATLAB, to derive an optimal set of
parameters for each model that most closely replicated the
NEMO melt rates. The optimised values of all intermediate-
complexity model parameters, together with the values orig-
inally suggested in their corresponding papers, are shown in
Table F1.

3 Results

Figure 3 presents the main result of our study, a grid of differ-
ent geometries (row 1) and corresponding melt rates (myr−1)
as calculated by NEMO (row 2), MELTNET (row 3), PICO
(row 4), and PLUME (row 5). Melt rates calculated by
MELTNET clearly stand out amongst the lower three pan-
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els as the best qualitative match to the NEMO ocean model.
In order to represent the range of performance, rather than
just the best results for any particular parameterisation, we
assign a score to each MELTNET result and sample evenly
from the distribution of results by calculating the quantiles
of the scores. The score used here (row 6) is based on a com-
bination of the NRMSE and correlation coefficient; the two
quantities are treated as vectors whose length is scaled such
that a vector of zero length is a perfect score (NRMSE of 0
or correlation coefficient of 1), and the score is the L2 norm
of these two vectors. Row 6 of Fig. 3 therefore shows the
scores for all experiments from the test set (N = 951) in blue,
and the specific experiments sampled from the distribution
of these scores (as plotted in the rows above in the same fig-
ure) are marked in red. Panels for individual experiments are
sorted by increasing score from left to right. In the bottom
left corner of each panel, we show the averaged melt rate as
calculated by each model. Only geometries from the test set,
i.e. geometries that MELTNET did not see during training,
are included in this comparison.

Model performance as measured by NRMSE and corre-
lation coefficient is shown for the three models and for all
members of the test set in Fig. 4. Model misfit, in terms of
NRMSE, was lowest with MELTNET for 96 % of the mem-
bers of the test set (Fig. 4a). The Pearson correlation coeffi-
cient between MELTNET and the NEMO model (mean 0.73)
was higher than PICO (mean 0.25) and PLUME (0.14)
for 99 % of the members of the test set (Fig. 4b). These re-
sults show that MELTNET not only has a lower misfit than
the other models, but is also far better at reproducing spatial
patterns, i.e. getting melting and refreezing in the right areas
of each ice shelf.

Idealised experiments

A commonly raised and sensible concern with all forms of
deep learning is that poorly trained networks can give the
right answer for the wrong reasons. We take a number of
steps to avoid this issue; for example, we randomly rotate
the ice-shelf orientation so that the network does not learn
to associate high melting with grid cells on one side of
the domain. We can also explore how MELTNET’s predic-
tions compare to our understanding of the physics underly-
ing ocean–ice-shelf interactions. This is done for a simpli-
fied ice-shelf geometry, i.e. uniform bathymetry at a depth of
1600 m and an ice shelf 120 km long and 280 km wide. Ice-
shelf draft varies linearly from 600 m at the grounding line to
200 m at the ice front, and there is no across-shelf variation
in the geometry. Furthermore, both salinity and temperature
are constant throughout the entire domain, and as before, this
forms the northern-boundary restoring condition. In this con-
text, two simple relationships are expected to emerge: (1) a
linear dependency of melt rates to changes in ice-shelf slope
(Jenkins, 2018) and (2) a quadratic dependency of melt rates
to changes in ocean temperature (Holland et al., 2008). To in-

Figure 4. Distributions of NRMSE (a) and Pearson correlation
coefficient (b) for the three different melt rate parameterisations:
PICO (violet), PLUME (orange) and MELTNET (green). The lower
section of each panel shows each individual score from the entire
test set, overlain with a box plot. The box represents the interquar-
tile range of scores, and the vertical line through the box is the me-
dian. The upper section of each panel presents the same information
as probability density plots. Note lower NRMSE and higher corre-
lation coefficient mean a better fit to the ground truth NEMO melt
rates.

vestigate these two relationships, we (1) vary ice-shelf basal
slope by keeping grounding line depth constant and moving
the ice front and (2) vary temperature by a uniform amount in
the entire domain. The change in the ice-shelf cavity melt rate
for these two sensitivity tests is shown in Fig. 5. In both tests,
the dependence matched that expected by theory, as shown
by the linear and quadratic trend lines through the sample
points. This goes some way to demonstrating that MELTNET
has learnt an accurate representation of actual melt physics.
This is in spite of the fact that these simplified domains are
very different from the more complex geometries that the
network has been trained on.

4 Discussion and conclusions

The MELTNET deep neural network can produce melt rates
that closely resemble those calculated by the NEMO ocean
model for synthetic geometries that were not part of the
training set. When compared to two intermediate-complexity
melt rate parameterisations, MELTNET outperforms them in
terms of both overall NRMSE and correlation, even when pa-
rameters in those models are tuned to minimise the misfit for
the geometries we test. In terms of area-averaged melt rates
(Fig. 3), MELTNET also performs favourably compared to
PICO and PLUME, which both tend to underestimate this
value. Since these two models are tuned to minimise the over-
all NRMSE rather than average melt, this is not particularly
surprising but nevertheless highlights the problem with tun-
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Figure 5. Area-averaged basal melt rate from MELTNET for an
idealised ice-shelf geometry as a function of changes in ocean tem-
perature (red) and ice-shelf basal slope (blue). Dashed lines show
quadratic and linear fits to results, with corresponding r2 values in
matching colours.

ing these models based on one metric, leading them to per-
form poorly in other regards.

Correctly predicting spatial patterns of ice-shelf melting
(as shown by the high correlation of our results to NEMO),
rather than just the magnitude, is crucial because the sen-
sitivity of an ice shelf to thinning will vary across that ice
shelf (Reese et al., 2018b). Some regions within an ice shelf
can be considered entirely “passive”, in that reductions in ice
thickness in these areas have no impact on ice flux across the
grounding line. On the other hand, perturbations to ice-shelf
melting within certain highly buttressed regions, for exam-
ple, in the shear margin of an ice shelf, can have a much
greater impact on ice-sheet discharge than other regions such
as downstream of an ice stream, despite those being other-
wise dynamically important (Feldmann et al., 2022). In gen-
eral, a small proportion of ice shelves contribute a dispropor-
tionately large fraction of the total buttressing force (Reese
et al., 2018b).

A clear motivation behind using a deep learning approach
is that the computational cost is almost entirely associated
with training the network (i.e. everything contained within
the training box of Fig. 1), whereas predicting melt rates
using the trained network is extremely fast. Producing the

training set by running NEMO on our synthetic geometries
required significant computational resources, although since
the problem is embarrassingly parallel, this is not necessar-
ily a major hurdle. Running the∼ 11 000 NEMO simulations
was done on the ARCHER2 Cray EX supercomputing sys-
tem, which has 5860 compute nodes, each with 64 dual-core
CPUs. Each simulation used 20 cores, and the total compute
time for all NEMO simulations was∼ 1.3 million core hours.
Training the two networks was done using a single NVIDIA
K5200 GPU and took ∼ 48 h for the segmentation network
and ∼ 6 h for the DAE network. Once trained, MELTNET
can predict melt rates from inputs in 20 ms. A direct compar-
ison to the average time taken by NEMO to calculate melt
rates is difficult, particularly given that we spin up NEMO for
10 years prior to making use of its melt rate predictions. In
a coupled transient configuration, the speedup would depend
strongly on the coupling time step, since an ocean model in-
variably requires a far smaller time step than an ice sheet
model. Assuming a coupling time step of 1 year and for this
configuration of NEMO, the speedup would be between 4–
5 orders of magnitude. Compared to PICO and PLUME, the
speedup is approximately 1–2 orders of magnitude depend-
ing on the configuration of those models that we use.

One important caveat to this work is that MELTNET can
only be, at best, as good as the ocean model that it has been
trained on. Here, we necessarily treat the ocean model as
our ground truth, since the geometries are entirely synthetic.
Training MELTNET on real-world observations would be
preferable, but there are not enough distinct ice shelves, or
indeed sufficient observations of melting, for this to be feasi-
ble. Thus we consider NEMO melt rates akin to observations,
and matching these as accurately as possible is our goal. The
NEMO ocean model setup has a number of simplifications,
for example, no representation of sea ice, surface forcing,
or ocean tides. These processes would all impact the melt
rate calculation. Some missing processes would be possible
to add in with our synthetic geometry approach, but others
present more significant challenges.

On the other hand, this methodology also provides inter-
esting advantages, since adding complexity to the represen-
tation of the ocean model physics can simply be achieved
by including more processes in the ocean model. This is in
contrast to a typical model, where adding new physics is a
significant undertaking that can require replacing large sec-
tions of code and considerable testing. Furthermore, since
the method is not limited in terms of input fields, any miss-
ing information required to properly train the network with
new physics could easily be added into a new band in the
input image. Conversely, processes could be removed by re-
ducing the amount of inputs used to train MELTNET. Do-
ing this would provide insights into which processes are im-
portant for producing realistic melt rates, possibly aiding the
development of alternative parameterisations. This also al-
ludes to a unique advantage of a deep learning emulator such
as MELTNET: its success in retaining the important physics
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of complex models in a highly efficient way. Intermediate-
complexity models such as PICO and PLUME use simplified
systems of equations, based on our understanding of a phys-
ical system, but require a small number of parameters to be
tuned in order to match observations. With a deep learning
approach, the degrees of freedom are many orders of magni-
tude higher, so in a sense it is infinitely tunable, but through
training the network learns which relationships between in-
put and melt rate are relevant without needing to simplify
or discard physics that may be important. For example, nei-
ther PICO nor PLUME currently accounts for the Coriolis
effect, which is known to affect the melt rate distribution on
an ice shelf through its role in determining the direction of
currents beneath the shelf. MELTNET, however, implicitly
includes the Coriolis effect in its melt rate calculations, since
this contributes to the melt rates calculated by NEMO and so
its effects can be learned from the training set.

The MELTNET model presented here stacks two net-
works, the segmentation and DAE components, trained sep-
arately and with very different architectures. These two net-
works split the task of predicting melt rates for an ice shelf
into two sub-tasks. The segmentation network converts a
multi-channel input image into a segmented single-band im-
age in which regions of varying melt are labelled, and the
DAE converts labelled melt rates into a melt rate prediction.
The task performed by MELTNET can also be attempted by
a single neural network; for example, a convolutional neu-
ral network (CNN) with a regression output layer (e.g. Jou-
vet et al., 2022) is a recent application of this in the field of
glaciology. Alternatively, the segmentation network can be
easily converted to directly predict a continuous melt rate
field, rather than melt rate labels, by changing the output
layer and loss function. We explored these options and oth-
ers during the development of MELTNET, but these were all
considerably outperformed by MELTNET. The use of two
networks to solve this type of problem has not been done be-
fore to our knowledge and undoubtedly will not be suitable in
many other cases. We discuss this in more detail and present
some results from other architecture choices in Appendix E.

The results presented here show a promising first step to a
parameterisation for ocean-induced melting that shows high
fidelity to advanced ocean models with very low computa-
tional cost. That being said, more work is required, before
applying this to transient ice sheet models. Future work must
demonstrate that the network, trained on synthetic geome-
tries, is also capable of reproducing melt rate patterns on
real ice shelves based on the limited observations that ex-
ist or in comparison to state-of-the-art ocean models. One
limiting factor currently is the size of the domain, which at
∼ 502 km2 is not large enough to cover the very largest ice
shelves and include neighbouring open ocean to serve as in-
put for training and prediction. Furthermore, more work is
needed to show the equivalence of these synthetic geome-
tries to real ice shelves, include complex bathymetric fea-
tures such as ice rises or troughs that play an important role

in providing access for warm water to the grounding line, and
add more processes to the ocean model that is used for train-
ing. Subsequently, MELTNET would need extensive testing
to ensure that fringe ice-shelf configurations never lead to ex-
treme melt rate predictions that are outside of what would be
physically plausible. A recent innovation that could help in
this regard is the development of neural network emulators
that are constrained, either through the loss function or their
architecture to ensure that they do not violate physical laws
(e.g. conservation) (Beucler et al., 2021).

This work has demonstrated that a deep learning network
can be trained to emulate an ocean model in terms of pre-
dicted melt rates beneath an Antarctic ice shelf. When ap-
plied to a wide range of synthetic geometries, MELTNET
agrees closely with the NEMO model that it was trained on
and outperforms other commonly used parameterisations if
we assume that the ocean model represents the best estimate
of melt rates for a given geometry. These results show that
a deep learning emulator may provide useful melt rate esti-
mates for ice sheet models, but more work is needed to re-
fine the methodology and test this approach on real ice-shelf
geometries with observations of melt rates. An accurate and
efficient parameterisation of melt rates beneath Antarctic ice
shelves is urgently needed to improve the representation of
this crucial component of mass loss.

Appendix A: Synthetic ice-shelf generation

Here, we describe in more detail the process of generating
synthetic ice-shelf geometries, which form two inputs bands
of the training images as explained in Sect. 2.3. The creation
of the bathymetry (including the coastline) and ice-shelf draft
can be broken down into four steps. The algorithm consists
of the following steps:

1. Create an outline of the coast.

2. Define the ice shelf and continental shelf horizontal ex-
tent.

3. Define ice thickness at the grounding line, and then gen-
erate ice-shelf draft.

4. Define bathymetry, constrained by features generated in
preceding steps.

Each of these steps generates one or more random num-
bers that determine some geometrical property of the final
domain, leading to a very large variety of final ice-shelf con-
figurations. These steps will now be outlined in order, with
each step in its own paragraph.

The starting point for generating ice-shelf geometries is
the observation that most Antarctic ice shelves, particularly
large ones, occur within embayments along the coast, while
some smaller unconfined ice shelves also exist along flatter
sections of the coastline. From a square domain, we start
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Figure A1. Flowchart showing the steps leading to generation of a random ice-shelf geometry, consisting of (a) generation of corner nodes
randomly located within the four coloured polygons, (b) creation of a continuous fractal coastline, (c) definition of ice shelf and continental
shelf horizontal extents, (d) definition of ice thickness at the grounding line and from this the full 2D ice-shelf draft, and (e) generation of a
bathymetry constrained by the previous steps, leading to (f) one randomly sampled ice-shelf geometry (background colour map represents
ocean bathymetry, and contours are ice-shelf draft, following the same ranges as in Fig. 3).

by creating a polygon that will define the overall geometry
of the coastline from four random point seeds that can each
lie anywhere within their four predefined boxes, as shown in
Fig. A1a. Two further points are added on either side and in
line with the previous end points to create a polygon with six
points and five edges. Due to the extents of the four boxes
within which the four initial points are seeded, most geome-
tries will consist of a central embayment, but the concavity of
the resulting bay can vary from being almost flat to deep and
strongly confined. This simple polygon is then transformed
into a complex polygon more closely resembling the fractal
nature of a real coastline by repeatedly adding points mid-
way between two existing points and offset some random dis-
tance from that edge, resulting in a final coastline as shown
in Fig. A1b.

With a coastline defined as described above, the next
step is to define plausible extent for the ice-shelf front and
from this the continental shelf break. Points on the coastline
nearest to the two corner points (blue and yellow points in
Fig. A1a) are selected as trial start and end points for the ice-
shelf front which has a random curvature (this determines
the ice-shelf front shape, from concave to convex). If the ice-
shelf front polygon does not intersect any coastline points

and the area is less than a randomly selected minimum area,
then the ice-shelf front is accepted. If the ice-shelf front is re-
jected, the two starting points along the coast for the calving
front polygon are moved closer together, and the procedure is
repeated until a geometry is accepted. This results in a variety
of different sized ice shelves that tend to be confined by any
existing embayment in the coast. As a next step, a distance
is calculated for each open-ocean point and the combined ice
front and coastline ocean boundary. A contour of constant
distance from the coastline is then drawn and converted to a
tensioned spline to generate a smooth polygon that defines
the continental shelf break. The result of these two steps is
shown in Fig. A1c.

The geometry is now fully defined in 2D but requires infor-
mation on ice and water column thickness to be used as input
for the ocean model. Ice thickness is first defined everywhere
along the ice-shelf grounding line as a product between dis-
tance to the ice front, a measure of the coastline curvature and
a random factor (resulting in a maximum ice thickness at the
grounding line of 2000 m). This leads to ice thicknesses that
are generally greater further from the coast and particularly
where the coast consists of smaller inlets, to mimic plausible
ice streams flowing into the ice shelf. Ice thickness is then
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extrapolated at regular points along the grounding line to the
ice front using a simple analytical expression for a buttressed
ice-shelf thickness profile from Nilsson et al. (2017) under
the simplifying assumption of no net accumulation. These
ice thickness profiles are combined and mapped onto a grid
to generate a 2D ice thickness field everywhere within the ice
shelf (Fig. A1d).

The ice thickness and continental shelf are used to con-
strain the ocean bathymetry by constructing polygons at reg-
ular intervals through the domain. Points at 2000 m depth are
added at the open-ocean boundary and a fixed distance from
the shelf break. Further points are added around the shelf
break at depths controlled by the ice-shelf draft at the ice
front, and a final point is added at the grounding line at 200 m
below the grounding line depth. The polygons are combined
to form a grid of depths, and random Brownian noise is added
to generate the final bathymetric grid (Fig. A1e). The result-
ing fields of ice thickness and ocean depth are generated at
finer resolution and then linearly interpolated onto 64× 64
grids which serve directly as inputs to the ocean model (with
each cell representing ∼ 8 km× 8 km), and their discretised
forms serve as two bands of the input images for the segmen-
tation net (Fig. A1f).

Appendix B: Segmentation network architecture and
training

We use a modified U-Net architecture for melt rate segmen-
tation, based largely on the recently proposed ResUNet++
architecture (Jha et al., 2019). The U-Net architecture, ini-
tially developed for medical image segmentation, has proven
highly successful for a wide variety of segmentation tasks
and spawned a number of U-Net-style architectures that add
various blocks to improve performance. At its core, U-Net
consists of a sequence of convolution blocks and pooling
operations that reduce the spatial dimension of the image
while increasing the number of feature channels (sometimes
referred to as the encoder), connected via a bridge to up-
convolution blocks (the decoder) that effectively operates in
reverse resulting in a segmented image with the same dimen-
sions as the input. Our implementation, adapted from Re-
sUNet++, makes use of the following additional components:

1. residual connections for each encoder and decoder
block, shown to improve training and propagation of
information through deep neural networks (He et al.,
2016);

2. squeeze and excitation units preceding each encoder
block, that adaptively weight feature maps to increase
sensitivity to relevant features with very low additional
computational cost (Hu et al., 2018);

3. Atrous Spatial Pyramid Pooling (ASPP), acting as a
bridge between the encoder and decoder blocks and be-
tween the last decoder and the classification layer, that

Figure B1. Schematic for the segmentation network used in this
study. An input 64× 64× 4 image goes through layers of 2D con-
volutions, batch normalisations, and swish layers through the de-
coding and encoding branches. Once trained on NEMO results, the
final output is a segmented image consisting of melt rate labels that
can then be converted into a melt rate field using the DAE network.

aid in capturing information at multiple scales (Chen
et al., 2018).

We modify the ResUNet++ architecture by removing at-
tention blocks and using swish activation functions to im-
prove performance. Unlike in classical medical image or
driving segmentation tasks, where attention blocks help fo-
cus the network on relevant features in an image, we found
this did not improve performance in our case, possibly be-
cause certain input layers are only non-zero within the ice
shelf and so act as a shortcut for the network focus on that re-
gion. We found that using swish activation functions, which
have the form f (x)= x · sigmoid(x), improved model con-
vergence and alleviated an occasional issue of vanishing gra-
dients. This finding is in line with other studies that have
shown their advantage over ReLU activation functions (Ra-
machandran et al., 2017). The overall network architecture is
shown in Fig. B1.

We trained the segmentation network on ∼ 9000 training
images using stochastic gradient descent with momentum
(SGDM), an initial learning rate of 5× 10−7 and a momen-
tum of 0.85. The SGDM algorithm updates network weights
based on our loss function, for which we use a weighted
cross entropy loss, which is a standard choice in classifica-
tion tasks. Through this, we seek to minimise the difference
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Figure B2. Change in NRMSE and correlation coefficient for
MELTNET with respect to NEMO melt rates as a function of chang-
ing the size of the training set.

between the predicted and target probability distributions of
each class. We weight the loss function according to the nor-
malised inverse frequency of labels in the training set, ex-
cluding the class representing “no melt” by setting its weight
to zero. Including this class in the loss function would result
in a large bias in the training and scoring of the network to-
wards pixels that are of no interest to our application. Weight-
ing the remaining classes based on frequency helps ensure
the network is equally successful at predicting less frequent
classes, for example, refreezing. The model was trained for
600 epochs with a small mini-batch size of 16, which tends to
improve the models ability to generalise. Model hyperparam-
eters including learning rate, batch size and number of filters
were manually optimised, although due to the computational
cost of training the network this parameter search was by
no means exhaustive. In Fig. B2 we plot how the segmenta-
tion network validation NRMSE and correlation coefficient
change with respect to the size of the training set, showing
that the training set is sufficiently large for our purposes.

Appendix C: Inverse classification network

The second component of MELTNET, designed to convert
labelled melt classes to a continuous melt rate field and that
we refer to as our inverse classification network, is based on
a denoising autoencoder (DAE) architecture. This constitutes
an input convolution layer, a series of four 2D convolutions
each with 16 filters of size 3× 3, activation functions and
batch normalisation layers, followed by a final convolution
layer and a linear activation function, as shown in Fig. C1.
Once again, for all but the last layer we use swish activation

Figure C1. Schematic for the DAE net architecture used in this
study. A melt rate field, as calculated by NEMO for a given input
geometry, is converted to a matrix of discrete melt labels. These la-
belled melt rates that served as the input to the network go through
a series of convolution, batch normalisation, and swish layers, lead-
ing to an output. The loss of this output is calculated against the
original melt rate field to train the network to recover a continuous
melt rate field from discrete melt rate labels.

functions rather than ReLU to improve convergence in train-
ing.

We train the network by minimising the mean-squared er-
ror between the target and predicted melt rate fields using the
SGDM algorithm with a learning rate of 2× 108, a momen-
tum of 0.9 and a mini batch size of 16. We add regularisa-
tion with an amplitude of 5× 10−2 that penalises particularly
large weights, to avoid overfitting. The network is trained for
500 epochs on the same set of synthetic ice-shelf experiments
as the segmentation network (8922 images). Model hyperpa-
rameters, consisting of the learning rate, momentum, batch
size and regularisation, were manually optimised. A com-
parison between NEMO melt rates, those same NEMO melt
rates converted to a labelled image and the result of mapping
from labelled images to melt rates using the trained DAE net-
work is shown in Fig. C2.
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Figure C2. Example of the DAE network used to convert from labelled melt rates (top row) to a continuous melt rate field (true melt rates
in the second row and predicted melt rates by the DAE network in the bottom row). Examples shown are selected by evenly sampling the
distribution of DAE network scores (all scores shown in the upper scatter plot, with sampled scores in red).

Appendix D: Synthetic temperature and salinity
generation

As described in the methods, rather than using the finite num-
ber of observations of temperature and salinity to force our
synthetic geometries, we generate synthetic profiles using a
GAN. The GAN consists of two networks trained together:
a generator network and a discriminator network. The gen-
erator learns to generate synthetic temperature and salinity
profiles, while the discriminator network attempts to distin-
guish between real profiles (from the WOA dataset) and the
profiles created by the generator. Initially, neither network
knows what to do, but they are in direct competition and learn
from each other to improve. At the end of the training pro-
cess, the generator network has learnt to take a random vector
input as a seed and output temperature and salinity profiles
that closely resemble the real data. Since the GAN takes a
random seed as input, any number of these random seeds can
be used to generate the desired number of synthetic profiles.

The specific architecture used, shown in Fig. D1, is a mod-
ification of the deep convolutional GAN (DCGAN), as pro-
posed by Radford et al. (2016). Temperature and salinity pro-
files from WOA are concatenated into one vector, which the
discriminator aims to reproduce and the discriminator learns
to differentiate. The discriminator network includes dropout
layers with a dropout of 50 %, which was necessary to avoid
mode collapse. The two networks are trained simultaneously
for 500 epochs and reach an equilibrium in which the loss
for each stabilises around 0.5. Every available temperature
and salinity profile from the WOA dataset, used to train the
GAN, is shown in Fig. D2a, together with a sample of syn-
thetic profiles generated by the GAN in Fig. D2b.

Figure D1. Schematic showing the GAN architecture, used to gen-
erate synthetic temperature and salinity profiles from the WOA ob-
servations. The generator network (top) takes a 25× 1 random vec-
tor and, through a series of convolution layers, outputs a synthetic
combined profile. The discriminator network (bottom) is given both
real and synthetic profiles and labels these as real or fake. Both net-
works learn from one another, resulting in a generator network that
can create an infinite number of realistic temperature and salinity
profiles from random noise.
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Figure D2. Temperature and salinity profiles (a) extracted from the WOA dataset (Boyer et al., 2018) from the closest 2000 m depth cell
around Antarctica (N = 1440) and (b) generated from the GAN (N = 5000), trained on the WOA data shown in (a). WOA data are converted
to the TEOS10 standard (Intergovernmental Oceanographic Commission et al., 2015), prior to being used to train the GAN.
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Appendix E: Architecture choice

MELTNET consists of two networks acting in tandem: treat-
ing the task of melt rate prediction as a classification task
and using a denoising autoencoder to convert this segmented
prediction to a continuous melt rate field. This approach has
not, to our knowledge, been used before to emulate physi-
cal models, and yet, in this case, it shows improved perfor-
mance compared to other architectures we tested that make
melt rate predictions using a single network. A large number
of alternative machine learning architectures could be used to
solve the task of melt rate prediction directly, for example, as
a single network regression problem rather than the stacked
network approach that we use in MELTNET, and we discuss
some of these alternatives below.

A convolutional neural network (CNN) can be used to em-
ulate complex physical systems; for example, this methodol-
ogy has shown great success in emulating glacier flow (Jou-
vet et al., 2022). We explored this option using a CNN con-
sisting of a series of convolution operations followed by non-
linear activation functions and a final linear activation func-
tion in the output layer. The model was trained by min-
imising a mean-squared-error loss function on the NEMO-
modelled melt rates, and model hyperparameters (batch size,
learning rate, filter size, number of layers, and activation
function choice) were tuned on the validation set to obtain
the best results possible. Performance on the test set com-
pared to MELTNET was considerably lower in terms of both
NRMSE (0.134 vs. 0.105) and correlation (0.510 vs. 0.732).

Figure E1. Comparison between a random selection of NEMO-modelled melt rates (row 1), melt rates as predicted by MELTNET (row 2),
melt rates predicted by an alternative UNET architecture with a regression output layer (UNET-R; row 3), and a regression CNN (CNN-R;
row 4), as described in Sect. E. Numbers in the lower left corner of each neural network output show the NRMSE with respect to the NEMO
melt rates.

Alternatively a UNET style architecture, such as the one
used in the segmentation component of MELTNET, can be
altered to predict the desired melt rates via regression, rather
than melt rate labels. We explored various architectures here
as well, but we will focus our comparison on the simplest and
fairest option: converting the segmentation network already
used within MELTNET directly to predict a continuous melt
rate field. This can be accomplished by changing the out-
put layer to a linear activation function and minimising the
same mean-squared-error loss function as the second net-
work of MELTNET. This means our modified network has
approximately the same number of learnable parameters as
MELTNET (since the DAE component has relatively few).
Model hyperparameters (including learning rate, batch size,
momentum and filter size) were optimised using the valida-
tion set, and performance on the test set was then compared
to MELTNET. Once again, this architecture performs consid-
erably less well in terms of both NRMSE (0.135 vs. 0.105)
and correlation (0.593 vs. 0.732). We show a comparison be-
tween melt rates calculated by NEMO and MELTNET and
the two alternative architectures discussed in this appendix
in Fig. E1.
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Stacking two networks as we have done here in MELT-
NET represents a different approach to other emulators of
physical systems using some form of convolutional network,
which generally treat this as a regression problem. Here, in-
stead, MELTNET treats the prediction of melt rates as a seg-
mentation task, seeking to identify which regions of an ice
shelf will have a certain melt rate regime and learning to la-
bel those regions correctly. Then, as a second step, the DAE
network learns to effectively remove the “noise” from this
output, thereby converting labels to the desired melt rate out-
put. Thus, although the final output layer of MELTNET is
the same as the one that would be used if this were treated as
a regression task, the way in which the melt rate prediction
task is handled by the network is very different. This refram-
ing of the task of emulating a physical system as a segmen-
tation task has not, to our knowledge, been done before. We
find that in this case it outperforms other approaches but un-
doubtedly will not be suitable for all problems of this kind.

Appendix F: Model parameters

Table F1. Parameters for the two intermediate-complexity melt rate
models (PICO and PLUME), showing both the originally published
values and the optimised values that minimised the NRMSE to
NEMO melt rates, as described in the Methods section.

Parameter Model Value Original

ρi all 917
ρw all 1030
γ ∗
T

PICO 0.97× 106 2.00× 10−5 ms−1

C PICO 1.00× 106 0.70× 106 m6 s−1 kg−1

0T S PLUME 2.19× 10−4 6.00× 10−4

E0 PLUME 1.98× 10−2 3.60× 10−2

Code availability. All deep learning development and training was
done using MATLAB’s deep learning toolbox (The MathWorks,
2021). MATLAB code for the training of and prediction with
MELTNET, including a sample of the validation sets, is avail-
able at https://doi.org/10.5281/zenodo.7018247 (Rosier, 2022). The
two intermediate-complexity melt rate parameterisations were im-
plemented in the open-source ice flow model Úa, available at
https://doi.org/10.5281/zenodo.3706623 (Gudmundsson, 2020). A
complete set of the synthetic geometries, generated to train MELT-
NET, is available from the authors upon request.

Data availability. No data sets were used in this article.
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