Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-349-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-349-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Xingdong Li
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Collaborative Innovation Center for Integrated Management of Water
Resources and Water Environment in the Inner Mongolia Reaches of the Yellow
River, Hohhot 010018, China
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Collaborative Innovation Center for Integrated Management of Water
Resources and Water Environment in the Inner Mongolia Reaches of the Yellow
River, Hohhot 010018, China
Yanhong Cui
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Collaborative Innovation Center for Integrated Management of Water
Resources and Water Environment in the Inner Mongolia Reaches of the Yellow
River, Hohhot 010018, China
Tingxi Liu
CORRESPONDING AUTHOR
Water Conservancy and Civil Engineering College, Inner Mongolia Key
Laboratory of Water Resource Protection and Utilization, Inner Mongolia
Agricultural University, Hohhot 010018, China
Collaborative Innovation Center for Integrated Management of Water
Resources and Water Environment in the Inner Mongolia Reaches of the Yellow
River, Hohhot 010018, China
Jing Lu
State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Mohamed A. Hamouda
Department of Civil and Environmental Engineering, United Arab
Emirates University, Al Ain 15551, United Arab Emirates
National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
Mohamed M. Mohamed
Department of Civil and Environmental Engineering, United Arab
Emirates University, Al Ain 15551, United Arab Emirates
National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
Related authors
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023, https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Ahmed Wagih, Mohamed Hamouda, and Hilal El-Hassan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1501–1507, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025, 2025
Fanyu Zhao, Di Long, Chenqi Fang, Yiming Wang, and Xingwu Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-652, https://doi.org/10.5194/egusphere-2025-652, 2025
Short summary
Short summary
The heterogeneous surge behaviors in Karakoram reveal critical knowledge gaps in the underlying mechanism, urging detailed investigations. We integrate multisource remote sensing (satellite altimetry, DEMs, optical/SAR imagery) to holistically characterize surge phases of a Karakoram glacier, quantifying flow velocity, surface elevation, terminus position, and lake level variations. This integrated approach underscores the value of multi-sensor synergies in deciphering complex surge mechanisms.
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023, https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Cited articles
Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the
hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294,
https://doi.org/10.1016/j.jhydrol.2005.06.039, 2006.
Atwood, D. K., Gunn, G. E., Roussi, C., Wu, J., Duguay, C., and Sarabandi,
K.: Microwave backscatter from Arctic lake ice and polarimetric
implications, IEEE T. Geosci. Remote, 53, 5972–5982, https://doi.org/10.1109/TGRS.2015.2429917, 2015.
Beckers, J. F., Casey, J. A., and Haas, C.: Retrievals of Lake Ice Thickness
From Great Slave Lake and Great Bear Lake Using CryoSat-2, IEEE T.
Geosci. Remote, 55, 3708–3720, https://doi.org/10.1109/TGRS.2017.2677583, 2017.
Cai, Z., Jin, T., Li, C., Ofterdinger, U., Zhang, S., Ding, A., and Li, J.:
Is China's fifth-largest inland lake to dry-up? Incorporated hydrological
and satellite-based methods for forecasting Hulun lake water levels, Adv.
Water Resour., 94, 185–199, https://doi.org/10.1016/j.advwatres.2016.05.010, 2016.
Cheng, B., Mäkynen, M., Similä, M., Rontu, L., and Vihma, T.:
Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic,
Ann. Glaciol., 54, 105–113, https://doi.org/10.3189/2013AoG62A180, 2013.
Cooley, S. W., Ryan, J. C., Smith, L. C., Horvat, C., Pearson, B., Dale, B.,
and Lynch, A. H.: Coldest Canadian Arctic communities face greatest
reductions in shorefast sea ice, Nat. Clim. Change, 10, 533–538, https://doi.org/10.1038/s41558-020-0757-5, 2020.
Davis, C. H.: A robust threshold retracking algorithm for measuring
ice-sheet surface elevation change from satellite radar altimeters, IEEE
T. Geosci. Remote, 35, 974–979, https://doi.org/10.1109/36.602540, 1997.
Du, J., Kimball, J. S., Duguay, C., Kim, Y., and Watts, J. D.: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015, The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, 2017.
Duguay, C. and Lafleur, P.: Determining depth and ice thickness of shallow
sub-Arctic lakes using space-borne optical and SAR data, Int. J. Remote
Sens., 24, 475–489, https://doi.org/10.1080/01431160304992, 2003.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Menard, P., Morris, K., and
Rouse, W. R.: Ice-cover variability on shallow lakes at high latitudes:
model simulations and observations, Hydrol. Process., 17, 3465–3483, https://doi.org/10.1002/hyp.1394, 2003.
Engram, M., Anthony, K. W., Sachs, T., Kohnert, K., Serafimovich, A.,
Grosse, G., and Meyer, F.: Remote sensing northern lake methane ebullition,
Nat. Clim. Change, 10, 511–517, https://doi.org/10.1038/s41558-020-0762-8, 2020.
Fu, L.-L. and Cazenave, A.: Satellite altimetry and earth sciences: a
handbook of techniques and applications, Elsevier, https://doi.org/10.1029/01EO00233, 2000.
Gunn, G. E., Brogioni, M., Duguay, C., Macelloni, G., Kasurak, A., and King,
J.: Observation and modeling of X-and Ku-band backscatter of snow-covered
freshwater lake ice, IEEE J. Sel. Top. Appl., 8, 3629–3642, 2015.
Han, P. F., Long, D., Han, Z. Y., Du, M. D., Dai, L. Y., and Hao, X. H.:
Improved understanding of snowmelt runoff from the headwaters of China's
Yangtze River using remotely sensed snow products and hydrological modeling,
Remote Sens. Environ., 224, 44–59, https://doi.org/10.1016/j.rse.2019.01.041, 2019.
Han, Z. Y., Long, D., Han, P. F., Huang, Q., Du, M. D., and Hou, A. Z.: An
improved modeling of precipitation phase and snow in the Lancang River Basin
in Southwest China, Sci. China Technol. Sc., 64, 1513–1527, https://doi.org/10.1007/s11431-020-1788-4, 2021.
Horstmann, J., Koch, W., Lehner, S., and Tonboe, R.: Wind retrieval over the
ocean using synthetic aperture radar with C-band HH polarization, IEEE
T. Geosci. Remote, 38, 2122–2131, https://doi.org/10.1109/36.868871, 2000.
Horstmann, J., Schiller, H., Schulz-Stellenfleth, J., and Lehner, S.: Global
wind speed retrieval from SAR, IEEE T. Geosci. Remote, 41,
2277–2286, https://doi.org/10.1109/tgrs.2003.814658, 2003.
Howell, S. E. L., Brown, L. C., Kang, K.-K., and Duguay, C. R.: Variability
in ice phenology on Great Bear Lake and Great Slave Lake, Northwest
Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006, Remote Sens.
Environ., 113, 816–834, https://doi.org/10.1016/j.rse.2008.12.007, 2009a.
Howell, S. E. L., Brown, L. C., Kang, K.-K., and Duguay, C. R.: Variability
in ice phenology on Great Bear Lake and Great Slave Lake, Northwest
Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006, Remote Sens.
Environ., 113, 816–834, https://doi.org/10.1016/j.rse.2008.12.007, 2009b.
Howell, S. E. L., Komarov, A. S., Dabboor, M., Montpetit, B., Brady, M.,
Scharien, R. K., Mahmud, M. S., Nandan, V., Geldsetzer, T., and Yackel, J.
J.: Comparing L- and C-band synthetic aperture radar estimates of sea ice
motion over different ice regimes, Remote Sens. Environ., 204, 380–391, https://doi.org/10.1016/j.rse.2017.10.017, 2018.
Howell, S. E. L., Small, D., Rohner, C., Mahmud, M. S., Yackel, J. J., and
Brady, M.: Estimating melt onset over Arctic sea ice from time series
multi-sensor Sentinel-1 and RADARSAT-2 backscatter, Remote Sens. Environ.,
229, 48–59, https://doi.org/10.1016/j.rse.2019.04.031, 2019.
Huang, Q., Long, D., Du, M., Zeng, C., Li, X., Hou, A., and Hong, Y.: An
improved approach to monitoring Brahmaputra River water levels using
retracked altimetry data, Remote Sens. Environ., 211, 112–128, https://doi.org/10.1016/j.rse.2018.04.018, 2018.
Huang, Q., Li, X. D., Han, P. F., Long, D., Zhao, F. Y., and Hou, A. Z.:
Validation and application of water levels derived from Sentinel-3A for the
Brahmaputra River, Sci. China Technol. Sc., 62, 1760–1772, https://doi.org/10.1007/s11431-019-9535-3, 2019.
Kang, K.-K., Duguay, C. R., Howell, S. E., Derksen, C. P., and Kelly, R. E.:
Sensitivity of AMSR-E brightness temperatures to the seasonal evolution of
lake ice thickness, IEEE Geosci. Remote S., 7, 751–755, https://doi.org/10.1109/LGRS.2010.2044742, 2010.
Kang, K. K., Duguay, C. R., Lemmetyinen, J., and Gel, Y.: Estimation of ice
thickness on large northern lakes from AMSR-E brightness temperature
measurements, Remote Sens. Environ., 150, 1–19, https://doi.org/10.1016/j.rse.2014.04.016,
2014.
Kim, Y.-S., Onstott, R., and Moore, R.: Effect of a snow cover on microwave
backscatter from sea ice, IEEE J. Oceanic Eng., 9, 383–388,
1984.
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J.
J., Straile, D., and Weyhenmeyer, G. A.: Consequences of lake and river ice
loss on cultural ecosystem services, Limnol. Oceanogr. Lett., 4, 119–131, https://doi.org/10.1002/lol2.10116, 2019.
Kouraev, A. V., Zakharova, E. A., Remy, F., and Suknev, A. Y.: Study of Lake
Baikal Ice Cover from Radar Altimetry and In-Situ Observations, Mar. Geod.,
38, 477–486, https://doi.org/10.1080/01490419.2015.1008155, 2015.
Kropáček, J., Maussion, F., Chen, F., Hoerz, S., and Hochschild, V.: Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data, The Cryosphere, 7, 287–301, https://doi.org/10.5194/tc-7-287-2013, 2013.
Larue, F., Picard, G., Aublanc, J., Arnaud, L., Robledano-Perez, A., Le
Meur, E., Favier, V., Jourdain, B., Savarino, J., and Thibaut, P.: Radar
altimeter waveform simulations in Antarctica with the Snow Microwave
Radiative Transfer Model (SMRT), Remote Sens. Environ., 263, 112534, https://doi.org/10.1016/j.rse.2021.112534, 2021.
Li, X., Long, D., Huang, Q., Han, P., Zhao, F., and Wada, Y.: High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions, Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, 2019.
Li, X., Long, D., Huang, Q., and Zhao, F.: Supplementary Data for “The state and fate of lake ice thickness in the Northern Hemisphere”, Zenodo [data set], https://doi.org/10.5281/zenodo.5528542, 2021.
Li, X., Long, D., Huang, Q., and Zhao, F.: The state and fate of lake ice
thickness in the Northern Hemisphere, Sci. Bull., 67, 537–546, https://doi.org/10.1016/j.scib.2021.10.015, 2022a.
Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F., Sun, Z.,
and Wang, G.: Climate change threatens terrestrial water storage over the
Tibetan Plateau, Nat. Clim. Change, 12, 801–807, https://doi.org/10.1038/s41558-022-01443-0, 2022b.
Long, D. and Li, X.: Water loss over the Tibetan Plateau endangers water
supply security for Asian populations, Nat. Clim. Change, 12, 785–786, https://doi.org/10.1038/s41558-022-01451-0, 2022.
Mangilli, A., Thibaut, P., Duguay, C. R., and Murfitt, J.: A New Approach
for the Estimation of Lake Ice Thickness From Conventional Radar Altimetry,
IEEE T. Geosci. Remote, 60, 1–15, 2022.
Medeiros, A. S., Friel, C. E., Finkelstein, S. A., and Quinlan, R.: A high
resolution multi-proxy record of pronounced recent environmental change at
Baker Lake, Nunavut, J. Paleolimnol., 47, 661–676, https://doi.org/10.1007/s10933-012-9589-2, 2012.
Mullan, D., Swindles, G., Patterson, T., Galloway, J., Macumber, A., Falck,
H., Crossley, L., Chen, J., and Pisaric, M.: Climate change and the
long-term viability of the World's busiest heavy haul ice road, Theor. Appl.
Climatol., 129, 1089–1108, https://doi.org/10.1007/s00704-016-1830-x, 2017.
Murfitt, J. and Duguay, C. R.: 50 years of lake ice research from active
microwave remote sensing: Progress and prospects, Remote Sens. Environ.,
264, 112616, https://doi.org/10.1016/j.rse.2021.112616, 2021.
Murfitt, J., Duguay, C. R., Picard, G., and Gunn, G. E.: Investigating the
Effect of Lake Ice Properties on Multifrequency Backscatter Using the Snow
Microwave Radiative Transfer Model, IEEE T. Geosci. Remote, 60,
1–23, 2022.
Murfitt, J. C., Brown, L. C., and Howell, S. E. L.: Estimating lake ice
thickness in Central Ontario, PLOS ONE, 13, e0208519, https://doi.org/10.1371/journal.pone.0208519, 2018.
Peureux, C., Longépé, N., Mouche, A., Tison, C., Tourain, C.,
Lachiver, J. m., and Hauser, D.: Sea-ice detection from near-nadir Ku-band
echoes from CFOSAT/SWIM scatterometer, Earth Space Sci., 9,
e2021EA002046, https://doi.org/10.1029/2021EA002046, 2022.
Pour, H. K., Duguay, C. R., Scott, K. A., and Kang, K.-K.: Improvement of
lake ice thickness retrieval from MODIS satellite data using a thermodynamic
model, IEEE T. Geosci. Remote, 55, 5956–5965, 2017.
Scharroo, R., Bonekamp, H., Ponsard, C., Parisot, F., von Engeln, A., Tahtadjiev, M., de Vriendt, K., and Montagner, F.: Jason continuity of services: continuing the Jason altimeter data records as Copernicus Sentinel-6, Ocean Sci., 12, 471–479, https://doi.org/10.5194/os-12-471-2016, 2016.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S.,
Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., and Winslow, L.:
Widespread loss of lake ice around the Northern Hemisphere in a warming
world, Nat. Clim. Change, 9, 227–231, https://doi.org/10.1038/s41558-018-0393-5, 2019.
Sharma, S., Blagrave, K., Watson, S. R., O'Reilly, C. M., Batt, R.,
Magnuson, J. J., Clemens, T., Denfeld, B. A., Flaim, G., and Grinberga, L.:
Increased winter drownings in ice-covered regions with warmer winters, PLOS
ONE, 15, e0241222, https://doi.org/10.1371/journal.pone.0241222, 2020.
Shu, S., Liu, H., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., Yang, B.,
Hinkel, K. M., Huang, Y., and Yu, B.: Analysis of Sentinel-3 SAR altimetry
waveform retracking algorithms for deriving temporally consistent water
levels over ice-covered lakes, Remote Sens. Environ., 239, 111643, https://doi.org/10.1016/j.rse.2020.111643, 2020.
Stewardship, M. W.: State of Lake Winnipeg: 1999 to 2007, Environment Canada
and Manitoba Water Stewardship, ISBN 978-1-100-18827-0, 2011.
Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M.: The complex
dielectric constant of snow at microwave frequencies, IEEE J.
Ocean. Eng., 9, 377–382, 1984.
Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y., Zhang, M., and
Zhao, L.: Global lake evaporation accelerated by changes in surface energy
allocation in a warmer climate, Nat. Geosci., 11, 410–414, https://doi.org/10.1038/s41561-018-0114-8, 2018.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys.
Res.-Atmos., 113, D14220,
https://doi.org/10.1029/2007JD009744, 2008.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016.
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly,
C. M., and Sharma, S.: Global lake responses to climate change, Nature
Reviews Earth & Environment, 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5,
2020.
Wu, Q., Li, C., Sun, B., Shi, X., Zhao, S., and Han, Z.: Change of ice
phenology in the Hulun Lake from 1986 to 2017, Prog. Geogr., 38,
1933–1943, https://doi.org/10.18306/dlkxjz.2019.12.009, 2019.
Wu, Y., Long, D., Lall, U., Scanlon, B. R., Tian, F., Fu, X., Zhao, J.,
Zhang, J., Wang, H., and Hu, C.: Reconstructed eight-century streamflow in
the Tibetan Plateau reveals contrasting regional variability and strong
nonstationarity, Nat. Commun., 13, 6416, https://doi.org/10.1038/s41467-022-34221-9, 2022.
Yang, X., Pavelsky, T. M., and Allen, G. H.: The past and future of global
river ice, Nature, 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1, 2020.
Yang, Y., Moore, P., Li, Z., and Li, F.: Lake Level Change From Satellite
Altimetry Over Seasonally Ice-Covered Lakes in the Mackenzie River Basin,
IEEE T. Geosci. Remote, 59, 8143–8152, https://doi.org/10.1109/tgrs.2020.3040853,
2021.
Yu, Y. and Rothrock, D.: Thin ice thickness from satellite thermal imagery,
J. Geophys. Res.-Oceans, 101, 25753–25766, 1996.
Zakharova, E., Agafonova, S., Duguay, C., Frolova, N., and Kouraev, A.: River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies, The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, 2021.
Zeng, T., Shi, L., Marko, M., Cheng, B., Zou, J., and Zhang, Z.: Sea ice
thickness analyses for the Bohai Sea using MODIS thermal infrared imagery,
Acta Ocean. Sin., 35, 96–104, https://doi.org/10.1007/s13131-016-0908-8, 2016.
Zhang, G., Ran, Y., Wan, W., Luo, W., Chen, W., Xu, F., and Li, X.: 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, 2021.
Zhao, F., Long, D., Li, X., Huang, Q., and Han, P.: Rapid glacier mass loss
in the Southeastern Tibetan Plateau since the year 2000 from satellite
observations, Remote Sens. Environ., 270, 112853, https://doi.org/10.1016/j.rse.2021.112853,
2022.
Ziyad, J., Goita, K., Magagi, R., Blarel, F., and Frappart, F.: Improving
the Estimation of Water Level over Freshwater Ice Cover using Altimetry
Satellite Active and Passive Observations, Remote Sensing, 12, 967, https://doi.org/10.3390/rs12060967, 2020.
Short summary
This study blends advantages of altimetry backscattering coefficients and waveforms to estimate ice thickness for lakes without in situ data and provides an improved water level estimation for ice-covered lakes by jointly using different threshold retracking methods. Our results show that a logarithmic regression model is more adaptive in converting altimetry backscattering coefficients into ice thickness, and lake surface snow has differential impacts on different threshold retracking methods.
This study blends advantages of altimetry backscattering coefficients and waveforms to estimate...