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Abstract. Lake ice, serving as a sensitive indicator of climate
change, is an important regulator of regional hydroclimate
and lake ecosystems. For ice-covered lakes, traditional satel-
lite altimetry-based water level estimation is often subject to
winter anomalies that are closely related to the thickening
of lake ice. Despite recent efforts made to exploit altimetry
data to resolve the two interrelated variables, i.e., lake ice
thickness (LIT) and the water level of ice-covered lakes, sev-
eral important issues remain unsolved, including the inability
to estimate LIT with altimetric backscattering coefficients in
ungauged lakes due to the dependence on in situ LIT data.
It is still unclear what role lake surface snow plays in the
retrieval of LIT and water levels in ice-covered lakes with al-
timetry data. Here we developed a novel method to estimate
lake ice thickness by combining altimetric waveforms and
backscattering coefficients without using in situ LIT data. To
overcome complicated initial LIT conditions and better rep-
resent thick ice conditions, a logarithmic regression model
was developed to transform backscattering coefficients into
LIT. We investigated differential impact of lake surface snow
on estimating water levels for ice-covered lakes when dif-
ferent threshold retracking methods are used. The developed
LIT estimation method, validated against in situ data and

cross-validated against modeled LIT, shows an accuracy of
∼ 0.2 m and is effective at detecting thin ice that cannot be
retrieved by altimetric waveforms. We also improved the es-
timation of water levels for ice-covered lakes with a strategy
of merging lake water levels derived from different threshold
methods. This study facilitates a better interpretation of satel-
lite altimetry signals from ice-covered lakes and provides op-
portunities for a wider application of altimetry data to the
cryosphere.

1 Introduction

Lake ice plays a unique and critical role in regulating lake
ecosystems through the modulation of fluxes in and out of
the lake, e.g., solar radiation, evaporation, sensible heat, and
methane emission (Cooley et al., 2020; Engram et al., 2020;
Sharma et al., 2019; Wang et al., 2018; Wik et al., 2016;
Woolway et al., 2020). The vulnerability of lake ice to cli-
mate change causes wide concern for the stability of boreal
lake ecosystems and the sustainability of socioeconomic ac-
tivities that rely on lake ice (Knoll et al., 2019; Mullan et al.,
2017). Lake ice cover and lake ice thickness (LIT) are two es-
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sential climate variables (ECVs) related to lake ice identified
by the Global Climate Observing System (GCOS). Lake ice
cover is a measure of the lake ice quantity (horizontally). LIT
can provide information on both the lake ice quantity (verti-
cally) and quality (e.g., the strength of lake ice), which is
highly related to the safety of human activities on ice. For in-
stance, LIT loss could reduce the availability of ice roads (Li
et al., 2022a) and increase the possibility of winter drowning
(Sharma et al., 2020). However, compared with the inten-
sively investigated lake/river ice cover (Du et al., 2017; Yang
et al., 2020; Kropácek et al., 2013), the knowledge of LIT
is largely limited, mostly due to the lack of in situ observa-
tions and effective remote-sensing-based methods. There is
a considerable gap between the monitoring accuracy of LIT
expected by the GCOS (1–2 cm) and that of current remote-
sensing-based approaches (0.1–0.2 m). For winter water level
estimation based on altimeters, the existence of lake ice is a
barrier that could cause an abrupt decrease in the altimetric
lake surface height (LSH; Shu et al., 2020). To resolve this
issue, a better understanding of the impact of lake ice and
lake surface snow on altimetric signals is necessary.

Current remote sensing of LIT is based mostly on infor-
mation from thermal infrared sensors and microwave sen-
sors (Murfitt and Duguay, 2021). Thermal infrared informa-
tion such as lake surface temperatures can be used to drive a
freezing degree-day-based model or more sophisticated lake
ice models to estimate LIT (Yu and Rothrock, 1996; Pour
et al., 2017; Zeng et al., 2016; Li et al., 2022a). However,
cloud contamination and complex physical processes related
to lake surface snow (Cheng et al., 2013; Duguay et al., 2003)
could limit the accuracy and robustness of the method based
on thermal infrared information and lake ice modeling. Mi-
crowave information has a certain penetration depth (Atwood
et al., 2015) within the lake ice and is not affected by cloud
cover, providing a great potential of more direct and robust
observations of LIT.

Some previous studies focused on the use of passive mi-
crowave information, i.e., brightness temperature (TB) ob-
tained by satellite radiometers. Kang et al. (2010) explored
the relationship between TB obtained by AMSR-E (Ad-
vanced Microwave Scanning Radiometer for EOS) and LIT
in two Canadian lakes, Great Slave Lake (GSL) and Great
Bear Lake (GBL), indicating that the increase in LIT is asso-
ciated with the increase in TB. They later showed that, with a
linear regression model, a 18.7 GHz TB could best represent
the LIT accumulation, and the accuracy (root mean squared
error, RMSE) was ∼ 0.18 m (Kang et al., 2014). Passive mi-
crowave methods perform well in terms of high temporal res-
olution (daily) but are limited to a few large lakes due to the
low spatial resolution, as the pixel size of the 18.7 GHz TB is
25 km.

Active microwave remote sensing of LIT can be further
categorized into classes based on (1) synthetic-aperture radar
(SAR) images or (2) satellite altimetry. Backscattering coef-
ficients of SAR images would experience a rapid decrease

when the lake surface is covered by skim ice (a quasi-
specular reflector), followed by a steady increase with the
accumulation of LIT until the floating lake ice becomes bed-
fast lake ice or the melting starts (Duguay and Lafleur, 2003;
Murfitt and Duguay, 2021; Howell et al., 2009a; Murfitt et al.,
2018). Given the mentioned behaviors, backscattering coef-
ficients from SAR images were widely used to discriminate
bedfast lake ice from floating lake ice and the monitoring of
lake/sea ice phenology (Howell et al., 2018, 2019). However,
due to the high variability in the roughness associated with
ice growth, the SAR-image-based LIT estimation is subject
to larger uncertainty when the ice thickness exceeds 40 cm
(Murfitt and Duguay, 2021).

Satellite altimeters were initially designed for monitoring
ocean topography. Nevertheless, numerous studies have ex-
plored the potential of satellite altimetry in monitoring inland
waters, such as river water levels and discharge, lake wa-
ter levels and storage changes, glacier elevation changes and
mass balance, and recently in LIT (Huang et al., 2019; Za-
kharova et al., 2021; Murfitt et al., 2022; Beckers et al., 2017;
Zhang et al., 2021; Zhao et al., 2022; Li et al., 2022a; Huang
et al., 2018; Li et al., 2019). Altimetry-based LIT can be de-
rived from backscattering coefficients or radar waveforms.
Different from the SAR images indicated above, backscatter-
ing coefficients from satellite altimeters would experience a
rapid increase when the open water is covered with skim ice,
followed by a steady decrease with the thickening of LIT un-
til the melting starts. A recent study (Zakharova et al., 2021)
investigated the relationship between the altimetry-based
backscattering coefficients and in situ river ice thickness,
suggesting the great potential of altimetry-based backscat-
tering coefficients in estimating LIT for thin ice. However,
in situ ice thickness data are necessary to derive regression
models, which greatly limits applications of the method de-
veloped by Zakharova et al. (2021). To avoid confusion, the
term “backscattering coefficients” refers to altimetry-based
backscattering coefficients in the following context, unless
otherwise stated.

LIT estimation based on satellite altimetric waveforms
was first investigated by Beckers et al. (2017), with double-
peak waveforms from CryoSat-2 on GSL and GBL, which
provides a potential approach for robust LIT monitoring be-
cause the method is physically based and does not rely on
parameterization. Shu et al. (2020) combined the method de-
veloped by Beckers et al. (2017) in winter water level re-
trieval using Sentinel-3 data. CryoSat-2 and Sentinel-3 are
SAR altimeters with pulse-Doppler-limited footprints, which
can be regarded as beam-limited footprints. Compared with
traditional pulse-limited altimeters such as TOPEX/Posei-
don (T/P) and Jason-1/2/3 (available since 1992), the time
span of SAR altimeters such as CryoSat-2 and Sentinel-3 is
relatively short (i.e., CryoSat-2 was launched in 2010, and
Sentinel-3A was launched in 2016). The method developed
by Beckers et al. (2017) is not that compatible with tra-
ditional pulse-limited altimeters because the waveforms of
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pulse-limited altimeters are largely different from those from
SAR altimeters. Li et al. (2022a) developed a LIT estimation
method suitable for pulse-limited altimeters T/P and Jason-
1/2/3. Therefore, the time span of retrievable LIT has been
increased substantially from ∼ 10 years to almost 3 decades.
The temporal resolution has also been largely improved be-
cause T/P and Jason-1/2/3 have the shortest revisit cycle
(∼ 10 d) among all existing satellite altimeters. However, the
LIT estimation for thin ice based on radar waveforms is lim-
ited by the range resolution of the waveform. For instance,
the minimum LIT retrievable with the method developed by
Beckers et al. (2017) is 0.263 m for CryoSat-2 theoretically.
For Jason-1/2/3, Li et al. (2022a) suggested that the LIT re-
trieval is robust after LIT exceeds 0.4 m because the wave-
forms of Jason-1/2/3 have a coarser range resolution than
CryoSat-2.

Water level estimation for ice-covered lakes is essential
for water resources management in the cryosphere under a
changing climate (Li et al., 2022b; Long and Li, 2022; Wu
et al., 2022) and has been investigated with different ap-
proaches for different altimeters (Shu et al., 2020; Yang et
al., 2021; Ziyad et al., 2020). Ziyad et al. (2020) devel-
oped a classification scheme to separate Jason-2 observations
from the ice-covered lake surface from the open-water sur-
face and only used open-water observations to derive water
level time series to avoid the contamination from lake ice.
Shu et al. (2020) applied the method developed by Beck-
ers et al. (2017) to estimate LIT using Sentinel-3 and then
derived a range correction associated with LIT to correct
the abrupt drop in winter altimetric water levels. Yang et
al. (2021) tested several threshold retracking algorithms to
develop a modified subwaveform threshold (MST) retrack-
ing method for two-peak waveforms from T/P and Jason-
1/2/3 to improve the water level estimation during ice sea-
sons. The MST retracking algorithm could avoid winter wa-
ter level anomalies for most cases, and the metrics of derived
altimetric water levels are quite promising, e.g., the standard
deviations (SDs) of the differences between altimetric wa-
ter levels and in situ water levels are mostly smaller than
0.1 m among study lakes (GSL, GBL, and Athabasca Lake).
However, an important issue remains to be further discussed.
Causes of the two-peak waveforms are still not clear and
could be attributed to multiple backscattering surfaces, i.e.,
snow surface, snow–ice interface, and ice–water interface.
Yang et al. (2021) suggested that the first subwaveform of
Jason-1/2/3 waveforms from ice-covered lake surfaces corre-
sponds to snow–ice interfaces based on the comparison with
in situ water levels. However, Li et al. (2022a) suggested that
the first subwaveform corresponds to the snow surface for
most Canadian lakes based on the comparison with in situ
ice and snow thickness. A better understanding of the for-
mation of altimetry radar waveforms from ice-covered lake
surfaces could benefit the retrieval of winter water levels and
LIT.

This study was designed to (1) combine satellite-altimetry-
based waveforms and backscattering coefficients to improve
LIT estimation for ungauged lakes and thin ice and (2) ex-
plore possible improvements in altimetric water level esti-
mation for ice-covered lakes through a better understanding
of altimetric signals from snow and ice-covered lake sur-
faces. As mentioned above, LIT estimation based on wave-
forms alone is ineffective for thin ice, and altimetry-based
backscattering coefficients have the potential to monitor thin
ice. Meanwhile, the dependence on in situ data limits a
wider application of altimetry-based backscattering coeffi-
cients to LIT estimation. Therefore, the combination of these
two methods (satellite-altimetry-based backscattering coef-
ficients and waveforms) could be complementary. To exploit
the potential of backscattering coefficients in LIT estimation,
we derived a logarithmic regression model to better represent
various lake ice conditions, which is detailed in Sects. 3.2 and
4.1. As for water level estimation, we mainly explored differ-
ent behaviors of lake surface snow when different threshold
methods were used. We then developed an approach of merg-
ing water level time series derived from different threshold
methods.

This paper is organized as follows. Section 2 introduces
the study area and data used. Section 3 provides details on
LIT estimation based on the combination of backscattering
coefficients and waveforms from satellite altimetry, in addi-
tion to an improved water level estimation method for ice-
covered lakes. Section 3 also includes a detailed deduction
of an original logarithmic regression model used to convert
backscattering coefficients into LIT. Section 4 shows the per-
formance of the logarithmic model and the validation of LIT
and water level estimation methods. Section 5 discusses dif-
ferential impact of lake surface snow when different thresh-
old methods are used, uncertainty sources of LIT estimation
and water level retrieval, and implications of this study for
future lake ice and lake water level research. Section 6 sum-
marizes the main findings of this study.

2 Study area and data

2.1 Study area

As shown in Fig 1, we investigated eight lakes, includ-
ing five lakes in Canada, i.e., GBL (121.30◦W, 65.91◦ N),
GSL (114.37◦W, 62.09◦ N), Athabasca Lake (109.96◦W,
59.10◦ N), Winnipeg Lake (97.25◦W, 52.12◦ N), and Baker
Lake (95.28◦W, 64.13◦ N), as well as two lakes in Asia, i.e.,
Hulun Lake (117.38◦ E, 48.97◦ N) and Har Lake (93.21◦ E,
48.05◦ N), and one lake in Europe, i.e., Peipus Lake
(27.45◦ E, 58.65◦ N). Environmental and climatic conditions
of the study lakes are summarized in Table 1. GBL, GSL,
and Athabasca Lake are located in the Mackenzie River
basin, where mean annual temperature ranges from −10 to
3 ◦C from the northern to the southern part of the basin.
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Mean annual precipitation in the Mackenzie River basin is
410 mm but ranges between 300 and 1000 mm from north-
east to southwest (Howell et al., 2009a; Abdul Aziz and
Burn, 2006). Baker Lake is located in the northeastern part
of Canada, with an annual air temperature of −9.6 ◦C and an
annual precipitation of 157 mm (Medeiros et al., 2012). Win-
nipeg Lake covers a wide range of latitudes, and mean an-
nual air temperatures vary considerably from south (1.6 ◦C)
to north (−0.7 ◦C). Mean annual precipitation in the Win-
nipeg Lake basin is 498 mm (Stewardship, 2011). Hulun
Lake has an annual temperature of 2.3 ◦C and an annual
precipitation of 240 mm that mostly takes place from June
to September due to a continental monsoon climate (Cai et
al., 2016; Wu et al., 2019). Har Lake (Khar Lake) is lo-
cated in a desert in Mongolia, with an annual temperature
of ∼ 0.8 ◦C and an annual precipitation of ∼ 50 mm based
on reanalysis data and a surface water resource report (https:
//raise.suiri.tsukuba.ac.jp/new/press/youshi_sugita8.pdf, last
access: 19 January 2023). Peipus Lake is on the border
of Russia and Estonia, with a mean annual temperature of
∼ 6 ◦C and a mean annual precipitation of ∼ 630 mm, based
on climate records from the Estonia Environment Agency
(https://www.ilmateenistus.ee/?lang=en, last access: 19 Jan-
uary 2023). Among the eight study lakes, based on the avail-
ability of in situ measurements and environmental condi-
tions, GSL, Baker Lake, Peipus Lake, Hulun Lake, and Har
Lake were selected for testing the LIT retrieval method,
while GSL, GBL, Athabasca Lake, and Winnipeg Lake were
selected for the test of the water level estimation method.

2.2 Data

The satellite altimetry data we used here were collected by
Jason-1/2/3, covering the 2002–2020 period. Ground tracks
for each lake are shown in Fig. 1. Jason-1/2/3 are follow-on
missions of T/P and inherited the orbit of their predecessor.
T/P and Jason-1/2/3 have the shortest revisit time, of ∼ 10 d,
among existing satellite altimetry missions, providing ob-
servations from 66◦ N to 66◦ S. Radar altimeters carried by
Jason-1/2/3 are dual-frequency (Ku-band and C-band) pulse-
limited altimeters. The term pulse-limited essentially means
that the size of radar altimetry illuminated area/footprints is
limited by the pulse width as opposed to the beam width
(such as laser altimeters and SAR altimeters). As a result,
the trailing edge of pulse-limited waveforms is milder and
noisier than that of beam-limited waveforms, adding to the
difficulty of retrieving LIT based on waveforms.

The altimetry products used here were the Sensor Geo-
physical Data Records (SGDRs), containing waveforms,
backscattering coefficients for the Ku band and C band,
satellite altitude, uncorrected range, and range corrections
(atmospheric corrections and geophysical corrections) for
20 Hz footprints (20 footprints per second, with a spacing of
∼ 330 m). The SGDR products also provide corrected ranges
using several retracking algorithms (ICE, MLE3, and MLE4)

Table
1.E

nvironm
entaland

clim
ate

conditions
ofstudy

lakes.

L
ake/region

M
ean

air
W

interair
Precipitation

L
ocation

R
eference

nam
e

tem
perature

(
◦C

)
tem

perature
(
◦C

)
(m

m
)

M
ackenzie

R
iverbasin

−
10

to
3

−
35

to
−

25
410

∼
115
◦

W
,
∼

62
◦

N
A

bdulA
ziz

and
B

urn
(2006),H

ow
elletal.(2009b)

(G
B

L
,G

SL
,A

thabasca
L

ake)

B
akerL

ake
−

9.6
−

30
to
−

20
157

95.28
◦

W
,64.13

◦
N

https://clim
ate.w

eather.gc.ca
(lastaccess:19

January
2023)and

M
edeiros

etal.(2012)

W
innipeg

L
ake

−
0.7

to
1.6

−
20

to
−

5
498

97.25
◦

W
,52.12

◦
N

https://clim
ate.w

eather.gc.ca
(lastaccess:19

January
2023)and

Stew
ardship

(2011)

H
ulun

L
ake

2.3
−

16
to
−

10
240

117.38
◦

E
,48.97

◦
N

W
u

etal.(2019)and
W

ang
etal.(2017)

H
arL

ake
∼

0.8
−

15
to
−

5
∼

50
93.21

◦
E

,48.05
◦

N
M

ongolia
surface

w
aterreportand

reanalysis
data

Peipus
L

ake
∼

6
−

5
to
−

2
630

27.45
◦

E
,58.65

◦
N

http://w
w

w
.ilm

ateenistus.ee
(lastaccess:19

January
2023)

The Cryosphere, 17, 349–369, 2023 https://doi.org/10.5194/tc-17-349-2023

https://raise.suiri.tsukuba.ac.jp/new/press/youshi_sugita8.pdf
https://raise.suiri.tsukuba.ac.jp/new/press/youshi_sugita8.pdf
https://www.ilmateenistus.ee/?lang=en
https://climate.weather.gc.ca
https://climate.weather.gc.ca
http://www.ilmateenistus.ee


X. Li et al.: Ice thickness and water level estimation for ice-covered lakes 353

Figure 1. Study lakes and satellite altimetry ground tracks used.
Red curves denote ground tracks of T/P and Jason-1/2/3. Red num-
bers denote the ground track number.

but have been shown to be unreliable in the water level esti-
mation for ice-covered lakes (Yang et al., 2021). However,
it does not mean that default retracking algorithms (MLE4)
are irrelevant to this study. On the contrary, backscattering
coefficients provided in the SGDR products are generated
from the MLE4 retracking algorithm and are highly related
to the amplitude of the waveforms. The altimetry data used
can be obtained from the Archiving, Validation, and Inter-
pretation of Satellite Oceanographic data (AVISO+; http:
//ftp-access.aviso.altimetry.fr, last access: 19 January 2023).

To validate the derived LIT, we obtained in situ LIT for
GSL and Baker Lake collected by the Ice Thickness Pro-
gram Collection, which is available at (https://www.canada.
ca/en/services/environment/weather/other-services.html, last
access: 19 January 2023). The data set contains weekly in
situ snow and ice thickness measured with drilled holes. We
also obtained in situ LIT of Lake Peipus from hydrologi-
cal yearbooks of Estonia, which is available at (https://www.
ilmateenistus.ee/?lang=en, last access: 19 January 2023).
Sampling positions of GSL, Baker Lake, and Peipus Lake
are listed in Table 2. It should be noted that in situ ice thick-

ness data are often measured near the shore, where the lake
water freezes earlier, and the ice thickness could be larger at
the beginning of ice seasons (Murfitt et al., 2022; Mangilli
et al., 2022). Data records for GSL and Baker Lake have
been updated to 2016 and 2020, respectively. To validate
the derived altimetric water levels, we obtained daily gauge
water levels for GBL, GSL, Athabasca Lake, and Winnipeg
Lake collected by the Water Survey of Canada (available at
https://wateroffice.ec.gc.ca/index_e.html, last access: 19 Jan-
uary 2023). Gauge station names, station codes, locations,
and record time span for different lakes are listed in Table 2.
The in situ water levels were measured with pressure sen-
sors and therefore represent the free water surface (Yang et
al., 2021). Given that in situ and altimetric water levels are
based on different datums, we removed the systematic bias
between them before making any comparison. The system-
atic bias is defined as the mean difference between in situ
water level time series and altimetric water level time series.

We also used modeled LIT to provide cross-validation for
lakes without in situ LIT measurements. The modeled LIT
data were based on a one-dimensional remote sensing lake
ice model developed by Li et al. (2022a). The 1-D lake ice
model developed by Li et al. (2022a) has a similar structure
to the HIGHTSI (high resolution one-dimensional thermo-
dynamic snow and ice) model, but it uses the Moderate Res-
olution Imaging Spectroradiometer (MODIS) Land Surface
Temperature (LST) sensor as the upper boundary condition
to solve the heat transfer equation within lake ice and sur-
face snow. MODIS albedo was also incorporated to reduce
uncertainty in simulated surface snow depth. Based on val-
idation against in situ data (e.g., in Baker Lake, GSL, and
Peipus Lake), the remote sensing lake ice model shows an ac-
curacy of 0.1–0.2 m (RMSE). The modeled LIT is available
at https://doi.org/10.5281/zenodo.5528542 (Li et al., 2021).

3 Method

A workflow of the methods to retrieve LIT and LSH is il-
lustrated in Fig. 2. Ku-band backscattering coefficients of
Jason-1/2/3 were first extracted to classify the type of the ob-
servation, i.e., the open-water period and the ice-covered pe-
riod. The LIT would first be estimated based on double-peak
waveforms (to be illustrated in Sect. 3.1). Then the initial
LIT results were used to derive a regression model with the
Ku-band backscattering coefficients of Jason-1/2/3 to trans-
form backscattering coefficients into LIT (to be explained in
Sect. 3.2). Subsequently, the LITs based on waveforms and
backscattering coefficients were merged and validated/cross-
validated against in situ LIT/modeled LIT.

LSH estimation is based on threshold retracking methods
(to be detailed in Sect. 3.3). For the double-peak waveform in
the ice-covered period, only the first subwaveform is used to
retrieve LSH, which is similar to what Yang et al. (2021) have
done. Here we used different thresholds (0.1 and 0.5) to gen-
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Table 2. In situ lake water level gauging stations and LIT observation sites used in this study.

Lake name Data Station ID Location Period of available records

Great Bear Lake (GBL) Water level 10JE002 66.6◦ N, 117.6◦W 10 Jul 1984–31 Dec 2018
Great Slave Lake (GSL) Water level 07OB001 62.4◦ N, 114.35◦W 31 Jan 1934–31 Dec 2018

Ice thickness / 62.4◦ N, 114.35◦W 2 Jan 1992–28 Apr 2016
Winnipeg Lake Water level 05SG001 53.18◦ N, 99.2◦W 24 Jun 1953–31 Dec 2020
Athabasca Lake Water level 07MC003 59.38◦ N, 108.88◦W 25 Feb 1956–31 Dec 2020
Baker Lake Ice thickness / 64.3◦ N, 96.0◦W 10 Jan 1992–31 Dec 2021
Peipus Lake Ice thickness / 58.83◦ N, 26.99◦ E 8 Jan 1991–25 Feb 2015

erate two LSH time series (LSH_01 and LSH_05 in Fig. 2)
because they have different performance in open-water and
ice-covered periods, i.e., the time series derived from a 0.1
threshold could better reveal the LSH for the ice-covered pe-
riod, whereas that derived from a 0.5 threshold could better
represent the LSH for the open-water period. The system-
atic bias between the two time series based on the 0.1 and
0.5 thresholds during the open-water period was removed to
merge them into the final LSH time series that were validated
with in situ water levels.

3.1 LIT retrieval with satellite altimetry waveforms

LIT estimation based on Jason-1/2/3 waveforms was devel-
oped by Li et al. (2022a). Here we provide the basic con-
cepts and steps of this method and some comparisons with
previous studies. Altimetry radar waveforms represent the
returned radar power as a function of time. When the lake
surface is covered with ice and snow, the radar pulse can be
backscattered from the air–snow interface, the snow–ice in-
terface, or the ice–water interface. The coupling of signals
backscattered from different interfaces could result in the
double-peak waveforms. The second peak of the waveform,
often the highest, is related to the signal from the ice–water
interface. However, the source of the first peak is still not
clear. The time lag between the two peaks is the time a radar
pulse transfers between the two interfaces and can be used to
calculate the thickness of the medium. Beckers et al. (2017)
tested the first peak and the highest peak of CryoSat-2 wave-
forms to estimate the LIT. SAR altimeters such as CryoSat-2
can be seen as beam limited in the along-track direction. The
beam-limited waveforms have steep trailing edges so that it
is easier to identify peaks associated with the ice–water in-
terface. Nonetheless, for pulse-limited altimeters with a mild
and noisy trailing edge, multiple peaks in the trailing edge are
not uncommon, as shown in Fig. 3a, making it difficult to se-
lect the correct peak associated with the ice–water interface.
In addition, LITs derived using waveform peaks are discrete
because the time difference between different peaks is multi-
ple integers of a bin width (3.125 ns for Jason-1/2/3). There-
fore, Li et al. (2022a) developed a dual-threshold retracking
algorithm to estimate the LIT with Jason-1/2/3 waveforms.

Procedures of the dual-threshold retracking method are as
follows.

1. Find the inflection point T on the leading edge of the
waveform. If the inflection point appears near the mid-
dle of the leading edge, then it indicates that there
could be two peaks on the leading edge representing the
snow/ice surface and ice bottom. If the inflection point
appears close to the top of the leading edge, then it sug-
gests that there is only one peak on the leading edge, and
the waveform will be discarded. Assume that the wave-
form is comprised of P1, P2. . .PN . The power difference
for adjacent bins can be calculated asDi = Pi+1−Pi. S
is the SD ofD1,D2. . .DN−1. The first bin of the leading
edge is defined as the G0, which satisfiesDG0 > 0.2×S.
Then [G0, G0+15] is defined as the search window.
The inflection point T in the search window satisfies
DT <DT−1. Subsequently, find the maximum power
PM in the search window. If PT > 0.9PM, discard the
waveform, because the inflection point appears near the
top of the leading edge.

2. The first subwaveform associated with the snow/ice sur-
face is defined as [PG0, . . .PT+1], while the second sub-
waveform associated with the ice bottom is defined as
[PT , . . .PM]. Then, two thresholds (Th1 and Th2) can
be calculated to determine the two tracking points for
the snow/ice surface and ice bottom. Here we used a
0.5 threshold to calculate Th1 and Th2, as shown by
Eqs. (1)–(2). The two tracking points (T1 and T2) can
be calculated with Eqs. (3)–(4).

Th1 = 0.5× (PG0+PT+1) (1)
Th2 = 0.5× (PT +PM) (2)

T1= x+
Th1−Px

Px+1−Px
, where Px < Th1, Px+1 > Th1 (3)

T2= y+
Th2−Py

Py+1−Py
, where Py < Th2, Py+1 > Th2. (4)

The ice thickness can be calculated as LIT= 0.5×(T2−
T1)× ci× 3.125× 10−9, where ci is the speed of mi-
crowave in ice. The ci is calculated with c/ni, where ni
is 1.78, the refractive index of ice at the Ku band (War-
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Figure 2. Workflow of this study. Procedures/intermediate data associated with LSH estimation are marked with green. Procedures/inter-
mediate data associated with LIT estimation are marked with blue. LSH_01_water denotes that these intermediate data are the lake surface
height (LSH) derived with a 0.1 threshold during the open-water period. LSH_01_ice denotes the same meaning but for the ice-covered
period. LSH_01 denotes the time series containing all LSH retrievals derived with a 0.1 threshold. Similarly, LSH_05_water, LSH_05_ice,
and LSH_05 denote the LSHs for different periods derived with a 0.5 threshold. LIT_waveform denotes the LIT derived from double-peak
waveforms. LIT_sigma denotes LIT derived from backscattering coefficients.

ren and Brandt, 2008). After acquiring LITs for all foot-
prints for each cycle, the median LIT of each cycle will
be used to form the LIT time series.

3.2 LIT retrieval with satellite altimetry backscattering
coefficients

The evolution in backscattering coefficients during ice sea-
sons is complicated and very different between satellite
altimetry and SAR images. For open water, altimetric
backscattering coefficients are relatively low, ranging from
10 to 20 dB for different cycles. For the same cycle, the spa-
tial variation in altimetric backscattering coefficients on the
open water is small (< 1 dB), as shown by the red curve
in Fig. 4b. Overall, there are four stages of variations in
backscattering coefficients with ice evolution during ice sea-
sons (dashed line boxes in Fig. 4a). Stage I refers to the pe-
riod when the lake starts to freeze and be covered by skim ice.
During this stage, the altimetric backscattering coefficients
soar to a high value in a year (e.g., the first dashed line box
in Fig. 4a), which could be attributed to the quasi-specular re-
flecting effect of the smoothed lake surface. Meanwhile, the
spatial variation in the altimetric backscattering coefficients

becomes relatively large (generally> 2 dB), as shown by the
blue curve in Fig. 4c.

In comparison, backscattering coefficients derived from
SAR images experience high and low values due to wind-
induced lake surface roughness for open-water periods
(Horstmann et al., 2003, 2000) but decrease rapidly when the
lake starts to freeze. The reason why the altimetric backscat-
tering coefficients deviate from those based on SAR images
is that altimetry data are nadir-looking observations, while
most pixels in SAR images are side-looking observations (Fu
and Cazenave, 2000; Peureux et al., 2022). Consequently, the
incident direction is collinear (noncollinear) with the reflec-
tion direction for satellite altimetry (SAR images). There-
fore, the backscattered energy is high (low) by the quasi-
specular reflector for satellite altimeters (SAR images). In
the following context, the term “backscattering coefficients”
refers to altimetry-based backscattering coefficients.

During stage II, with the increase in LIT, the backscatter-
ing coefficients start to decrease steadily until the melting
starts (e.g., the second dashed line box in Fig. 4a). The de-
crease in backscattering coefficients could be attributed to the
increased absorption and volume scattering associated with
the increased LIT. During stage III, when the melting begins,
there will be an abrupt decrease in backscattering coefficients
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Figure 3. Mechanisms of the LIT estimation based on waveforms and backscattering coefficients. (a) A Jason-2 waveform obtained from
ice-covered GSL. Red triangles indicate retracking points derived from the dual-threshold retracking algorithm, which can be used to estimate
LIT. The red solid circle denotes the retracking point of the first subwaveform with a 0.1 threshold retracker, which can be used to derive
LSH. (b) Scatterplot of the backscattering coefficients and LIT derived from the dual-threshold retracking algorithm through the ice season
of 2008–2009 for GSL. Backscattering coefficients can be transformed into LIT with the derived regression model.

Figure 4. Temporal and spatial variations in the Jason-2 Ku-band backscattering coefficients on GSL. (a) Time series of mean backscattering
coefficients for each cycle during 2009–2017. Blue shading areas denote the SD of backscattering coefficients for each cycle. Panels (b)
and (c) are distributions of the backscattering coefficients along with latitudes for specific cycles/dates (including 22 October 2009 and
19 April 2010 in panel b and 9 December 2014 and 27 May 2015 in panel b). Lake surface latitudinal ranges are marked with double-arrows
in panels (b) and (c).
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(e.g., the third dashed line box in Fig. 4a), which is caused
partially by ice metamorphism (formation of dendroidal air
channels just below the ice surface and early stages of nee-
dle ice formation; Kouraev et al., 2015). As shown by the
blue curve in Fig. 4b, the backscattering coefficients are very
low (e.g., < 10 dB) and noisy over the melting lake surface.
The SD of the backscattering coefficients here representing
the variability in the spatial domain for the melting period
is much larger than that for the open-water period. Based on
this phenomenon, we set a criterion (the mean backscatter-
ing coefficients < 15 dB and SD> 1.5 dB) to filter out the
abrupt decrease in backscattering coefficients when the melt-
ing starts because these low values would lead to unrealistic
large LIT estimates.

During stage IV, as the LIT continues to decrease with
the melting process, backscattering coefficients start to in-
crease to a high value once again because of the decrease
in absorption and volume scattering effect. Eventually, once
the ice completely melts, the backscattering coefficients drop
to a level of the open-water surface (e.g., the fourth dashed
line box in Fig. 4a). Therefore, the highest peak in the freez-
ing period and the highest peak in the melting period were
selected to characterize the ice-on and ice-off dates, which
classify the observations into either open-water observations
or ice-covered observations, as suggested by Zakharova et
al. (2021). We compared the backscattered ice-on and ice-
off dates against the ice phenology manually identified with
MODIS images in GSL and found good agreement between
the two independent data (Fig. S1 in the Supplement).

Based on the variability in backscattering coefficients dur-
ing the ice seasons, Zakharova et al. (2021) assumed the
decrease in backscatter between two consecutive observa-
tions to be proportional to the gain in ice thickness and de-
rived a regression model between the cumulative backscat-
ter difference and the in situ river ice thickness on the
Lower Ob River. The regression model has the form of
Hi = a×CumSum(dSig/dt)b, where Hi is the ice thickness,
CumSum(dSig/dt) is the cumulative backscatter difference,
and a and b are model parameters calibrated against in situ
ice thickness. For simplicity, this model is referred to as the
power function model in the following context. The power
function model does not consider the physical process asso-
ciated with ice growth and is dependent on in situ measure-
ments, which limits a wider application of the method. In
addition, we found that the performance of LIT estimation
using only one regression model with one set of model pa-
rameters can be fairly unstable from year to year and from
lake to lake, partially because the initial ice and snow con-
ditions can be very different for each winter and each lake,
which is also mentioned by Zakharova et al. (2021).

We developed a new regression model considering the
physical processes and applied this model to relate backscat-
tering coefficients with LITs derived from waveforms for
each lake and during each winter. Therefore, we can cir-
cumvent the problems caused by the difference in initial ice

Figure 5. A schematic diagram of radar-altimetry-specific intensity
backscattered/reflected from ice-covered lakes. Black arrows denote
the incident-specific intensity. Red arrows denote backscattered- or
reflected-specific intensity. I0 denotes the transmitted microwave
intensity just below the snow–ice interface. I denotes the transmit-
ted microwave intensity that has just reached the ice–water inter-
face. I1 denotes the backscattered intensity from the air–snow inter-
face, I2 denotes the backscattered intensity from the snow–ice inter-
face, and I3 denotes the backscattered intensity from the ice–water
interface. Note that, at the nadir, the incident angle is small, and the
backscattered/reflected pulse is approximately collinear with the in-
cident radar pulse.

and snow conditions. Meanwhile, we can derive LITs based
on backscattering coefficients without in situ ice thickness
measurements. Because our model has a logarithmic form
(Eq. 10), it is referred to as the logarithmic model. As shown
in Sect. 4.1, the logarithmic model can better represent the
LIT compared with the power function model for lakes with
thick ice (e.g., > 1 m) and rapid ice accumulation rates.

Theoretically, radar pulse would be backscattered from
multiple snow and ice layers, given that different snow/ice
layers have different density and temperatures that could in-
fluence the backscattering process. The backscattered inten-
sity is a function of the distance, direction, and time that re-
quires detailed modeling, as was done by Larue et al. (2021).
To provide a straightforward derivation of the regression
model we developed, here we focus on the backscattered in-
tensity of the nadir and assume the radar pulse to be backscat-
tered mostly from three interfaces, i.e., the air–snow inter-
face, the snow–ice interface, and the ice–water interface. Vol-
ume scattering from snow layers also affects the backscat-
tered intensity, which is discussed in Sect. 5.2. Here we ap-
proximate the backscattered intensity Ib with the sum of
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I1, I2, and I3, i.e., the backscattered intensity from the air–
snow, the snow–ice, and the ice–water interfaces, as shown
in Fig. 5. We assume the reflectance for these interfaces to be
R1, R2, and R3, respectively. Given the incident intensity I0,
the backscattered intensity Ib can be written as Eq. (5):

Ib = I1+ I2+ I3 = R1I0+ I2+ I3. (5)

At stage II (shown in Fig. 4), backscattering coefficients de-
crease with the increase in LIT, which could be caused by
the increased absorption and volume scattering. Here we ap-
proximate the extinction of microwave intensity in snow and
ice with an exponential equation. For instance, I2 and I3 can
be written as Eqs. (6) and (7):

I2 = R2(1−R1)I0× e
−2kHs (6)

I3 = R3(1−R2)(1−R1)I0× e
−2k(Hs+Hi), (7)

where k is an effective extinction coefficient for snow and
ice, Hs and Hi denote the thickness of snow and ice, and R2
and R3 denote reflectance at the snow–ice and the ice–water
interfaces.

Note that the backscattered intensity does a round trip in
the snow and ice. Therefore, the exponential term in Eq. (7)
is written as exp(−2k(Hs+Hi)). By substituting I2 and I3 in
Eq. (5), the total microwave intensity backscattered from the
ice-covered lake surface can be approximated by Eq. (8).

Ib =
(
R1I0+R2(1−R1)I0× e

−2kHs
)

+R3(1−R2)(1−R1)I0× e
−2k(Hs+Hi). (8)

Based on Fresnel’s equation, the reflectance of the interface
is proportional to the difference in refractive indices. The dif-
ferences in refractive indices of the air–snow and the snow–
ice interfaces are relatively small compared with those of
the ice–water interface, i.e., R1 (I1) and R2 (I2) are rela-
tively small compared to R3 (I3). Given that I1 and I2 are
small and are not related to the ice growth, we use a constant
to represent them in the model. The backscattering coeffi-
cients should be proportional to the backscattered intensity
Ib. Therefore, we suggest using Eq. (9) to relate backscatter-
ing coefficients with the snow and ice thickness, as follows:

σ0 = A+B × e
−K(Hs+Hi), (9)

where σ0 is the backscattering coefficient, and A, B, and K
are model parameters to be calibrated. The following strat-
egy can be used to determine the parameters in an efficient
way. ParameterA generally ranges from 0 to 20 dB and is not
very sensitive. Therefore, discrete values can be assigned to
A directly, such as 0,1, . . .,20. Then, for each assigned pa-
rameter A, transforming Eq. (9) into Eq. (10) results in the
following logarithmic regression model:

(Hs+Hi)=−
1
K
× ln(σ0−A)+C, C =

ln(B)
K

, (10)

where parametersK and C in Eq. (10) can be determined us-
ing linear regression. The residual sum of squares for each set
of A,K , and C can be calculated, and the parameter group
with the lowest residual sum of squares was selected as the
final estimates. The calibrated parameters are generally sat-
isfactory, as shown in Fig. 3b. It is possible that the regres-
sion model yields negative LIT at the beginning of the ice
seasons because the initial backscattering coefficient exceeds
the range of data used in the regression. If that is the case,
Eq. (9) can be adjusted as Eq. (11) to ensure that the initial
LIT is non-negative, where σmax is the maximum backscat-
tering coefficient during that ice season.

σ0 = A+ σmax× e
−K(Hs+Hi). (11)

3.3 Water level estimation for ice-covered lakes

Yang et al. (2021) developed a straightforward method to re-
trieve water levels for ice-covered lakes using T/P and Jason-
1/2/3 data. The basic concept of their method is to extract
the first subwaveform from the double-peak waveform and
apply the 0.1-threshold retracking algorithm to the first sub-
waveform. By comparing with in situ water levels, lake ice
thickness, and snow depth, Yang et al. (2021) suggested that
the first subwaveform retracked with a 0.1 threshold (e.g., the
red circle in Fig. 3a) is associated with the snow–ice interface
and can be used as a good approximation to the free water
surface. We noticed that, in the dual-threshold retracking al-
gorithm (Li et al., 2022a), the first tracking gate (e.g., the
first red triangle in Fig. 3a) is very close to the 0.5-threshold
tracking point of the first subwaveform. By comparing the
altimetric LIT with in situ LIT and snow depth, we found
that the altimetric LIT is close to the total thickness of ice
and snow for most cases, meaning that the first tracking gate
is likely associated with the snow surface. Consequently, it
remains a question as to whether the first subwaveform rep-
resents signals from the snow surface or the snow–ice inter-
face.

In addition, for a given waveform (as shown in Fig. 3a), the
0.1-threshold tracking gate (red circle) should be ahead of the
0.5 tracking point (the first red triangle), meaning that the as-
sociated surface height of the 0.1 threshold should be higher
than that of the 0.5 threshold. But, based on the mentioned
two studies, the 0.1 threshold is related to the snow–ice in-
terface, while the 0.5 threshold is related to the snow surface.
The inconsistency between the two studies causes ambigu-
ity in determining the interface associated with the first sub-
waveform, thereby reducing the reliability of altimetric LIT
and LSH for ice-covered lakes.

LSHs for ice-covered lakes were first retrieved using dif-
ferent thresholds. The 0.1 threshold yields higher LSH than
the 0.5 threshold for each waveform, meaning that a sys-
tematic bias exists between LSH time series from the 0.1
threshold and from the 0.5 threshold. To remove the sys-
tematic biases, we selected LSH retrievals during open-water
periods as the baseline because observations obtained dur-
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ing open-water periods are more stable and robust. For the
open-water period, the classic 0.1- and 0.5-threshold meth-
ods were directly applied to the waveform separately. During
the ice-covered period, the 0.1- and 0.5-threshold methods
were applied to the first subwaveform. All LSH retrievals for
both ice-covered and open-water periods derived with the 0.1
threshold were aggregated into one time series (LSH_01),
and all LSH retrievals based on the 0.5 threshold were aggre-
gated into the other (LSH_05).

Subsequently, the systematic biases (bias) between the two
time series were calculated as the mean difference between
LSH_01 and LSH_05 during open-water periods. Then we
combined the two time series by the concatenation of obser-
vations from LSH_05 during open-water periods and those
from (LSH_01-bias) during ice-covered periods, yielding
the merged LSH time series for the entire study period. In
Sect. 4.3, we show that the merged time series outperformed
both LSH_01 and LSH_05.

4 Results

4.1 Performance of the logarithmic regression model

To evaluate the performance of the logarithmic model, we
proposed (Eq. 10) to convert backscattering coefficients into
LIT. We compared it with the power function model used
by Zakharova et al. (2021). As we mentioned in Sect. 3.2,
our method can use waveform-based LIT to calibrate param-
eters in the logarithmic model and does not rely on in situ
LIT. However, to evaluate the feasibility and potential of both
models, we directly used in situ LIT in Baker Lake instead
of waveform-based LIT to generate model parameters, which
could represent the best performance of both models ideally.
In addition, different from Zakharova et al. (2021), who split
in situ data into training and validation periods, we used all
available data in each ice-covered season to calibrate param-
eters for both models due to the large variability in optimal
parameter sets in different ice-covered seasons.

As illustrated in Sect. 3.2, the power function model as-
sumes the LIT to be a power function of the accumulated
backscattering difference. The LIT naturally starts from zero
on the freeze-up date detected by Jason-1/2/3 because the ac-
cumulated backscattering difference is zero at the beginning.
It has been shown that the power function model is effective
for the estimation of river ice thickness thinner than 1 m. But
it is not clear if it is suitable for thicker ice conditions, e.g.,
in Baker Lake.

The maximum LIT in Baker Lake exceeds 2 m and, for
most of the frozen season, the LIT is over 1 m, which means
that the LIT would increase rapidly at the beginning of ice
seasons. Therefore, when Jason-1/2/3 first detects the lake
ice in their 10 d revisit cycles, the LIT is not zero but could
be several decimeters, which is not fully considered in the
power function model. The logarithmic model, however, is

compatible with such kind of initial LIT conditions, as shown
by Fig. 6. It is obvious that, for the power function model,
the initial LIT is estimated as zero, but in situ measurements
could range from 0.2 to 1 m (Fig. 6a).

The logarithmic model could well represent the initial LIT,
and its overall performance (R2 of 0.90 and RMSE of 17 cm)
is better than that of the power function model (R2 of 0.77
and RMSE of 25 cm), even if the initial LIT data pairs are
removed from the power function model (R2 of 0.78 and
RMSE of 22 cm). In addition, underestimation of LIT is more
severe in the power function model when the LIT exceeds
1.5 m, suggesting some saturation effects. Therefore, we sug-
gest to using logarithmic models when the LIT exceeds 1 m
or the LIT increases rapidly at the beginning of ice seasons.

4.2 LIT based on the combination of waveforms and
backscattering coefficients

The accuracy of waveform-based LIT has been re-
ported to be 0.15–0.2 m, based on a comparison against
in situ data (Li et al., 2022a). The waveform-based
LIT data set used in this study is available online
(https://doi.org/10.5281/zenodo.5528542, Li et al., 2021).
Here we mainly validated backscattering-coefficient-based
LITs against the in situ thickness of lake ice and snow
(Fig. 7). The overall performance of the backscattering-
coefficient-based LIT is close to that based on waveforms,
as summarized in the Table 3. Correlation coefficients (CCs)
and RMSEs for Baker Lake, GSL, and Peipus Lake are 0.94,
0.80, and 0.76 and 24 cm, 17 cm, and 11 cm, respectively. As
suggested by Zakharova et al. (2021), such accuracy is appli-
cable in climate studies but may not meet the need for engi-
neering purposes (e.g., ice roads).

The backscattering-coefficient-based LITs using our
method show metrics slightly lower than that of Zakharova
et al. (2021; RMSE of 7–18 cm). However, the relative errors
between the two studies are similar because the ice thick-
ness in the previous study (Zakharova et al., 2021) is gen-
erally smaller than 0.8 m, while the LIT and snow thickness
on GSL and Baker Lake could be over 1.5 and 2 m, respec-
tively. On the other hand, our method does not depend on in
situ data and can be applied to ungauged lakes without in situ
LIT measurements but with altimetric data. As we illustrated
in Sect. 3.2, parameters used to convert backscattering coef-
ficients into LIT can be calibrated against waveform-based
LIT. The backscattered LIT shown in Figs. 7 and 8 was gen-
erated solely based on altimetry information. Calibration pa-
rameters and metrics for each lake and each ice season are
available in the Supplement (Table S1).

The backscattered LIT has advantages in estimating thin
ice, albeit based on parameters calibrated against waveform-
based LIT. In Peipus Lake, where the total thickness of snow
and ice does not exceed 0.8 m, the waveform-based method
can only retrieve the LIT at the very late phase of ice accu-
mulation, resulting in limited observations each year. How-
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Figure 6. Comparison between in situ and estimated LIT of Baker Lake based on (a) a power function model (Zakharova et al., 2021) and
(b) a logarithmic model (this study). For both models, a separate set of parameters were derived for each ice season to best fit the in situ LIT.
Panels (a) and (b) are scatterplots of all the matched data pairs from 2003 to 2019. Numbers in parentheses denote metrics after the removal
of outliers marked by yellow circles.

ever, based on the limited waveform-based LIT, e.g., four or
five observations over 0.5 m, the backscattered LIT can be
generated to provide more complete tracking of the lake ice
thickness, as shown in Fig. 7e. The performance in Lake Pei-
pus is relatively lower in terms of CC, which is likely due to a
higher contribution of signals from the lake surface snow, as
the snow generally comprises 20 %–50 % of the total thick-
ness.

LITs in GSL and Baker lake are relatively large, and the
ice thickness grows rapidly at the beginning of the ice sea-
son, making these lakes not suitable for validating thin ice
estimates. For Peipus Lake, the LIT is so small that, for
many years, there has been no available waveform-based LIT
to calibrate parameters for the logarithmic model. To fur-
ther assess the capability of backscattered LIT in the de-
tection of thinner ice, we compared the altimetry-based LIT
with modeled LIT in another two lakes with ice thickness of
∼ 1 m, i.e., Hulun (117.38◦ E 48.97◦ N) and Har (93.21◦ E
48.05◦ N). Given the different advantages of waveform-
based LIT and backscattered LIT, we used an empirical
method to merge the LIT time series based on waveforms and
backscattering coefficients; for waveform-based LIT mea-
surements, we reserved those larger than 0.7 m, and for
backscattering-coefficient-based measurements, we reserved
those smaller than 0.7 m.

Another reason for selecting the two lakes above is that
there is little snowfall in these lakes during ice-covered sea-
sons (as shown in Fig. 8), which can reduce the impact of
surface snow because the physical process of surface snow
is complicated and could cause large uncertainty in mod-
eled results (Han et al., 2019, 2021). The waveform-based
LIT in Hulun Lake was not sufficient to build a regression
model (see Sect. 3.2) for each winter before 2014, so we only
made a cross-validation through 2014–2018. In Har Lake,

Table 3. Validation/cross-validation metrics of altimetry-based LIT
in five study lakes.

Lake name CC RMSE (cm) Reference data

Baker Lake 0.94 24 In situ
Great Slave Lake 0.80 17 In situ
Peipus Lake 0.76 11 In situ
Hulun Lake 0.94 11 Modeled
Har Lake 0.89 20 Modeled

the cross-validation was made through 2003–2018, as shown
in Fig. 8. Overall, the merged altimetric LIT and model re-
sults agree well with each other in terms of an R2 of 0.88 for
Hulun Lake and 0.79 for Har Lake. But there is a relatively
larger discrepancy in Har Lake, which is likely caused by the
narrower cross-section of Har Lake and fewer available alti-
metric footprints.

4.3 Water level estimation for ice-covered lakes

The merged LSH time series were obtained by combining
the LSH based on the 0.1-threshold and the 0.5-threshold
methods, as illustrated in Sect. 3.3. Results in Fig. 9 show
that, with the systematic bias during the open-water period
removed, the LSH during ice seasons derived from the 0.5
threshold is higher than that derived from the 0.1 threshold,
which contradicts the intuition that the 0.5-threshold-based
LSH should be lower than the 0.1-threshold-based LSH. It
suggests that different choices of thresholds would result in
different backscattering interfaces when the lake surface is
covered with snow and ice. For instance, Yang et al. (2021)
suggested that the 0.1 threshold corresponds to the snow–ice
interface, while Li et al. (2022a), using a 0.5 threshold, sug-
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Figure 7. Validation of backscattering-coefficient-based LIT against the total thickness of ice and snow. Panels (a), (c), and (e) are time series
for the backscattering-coefficient-based LIT and the in situ lake ice and snow thickness in Baker Lake, GSL, and Peipus Lake. Panels (b),
(d), and (f) are the scatterplots of backscattering-coefficient-based LITs and in situ lake ice and snow thickness in Baker Lake, GSL, and
Peipus Lake, respectively.

gested that their results were close to the air–snow interface.
We further discuss causes of this phenomenon in Sect. 5.1,
indicating that conclusions from Yang et al. (2021) and Li et
al. (2022a) are not contradictory.

When comparing LSH derived from the 0.1 threshold and
the 0.5 threshold, we noticed that the 0.5-threshold-based
LSH retrievals have a more robust performance during the
open-water period (as shown in Fig. S2) and corroborated by
previous studies (Davis, 1997). For the ice-covered period,
the 0.1-threshold-based LSH retrievals are very close to the
hydrostatic water level, as suggested by Yang et al. (2021).
Therefore, we merged the two LSH time series (after remov-

ing their systematic bias during open-water periods) by re-
serving the 0.5-threshold-based LSH during the open-water
period and 0.1-threshold-based LSH for the ice-covered pe-
riod to improve the overall performance of water level es-
timation. The improvements in the merged LSH time series
compared to those based on a single threshold are shown in
Table 4.

We derived the altimetric LSH time series for four lakes,
namely Athabasca Lake, GBL, GSL, and Winnipeg Lake.
Results were validated with in situ water levels using RM-
SEs (Fig. 10). As mentioned in Sect. 3.3, the LSH time se-
ries based on both 0.1 and 0.5 thresholds were derived first
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Figure 8. Cross-validation between the merged altimetric LIT (waveforms and backscattering-coefficient-based) and modeled lake snow and
ice thickness. Panels (a) and (c) are time series for merged altimetric LIT and modeled lake snow and ice for Hulun Lake and Har Lake,
where the blue dots denote merged altimetric LIT, shaded areas denote modeled LIT, and black curves denote modeled lake ice and snow
thickness. Panels (b) and (d) are scatterplots for altimetric LIT and modeled lake ice and snow thickness for Hulun Lake and Har Lake,
respectively.

Figure 9. Comparison between LSH estimates using different thresholds in GSL. Panel (a) shows time series for altimetric LSH based on
different thresholds and in situ water levels. Panel (b) is a magnified view for the LSH time series during 2011–2013. The blue curve denotes
in situ water levels, red dots denote LSH based on a 0.1 threshold, black dots denote LSH based on a 0.5 threshold, and light blue shaded
areas denote ice-covered seasons.

and then merged into one time series by removing the sys-
tematic bias during open-water periods. Compared to in situ
measurements, the 0.1-threshold-based LSH retrievals out-
performed the 0.5-threshold-based LSH retrievals in repre-
senting hydrostatic water levels during ice-covered periods,
while the 0.5-threshold-based LSH better represents in situ
water levels during open-water periods (Fig. 6). Therefore,
the merged LSH time series should outperform both 0.1- and
0.5-threshold-based LSH time series. We did notice an im-

provement of 1.5–2 cm in the RMSE for each lake, as shown
in Table 4. Overall, the metrics of the derived water levels are
consistent with those from Yang et al. (2021) in GSL, GBL,
and Athabasca Lake. However, a direct comparison with met-
rics from Yang et al. (2021) would be inappropriate, as we
used different ground tracks and different gauging stations.
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Figure 10. Time series of merged altimetric water levels in Athabasca Lake, GBL, GSL, and Winnipeg Lake. Black curves denote in situ
lake water levels and red curves denote merged altimetric LSH for (a) Athabasca Lake, (b) GBL, (c) GSL, and (d) Winnipeg Lake. Note
that there are systematic biases between Jason-1/2/3 data, which were removed by comparing the mean LSH during the overlapping periods
between Jason-1 and Jason-2 (July 2008–January 2009) and Jason-2 and Jason-3 (February–September 2016).
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Table 4. Improvements in merged LSH compared with the LSH
based on a single threshold validated against in situ water levels.

Lake name Merged LSH 0.1-threshold 0.5-threshold
RMSE (cm) RMSE (cm) RMSE (cm)

GSL 7.1 8.0 14
GBL 8.1 9.4 10.6
Athabasca Lake 9.8 11.5 12.5
Winnipeg Lake 10.2 11.7 19.4

5 Discussion

5.1 Conceptual explanation for differences in LSH
derived from different thresholds

Normally a higher threshold of waveform retracking yields
a lower LSH, but the comparison shown in Fig. 9 indicates
that LSH based on the 0.5 threshold is higher than that based
on the 0.1 threshold when the systematic bias during open-
water periods is removed. Here we provide a conceptual ex-
planation as to why such a phenomenon occurs. As shown in
Fig. 11a–c, the pulse-limited satellite altimetry sends a mi-
crowave pulse with a certain width to the open-water surface
(with a calm wave surface), and the illuminated area grad-
ually increases to the maximum when the upper bound of
the pulse reaches the water surface. Ideally, the largest illu-
minated area is associated with the peak of the radar wave-
form (Fig. 11c). For threshold retracking methods, a portion
of the maximum power is used to mark the time when the
radar pulse reaches the backscattering surface. For instance,
the 0.1 threshold method essentially means that the moment
when the echoed radar pulse surpasses a 10 % of the wave-
form peak is selected to be the time when the radar pulse
reaches the lake surface (Fig. 11a).

To make the process of the threshold retracking more visi-
ble, we assume a sphere within the pulse, as shown by the
black dashed curve in Fig. 11. The hypothetical sphere is
assumed to have a certain distance/time lag from the lower
bound of the radar pulse, and we name it the 0.1 sphere for
simplicity. The time when the 0.1 sphere reaches the lake
surface indicates that the 0.1 threshold is met and that an
LSH is recorded. The recorded LSH is the absolute height
of the radar pulse with respect to the reference ellipsoid or
geoid (e.g., for Fig. 11a–c, 100, 99.5, and 99 m). Similarly,
we assume a sphere for the 0.5-threshold method and name
it the 0.5 sphere, as shown by the yellow dashed curve in
Fig. 11. For open-water periods, received waveforms only
come from the air–water interface, and the time lag (range
difference) between the 0.1 sphere and the 0.5 sphere is a rel-
atively stable value with some fluctuations caused by varying
wave heights.

When the lake is covered by snow and ice, the illuminated
areas become more complicated (Fig. 11d–f). The waveform
consists of information from multiple backscattering sur-

faces and volume backscattering. Consequently, there could
be multiple peaks in the waveform. Here, we only focus on
the first peak because it is most relevant to either the snow
surface or snow–ice interface. Based on previous studies (At-
wood et al., 2015; Beckers et al., 2017), we assume the first
waveform peak to occur when the upper bound of the pulse
reaches the snow–ice interface, as shown in Fig. 11f. Then
we apply the 0.1- and 0.5-threshold methods to the first peak
(Fig. 11d–e). If there is no snow cover and volume scattering,
the 0.1 threshold would be met when the 0.1 sphere reaches
the ice surface and the 0.5 threshold would be met when the
0.5 sphere reaches the ice surface. However, volume scat-
tering from snow layers contributes to the returned power
so that the backscattered energy increases faster than the
case without volume scattering. Consequently, the time lag
(range difference) between the 0.1 sphere and the 0.5 sphere
is compressed. Meanwhile, the LSH recorded in Fig. 11d–
f could be 99.6, 99.4, and 98.9 m. The associated system-
atic bias between the 0.1 threshold (Fig. 11d) and the 0.5
threshold (Fig. 11f) becomes smaller than the case of open
water (Fig. 11a–b). Therefore, with the systematic bias dur-
ing the open-water period removed, the 0.5-threshold-based
LSH would be larger than the 0.1-threshold-based LSH in
ice-covered seasons.

Here we used the LSH during 2008–2009 in GSL as an
example to illustrate the case above. Figure 12 shows the
original LSH based on the 0.5-threshold method and the
0.1-threshold method with systematic bias. During the open-
water period, the average difference in LSH between the 0.1
threshold and the 0.5 threshold is 0.46± 0.04 m, while that
during the ice-covered season decreases to 0.36± 0.02 m, as
shown in Fig. 12. With the system bias during the open-water
period removed, the LSH based on 0.5 threshold will in-
evitably exceed that based on the 0.1 threshold during the
ice-covered period.

5.2 Uncertainty and limitations

The main source of uncertainty in LIT estimation is lake sur-
face snow cover. As a result of the impact of snow cover, the
accuracy of remotely sensed LIT is in general 0.1–0.2 m in
current studies. As discussed in Sect. 5.1, lake surface snow
could influence radar waveforms and backscattering coeffi-
cients. In addition, some physical variables or processes re-
lated to snow and ice not considered in our model could also
contribute to the uncertainty in the results.

Regarding the backscattered LIT, we did not consider the
effect of volume scattering. Volume scattering is caused by
snow particles and air bubbles captured inside ice, while ice-
bottom scattering is controlled mostly by the roughness and
dielectric constant (ε) of the ice–water interface. For dry
snow, volume scattering from snow cover can increase the
backscattering coefficients of Ku-band radar obtained from
frozen lakes (Gunn et al., 2015). Based on Kim et al. (1984),
thicker snow cover contributes more to backscattering co-
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Figure 11. A schematic diagram of pulse-limited radar footprints/illuminated areas and associated waveforms on open-water (a–c) and ice-
covered (d–f) lakes. The first horizontal panel shows the side view of the radar pulse and backscattering interfaces. Black and yellow dashed
curves denote hypothetical spheres within the radar pulse associated with the 0.1 and 0.5 thresholds, respectively. The second horizontal
panel represents the illuminated areas in a vertical view, where circular area I denotes backscattering from the water surface (a–c), circular
area II denotes backscattering from snow layers (d, e), and circular area III denotes surface backscattering from the snow–ice interface (e,
f). The third horizontal panel shows the waveforms associated with illuminated areas in the second panel. P represents the returned power
and t represents the time/gate. The red curve indicates the part of the waveform that has emerged, whereas the blue curve indicates the rest
part. Waveforms in panels (a)–(c) indicate moments when a 10 %, 50 %, and 100 % of the waveform peak is met, respectively. Waveforms
in panels (d)–(f) indicate moments when a 10 %, 50 %, and 100 % of the peak in the first subwaveform is met, respectively.

Figure 12. Different systematic biases between the LSH based on the 0.1 threshold and the 0.5 threshold in different seasons. Red and
blue curves denote original LSH based on the 0.1 threshold and the 0.5 threshold in GSL during 2008–2009. The gray shade represents the
ice-covered season.

efficients due to enhanced volume scattering. Consequently,
given the same ice condition, backscattering coefficients ob-
tained from thick snow-covered lakes should be larger, which
could result in an underestimation of the LIT. On the other
hand, wet snow can hardly be penetrated by microwaves and

could largely reduce the backscattered energy, resulting in
overestimation of the LIT.

For the waveform-based LIT, the most important physical
property is the ε of snow and ice, as it determines the speed of
light within snow and ice and the timing of reflected signals
from different interfaces (higher ε corresponds to the lower
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speed of light). During the ice accumulation process, the ε of
ice is relatively stable. The ε of dry snow is almost solely de-
pendent on snow density (Tiuri et al., 1984), which can be ap-
proximated with ε = 1+2ρ, where ρ is the relative snow den-
sity (with respect to water). However, we used the same con-
stant ε for both ice and snow, which is a compromise, as we
do not have any prior information related to snow depth and
density. Because the waveform-based method measures the
time difference between different interfaces at the beginning
of ice and snow accumulation, our method could slightly un-
derestimate the total thickness of snow and ice because snow
has a smaller ε and a larger speed of light. As the snow be-
comes denser during the frozen period, and the speed of light
becomes slower in snow, the waveform-based LIT could be
closer to the total thickness of snow and ice.

As for the uncertainty in water levels, apart from the im-
pact of snow and altimeter range resolution, the source of
uncertainty is associated with remaining systematic biases.
Water level time series for ice-covered lakes are based on
the connection of observations from Jason-1/2/3 after the re-
moval of systematic biases. To identify systematic biases,
mean water levels from different sensors during overlapping
periods are compared, which is a technique commonly used.
However, it is not clear to what extent the remaining sys-
tematic biases contribute to the uncertainty in the entire wa-
ter level series. We estimated that the upper limit of the re-
maining systematic biases is ∼ 5 cm. A detailed description
of uncertainty quantification can be found in the Supplement
(Sect. S1).

5.3 Implications for future studies

Based on the discussion in Sect. 5.1, different thresholds cor-
respond to different interfaces (e.g., air–snow and snow–ice
interfaces) in ice-covered seasons. If the estimation of LSH
with different threshold methods can be further improved,
then it is possible to discriminate the snow depth from the
altimetric LIT. The relationship between backscattering co-
efficients and the surface snow depth can be further investi-
gated, which could facilitate more robust modeling of lake
ice and snow based on backscattering coefficients. It could
also facilitate more sophisticated validation of lake ice mod-
els containing snow processes.

The method developed here has the potential to be used
in early satellite altimetry missions, including T/P, ERS-1/2,
and some follow-on missions such as Jason-CS (Scharroo et
al., 2016), extending remotely sensed LIT to 3 decades and
wider spatial coverage. However, it should be investigated
whether the developed method is suited for Ka-band altime-
ters or SAR altimeters such as SARAL/AltiKa, CryoSat-2,
and Sentinel-3. This is because the penetration ability of Ka-
band microwaves and Ku-band microwaves in ice and snow
could be quite different and the pulse-Doppler-limited wave-
forms (or beam-limited waveforms; e.g., CryoSat-2) are dif-
ferent from pulse-limited waveforms.

6 Conclusions

This study presents an effective method to retrieve LIT based
solely on altimetric data (including waveforms and backscat-
tering coefficients), which is applicable to lakes without in
situ LIT measurements. We also investigate water level es-
timation for ice-covered lakes by merging LSH time series
derived from different threshold retracking algorithms. The
major findings are as follows:

1. A logarithmic regression model could be more effective
in converting backscattering coefficients into LITs than
a previously used power function model (in terms of an
R2 of 0.90 and an RMSE of 17 cm for the developed
logarithmic model).

2. When validated against in situ measurements and mod-
eled lake ice and snow thickness, the developed alti-
metric LIT estimation method combines the advantages
from the waveform-based method (physically based and
sensitive to thick ice) and the backscattering-coefficient-
based method (sensitive to thin ice). The accuracy (or
RMSE) of the merged altimetric LIT is ∼ 0.2 m for the
study lakes.

3. Merging LSH time series derived from different thresh-
old retracking algorithms (0.1 and 0.5 thresholds) can
improve the performance of the water level estimation
for the entire study period by 1.5–2 cm, compared to
the estimation with single threshold methods in terms
of RMSE among the study lakes.

4. Different threshold retracking algorithms (0.1 and 0.5
thresholds) can represent different backscattering sur-
faces for ice-covered lakes. Compared to the same base-
line (LSH during the open-water period), the 0.1 thresh-
old could represent the snow–ice interface, while the 0.5
threshold could be closer to the air–snow interface.

Overall, we provide a more robust and adaptive method for
the remote sensing of LIT and LSH for ice-covered lakes
without in situ observations. The differential impact of lake
surface snow on different threshold methods and its implica-
tions in future research related to altimetric LIT and water
level estimation are discussed. This study facilitates a better
interpretation of satellite altimetry signals from ice-covered
lakes and provides opportunities for a wider application of
altimetry data to the cryosphere.
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