Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2993-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2993-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel
Ashley J. Dubnick
CORRESPONDING AUTHOR
Department of Earth Sciences, Montana State University, Bozeman,
MT 59717, USA
Department of Earth and Atmospheric Sciences, University of Alberta,
Edmonton, Alberta, T6G 2E3, Canada
Rachel L. Spietz
Department of Microbiology and Cell Biology, Montana State University,
Bozeman, MT 59717, USA
Brad D. Danielson
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A
0E8, Canada
Mark L. Skidmore
Department of Earth Sciences, Montana State University, Bozeman,
MT 59717, USA
Eric S. Boyd
Department of Microbiology and Cell Biology, Montana State University,
Bozeman, MT 59717, USA
Dave Burgess
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A
0E8, Canada
Charvanaa Dhoonmoon
Department of Earth and Atmospheric Sciences, University of Alberta,
Edmonton, Alberta, T6G 2E3, Canada
Martin Sharp
Department of Earth and Atmospheric Sciences, University of Alberta,
Edmonton, Alberta, T6G 2E3, Canada
Related authors
No articles found.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Cécile Massiot, Ludmila Adam, Eric S. Boyd, S. Craig Cary, Daniel R. Colman, Alysia Cox, Ery Hughes, Geoff Kilgour, Matteo Lelli, Domenico Liotta, Karen G. Lloyd, Tiipene Marr, David D. McNamara, Sarah D. Milicich, Craig A. Miller, Santanu Misra, Alexander R. L. Nichols, Simona Pierdominici, Shane M. Rooyakkers, Douglas R. Schmitt, Andri Stefansson, John Stix, Matthew B. Stott, Camille Thomas, Pilar Villamor, Pujun Wang, Sadiq J. Zarrouk, and the CALDERA workshop participants
Sci. Dril., 33, 67–88, https://doi.org/10.5194/sd-33-67-2024, https://doi.org/10.5194/sd-33-67-2024, 2024
Short summary
Short summary
Volcanoes where tectonic plates drift apart pose eruption and earthquake hazards. Underground waters are difficult to track. Underground microbial life is probably plentiful but unexplored. Scientists discussed the idea of drilling two boreholes in the Okataina Volcanic Centre, New Zealand, to unravel the connections between volcano, faults, geotherms, and the biosphere, also integrating mātauranga Māori (Indigenous knowledge) to assess hazards and manage resources and microbial ecosystems.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
EGUsphere, https://doi.org/10.5194/egusphere-2023-792, https://doi.org/10.5194/egusphere-2023-792, 2023
Short summary
Short summary
Water in some glacier environments contains salt which increases the density of the fluid and decreases the freezing point of the fluid. As a result, hypersaline lakes can exist in places where freshwater cannot and can contain unique microbiological communities. We model the flow of saline fluid from a subglacial lake through a channel at the glacier bed. The results suggest that fluid with higher salinity reach higher discharge rates compared to fresh water due to increased fluid density.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker
Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, https://doi.org/10.5194/bg-17-963-2020, 2020
Short summary
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Nicholas E. Barrand, Robert G. Way, Trevor Bell, and Martin J. Sharp
The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017, https://doi.org/10.5194/tc-11-157-2017, 2017
Short summary
Short summary
This paper provides a comprehensive assessment of the state of small glaciers in the Canadian province of Labrador. These glaciers, the last in continental northeast North America, exist in heavily shaded locations within the remote Torngat Mountains National Park. Fieldwork, and airborne and spaceborne remote-sensing analyses were used to measure regional glacier area changes and individual glacier thinning rates. These results were then linked to trends in prevailing climatic conditions.
L. Gray, D. Burgess, L. Copland, M. N. Demuth, T. Dunse, K. Langley, and T. V. Schuler
The Cryosphere, 9, 1895–1913, https://doi.org/10.5194/tc-9-1895-2015, https://doi.org/10.5194/tc-9-1895-2015, 2015
Short summary
Short summary
We show that the Cryosat (CS) radar altimeter can measure elevation change on a variety of Arctic ice caps. With the frequent coverage of Cryosat it is even possible to track summer surface height loss due to extensive melt; no other satellite altimeter has been able to do this. However, we also show that under cold conditions there is a bias between the surface and Cryosat detected elevation which varies with the conditions of the upper snow and firn layers.
Related subject area
Discipline: Glaciers | Subject: Biogeochemistry/Biology
Variation in bacterial composition, diversity, and activity across different subglacial basal ice types
Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes
Microbial processes in the weathering crust aquifer of a temperate glacier
Shawn M. Doyle and Brent C. Christner
The Cryosphere, 16, 4033–4051, https://doi.org/10.5194/tc-16-4033-2022, https://doi.org/10.5194/tc-16-4033-2022, 2022
Short summary
Short summary
Here we examine the diversity and activity of microbes inhabiting different types of basal ice. We combine this with a meta-analysis to provide a broad overview of the specific microbial lineages enriched in a diverse range of frozen environments. Our results indicate debris-rich basal ice horizons harbor microbes that actively conduct biogeochemical cycling at subzero temperatures and reveal similarities between the microbiomes of basal ice and other permanently frozen environments.
Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman
The Cryosphere, 15, 1627–1644, https://doi.org/10.5194/tc-15-1627-2021, https://doi.org/10.5194/tc-15-1627-2021, 2021
Short summary
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
Brent C. Christner, Heather F. Lavender, Christina L. Davis, Erin E. Oliver, Sarah U. Neuhaus, Krista F. Myers, Birgit Hagedorn, Slawek M. Tulaczyk, Peter T. Doran, and William C. Stone
The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018, https://doi.org/10.5194/tc-12-3653-2018, 2018
Short summary
Short summary
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing meltwater and provides light that fuels an ecosystem within the ice. Our analysis documents a near-surface photic zone in a glacier that functions as a liquid water oasis in the ice over half the annual cycle. Since microbial growth on glacier surfaces reduces the amount of solar radiation reflected, microbial processes at depths below the surface may also darken ice and accelerate meltwater production.
Cited articles
Achberger, A. M., Christner, B. C., Michaud, A. B., Priscu, J. C., Skidmore,
M. L., Vick-Majors, T. J., and the WISSARD Science Team: Microbial community
structure of subglacial Lake Whillans, West Antarctica, Front. Microbiol.,
7, 1–13, https://doi.org/10.3389/fmicb.2016.01457, 2016.
Andrews, M. G., Jacobson, A. D., Osburn, M. R., and Flynn, T. M.: Dissolved
Carbon Dynamics in Meltwaters From the Russell Glacier, Greenland Ice Sheet,
J. Geophys. Res.-Biogeo., 123, 2922–2940,
https://doi.org/10.1029/2018JG004458, 2018.
APHA, AWWA, and WEF: Standard Methods for the Examination of Water and
Wastewater, 22nd ed., edited by: Rice, E. W., Baird, R. B., Eaton, A. D.,
and Clesceri, L. S., American Public Health Association, American Water
Works Association, Water Environment Federation, 1–1796, ISBN-10 087553287X,
ISBN-13 978-0875532875, 2017.
Apprill, A., McNally, S., Parsons, R., and Weber, L.: Minor revision to V4
region SSU rRNA 806R gene primer greatly increases detection of SAR11
bacterioplankton, Aquat. Microb. Ecol., 75, 129–137, 2015.
Barker, J. D., Sharp, M. J., Fitzsimons, S. J., and Turner, R. J.: Abundance
and dynamics of dissolved organic carbon in glacier systems, Arct. Antarct. Alp. Res., 38, 163–172,
https://doi.org/10.1657/1523-0430(2006)38[163:AADODO]2.0.CO;2, 2006.
Barker, J. D., Sharp, M. J., and Turner, R. J.: Using synchronous
fluorescence spectroscopy and principal components analysis to monitor
dissolved organic matter dynamics in a glacier system, Hydrol. Process., 23,
1487–1500, https://doi.org/10.1002/hyp.7274, 2009.
Barker, J. D., Klassen, J. L., Sharp, M. J., Fitzsimons, S. J., and Turner,
R. J.: Detecting biogeochemical activity in basal ice using fluorescence
spectroscopy, Ann. Glaciol., 51, 47–55,
https://doi.org/10.3189/172756411795931967, 2010.
Barker, J. J. D., Dubnick, A., Lyons, W. B., and Chin, Y.: Changes in
dissolved organic matter (DOM) fluorescence in proglacial Antarctic streams,
Arct. Antarct. Alp. Res., 45, 305–317,
https://doi.org/10.1657/1938-4246-45.3.305, 2013.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P.
B., and Charette, M. A.: Greenland meltwater as a significant and
potentially bioavailable source of iron to the ocean, Nat. Geosci., 6, 1–5,
https://doi.org/10.1038/ngeo1746, 2013.
Bingham, R. G., Nienow, P. W., Sharp, M. J., and Copland, L.: Hydrology and
dynamics of a polythermal (mostly cold) High Arctic glacier, Earth Surf. Proc. Land., 31, 1463–1479,
https://doi.org/10.1002/esp.1374, 2006.
Björkman, K. M. and Karl, D. M.: Bioavailability of inorganic and
organic phosphorus compounds to natural assemblages of microorganisms in
Hawaiian coastal waters, Mar. Ecol. Process Ser., 111, 265–273,
https://doi.org/10.3354/meps111265, 1994.
Boyd, E. S., Skidmore, M. L., Mitchell, A. C., Bakermans, C., and Peters, J.
W.: Methanogenesis in subglacial sediments, Env. Microbiol. Rep., 2,
685–692, https://doi.org/10.1111/j.1758-2229.2010.00162.x, 2010.
Boyd, E. S., Lange, R. K., Mitchell, A. C., Havig, J. R., Hamilton, T. L.,
Lafrenière, M. J., Shock, E. L., Peters, J. W., and Skidmore, M. L.:
Diversity, abundance, and potential activity of nitrifying and
nitrate-reducing microbial assemblages in a subglacial ecosystem, Appl.
Environ. Microbiol., 77, 4778–87, https://doi.org/10.1128/AEM.00376-11,
2011.
Boyd, E. S., Hamilton, T. L., Havig, J. R., Skidmore, M. L., and Shock, E.
L.: Chemolithotrophic primary production in a subglacial ecosystem, Appl.
Environ. Microbiol., 80, 6146–6153, https://doi.org/10.1128/AEM.01956-14,
2014.
Burgess, D. O., Sharp, M. J., Mair, D. W. F., Dowdeswell, J. A., and Benham,
T. J.: Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut,
Canada, J. Glaciol., 51, 219–230,
https://doi.org/10.3189/172756505781829430, 2005.
Cheng, S. M. and Foght, J. M.: Cultivation-independent and -dependent
characterization of Bacteria resident beneath John Evans Glacier, FEMS
Microbiol. Ecol., 59, 318–330,
https://doi.org/10.1111/j.1574-6941.2006.00267.x, 2007.
Christ, A. J., Bierman, P. R., Schaefer, J. M., Dahl-Jensen, D., Steffensen,
J. P., Corbett, L. B., Peteet, D. M., Thomas, E. K., Steig, E. J.,
Rittenour, T. M., Tison, J. L., Blard, P. H., Perdrial, N., Dethier, D. P.,
Lini, A., Hidy, A. J., Caffee, M. W., and Southon, J.: A
multimillion-year-old record of Greenland vegetation and glacial history
preserved in sediment beneath 1.4 km of ice at Camp Century, P. Natl.
Acad. Sci. USA, 118, e2021442118, https://doi.org/10.1073/pnas.2021442118, 2021.
Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S.
P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C.,
Skidmore, M. L., Vick-Majors, T. J., and the WISSARD Science Team: A
microbial ecosystem beneath the West Antarctic ice sheet, Nature, 512,
310–313, https://doi.org/10.1038/nature13667, 2014.
Clayton, J. R., Reimnitz, E., Payne, J. R., and Kempema, E. W.: Effects of
advancing freeze fronts on distributions of fine-grained sediment particles
in seawater- and freshwater-slush ice slurries, J. Sediment. Petrol., 60,
145–151, https://doi.org/10.1306/212f912e-2b24-11d7-8648000102c1865d, 1990.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitiation-emission spectroscopy, Mar. Chem., 51, 325–346, 1996.
Coble, P. G.: Aquatic organic matter fluorescence, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9781139045452, 2014.
Copland, L., Lacelle, D., Fisher, D., Delaney, F., Thomson, L., Main, B.,
and Burgess, D.: Warmer-wetter climate drives shift in δD-δ18O composition of precipitation across the queen Elizabeth islands,
arctic Canada, Arct. Sci., 7, 136–157,
https://doi.org/10.1139/as-2020-0009, 2021.
Cory, R. M. and McKnight, D. M.: Fluorescence Spectroscopy Reveals
Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic
Matter, Environ. Sci. Technol., 39, 8142–8149,
https://doi.org/10.1021/es0506962, 2005.
Cress, P. and Wyness, R.: The Devon Island expedition, observations of
glacial movements, Arctic, 14, 257–259, 1961.
D'Andrilli, J. and McConnell, J. R.: Polar ice core organic matter
signatures reveal past atmospheric carbon composition and spatial trends
across ancient and modern timescales, J. Glaciol., 67, 1028–1042,
https://doi.org/10.1017/jog.2021.51, 2021.
D'Andrilli, J., Foreman, C. M., Sigl, M., Priscu, J. C., and McConnell, J. R.: A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core, Clim. Past, 13, 533–544, https://doi.org/10.5194/cp-13-533-2017, 2017.
Darcy, J. L., Lynch, R. C., King, A. J., Robeson, M. S., and Schmidt, S. K.:
Global distribution of Polaromonas phylotypes – evidence for a highly
successful dispersal capacity, PLoS One, 6, e23742,
https://doi.org/10.1371/journal.pone.0023742, 2011.
Davis, S. N., Whittemore, D. O., and Fabryka-Martin, J.: Uses of
Chloride/Bromide Ratios in Studies of Potable Water, Groundwater, 36,
338–350, https://doi.org/10.1111/J.1745-6584.1998.TB01099.X, 1998.
Dubnick, A., Barker, J. D., Sharp, M. J., Wadham, J. L., Lis, G., Telling,
J. P., Fitzsimons, S., and Jackson, M.: Characterization of dissolved
organic matter (DOM) from glacial environments using total fluorescence
spectroscopy and parallel factor analysis, Ann. Glaciol., 51, 111–122,
https://doi.org/10.3189/172756411795931912, 2010.
Dubnick, A., Sharp, M., Danielson, B., Saidi-Mehrabad, A., and Barker, J.: Basal thermal regime affects the biogeochemistry of subglacial systems, Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, 2020.
Dubnick, A. J., Spietz, R. L., Danielson, B. D., Skidmore, M. L., Boyd, E. S., Burgess, D., Dhoonmoon, C., and Sharp, M.: Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel, Zenodo [data set], https://doi.org/10.5281/zenodo.7384156, 2022.
Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E., and Boyd, E. S.:
Lithogenic hydrogen supports microbial primary production in subglacial and
proglacial environments, P. Natl. Acad. Sci. USA, 118, e2007051117,
https://doi.org/10.1073/PNAS.2007051117, 2021.
Fellman, J. B., D'Amore, D. V., Hood, E. W., and Boone, R. D.: Fluorescence
characteristics and biodegradability of dissolved organic matter in forest
and wetland soils from coastal temperate watersheds in southeast Alaska,
Biogeochemistry, 88, 169–184, https://doi.org/10.1007/s10533-008-9203-x,
2008.
Fellman, J. B., Spencer, R. G. M., Hernes, P. J., Edwards, R. T., D'Amore,
D. V., and Hood, E. W.: The impact of glacier runoff on the biodegradability
and biochemical composition of terrigenous dissolved organic matter in
near-shore marine ecosystems, Mar. Chem., 121, 112–122,
https://doi.org/10.1016/j.marchem.2010.03.009, 2010.
Fenchel, T. and Blackburn, T. H.: Bacteria and mineral cycling, Academic
Press, New York, ISBN-10 012252750X,
ISBN 978-0122527500, 1979.
Ferrick, M. G., Calkins, D. J., Perron, N. M., Cragin, J. H., and Kendall,
C.: Diffusion model validation and interpretation of stable isotopes in
river and lake ice, Hydrol. Process., 16, 851–872, 2002.
Foght, J. M., Aislabie, J., Turner, S., Brown, C. E., Ryburn, J., Saul, D.
J., and Lawson, W.: Culturable bacteria in subglacial sediments and ice from
two Southern Hemisphere glaciers, Microb. Ecol., 47, 329–340,
https://doi.org/10.1007/s00248-003-1036-5, 2004.
Föllmi, K. B., Hosein, R., Arn, K., and Steinmann, P.: Weathering and
the mobility of phosphorus in the catchments and forefields of the Rhône
and Oberaar glaciers, central Switzerland: Implications for the global
phosphorus cycle on glacial-interglacial timescales, Geochim. Cosmochim.
Ac., 73, 2252–2282, https://doi.org/10.1016/j.gca.2009.01.017, 2009.
Gaidos, E. J., Lanoil, B., Thorsteinsson, T., Graham, A., Skidmore, M. L.,
Han, S.-K., Rust, T., and Popp, B.: A viable microbial community in a
subglacial volcanic crater lake, Iceland, Astrobiology, 4, 327–344,
https://doi.org/10.1089/ast.2004.4.327, 2004.
Gawor, J., Grzesiak, J., Sasin-Kurowska, J., Borsuk, P., Gromadka, R.,
Górniak, D., Świątecki, A., Aleksandrzak-Piekarczyk, T., and
Zdanowski, M. K.: Evidence of adaptation, niche separation and
microevolution within the genus Polaromonas on Arctic and Antarctic glacial
surfaces, Extremophiles, 20, 403–413,
https://doi.org/10.1007/s00792-016-0831-0, 2016.
Gill-Olivas, B., Telling, J. P., Tranter, M., Skidmore, M. L., Christner, B.
C., O'Doherty, S., and Priscu, J.: Subglacial erosion has the potential to
sustain microbial processes in Subglacial Lake Whillans, Antarctica, Commun.
Earth Environ., 2, 1–12, https://doi.org/10.1038/s43247-021-00202-x, 2021.
Gill-Olivas, B., Telling, J., Skidmore, M., and Tranter, M.: Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems, Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, 2023.
Godwin, C. M. and Cotner, J. B.: Aquatic heterotrophic bacteria have highly
flexible phosphorus content and biomass stoichiometry, ISME J., 9,
2324–2327, https://doi.org/10.1038/ismej.2015.34, 2015.
Grasby, S. E., Allen, C. C., Longazo, T. G., Lisle, J. T., Griffin, D. W., and Beauchamp, B.:
Supraglacial Sulfur Springs and Associated Biological Activity in the
Canadian High Arctic–Signs of Life Beneath the Ice, Astrobiology, 3,
583–596, 2003.
Grasby, S. E., Allen, D. M., Bell, S., Chen, Z., Ferguson, G., Jessop, A.,
Kelman, M., Ko, M., Majorowicz, J., Moore, M., Raymond, J., and Therrien,
R.: Geothermal Energy Resource Potential of Canada, Open File 6914 (revised), 322 pp., https://doi.org/10.4095/291488, 2012.
Hamilton, T. L., Peters, J. W., Skidmore, M. L., and Boyd, E. S.: Molecular
evidence for an active endogenous microbiome beneath glacial ice, ISME J.,
7, 1402–1412, https://doi.org/10.1038/ismej.2013.31, 2013.
Harrison, J. C., Lynds, T., Ford, A., and Rainbird, R. H.: Simplified
tectonic assemblage map of the Canadian Arctic Islands, Geological Survey of Canada, Canadian Geoscience Map 80, scape 1:2 000 000, Natural Resources Canada, 297416,
https://doi.org/10.4095/297416, 2016.
Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G.,
Statham, P. J., Tedstone, A., Nienow, P., Lee, K., and Telling, J. P.: Ice
sheets as a significant source of highly reactive nanoparticulate iron to
the oceans, Nat. Commun., 5, 1–8, https://doi.org/10.1038/ncomms4929,
2014.
Hawkings, J. R., Wadham, J. L., Tranter, M., Telling, J. P., Bagshaw, E. A.,
Beaton, A., Simmons, S., Chandler, D., Tedstone, A., and Nienow, P.: The
Greenland Ice Sheet as a hotspot of phosphorus weathering and export in the
Arctic, Global Biogeochem. Cy., 30, 1–22,
https://doi.org/10.1002/2015GB005237, 2016.
Hodson, A. J., Mumford, P., and Lister, D.: Suspended sediment and
phosphorous in proglacial rivers: Bioavailability and potential impacts upon
the P status of ice-marginal receiving waters, Hydrol. Process., 18,
2409–2422, https://doi.org/10.1002/hyp.1471, 2004.
Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M. P. M.: The High
Arctic glacial ecosystem: new insights from nutrient budgets,
Biogeochemistry, 72, 233–256, https://doi.org/10.1007/s10533-004-0362-0,
2005.
Hood, E., Battin, T. J., Fellman, J., O'neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets, Nat.
Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Hougardy, A. and Klemme, J. H.: Nitrate reduction in a new strain of
Rhodoferax fermentans, Arch. Microbiol., 164, 358–362,
https://doi.org/10.1007/BF02529983, 1995.
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G., and
Hubbard, A. L.: Polythermal glacier hydrology: a review, Rev. Geophys., 49,
1–37, https://doi.org/10.1029/2010RG000350, 2011.
Jeon, C. O., Park, W., Padmanabhan, P., DeRito, C., Snape, J. R., and
Madsen, E. L.: Discovery of a bacterium, with distinctive dioxygenase, that
is responsible for in situ biodegradation in contaminated sediment, P. Natl.
Acad. Sci. USA, 100, 13591–13596, https://doi.org/10.1073/pnas.1735529100,
2003.
Jørgensen, L., Stedmon, C. A., Kragh, T., Markager, S., Middelboe, M.,
and Søndergaard, M.: Global trends in the fluorescence characteristics
and distribution of marine dissolved organic matter, Mar. Chem., 126,
139–148, https://doi.org/10.1016/j.marchem.2011.05.002, 2011.
Jouzel, J., Petit, J. R., Souchez, R., Barkov, N. I., Lipenkov, V. Y.,
Raynaud, D., Stievenard, M., Vassiliev, N. I., Verbeke, V., and Vimeux, F.:
More than 200 meters of lake ice above subglacial Lake Vostok, Antarctica,
Science, 286, 2138–2141,
https://doi.org/10.1126/science.286.5447.2138, 1999.
Kayani, M. ur R., Doyle, S. M., Sangwan, N., Wang, G., Gilbert, J. A.,
Christner, B. C., and Zhu, T. F.: Metagenomic analysis of basal ice from an
Alaskan glacier, Microbiome, 6, 14–16,
https://doi.org/10.1186/s40168-018-0505-5, 2018.
Keeler, C. M.: Relationship between climate, ablation, and runoff on the
Sverdrup Glacier 1963, Devon Island, NWT, MSc Thesis,
https://escholarship.mcgill.ca/concern/theses/vm40xw465 (last access: 18 July 2023), 1964.
Kellerman, A. M., Vonk, J., McColaugh, S., Podgorski, D. C., van Winden, E.,
Hawkings, J. R., Johnston, S. E., Humayun, M., and Spencer, R. G. M.:
Molecular Signatures of Glacial Dissolved Organic Matter from Svalbard and
Greenland, Global Biogeochem. Cy., 35, e2020GB006709,
https://doi.org/10.1029/2020GB006709, 2021.
Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L., and Lorrain,
R.: Segregation of solutes and gases in experimental freezing of dilute
solutions: Implications for natural glacial systems, Geochim. Cosmochim.
Ac., 62, 3637–3655, https://doi.org/10.1016/S0016-7037(98)00268-3, 1998.
Koerner, R. M.: The Devon Island Expedition: Glaciology, Arctic, 14,
256–257, https://doi.org/10.14430/arctic3683, 1961.
Koerner, R. M.: Mass balance of glaciers in the Queen Elizabeth Islands,
Nunavut, Canada, Ann. Glaciol., 42, 417–423, 2005.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and
Schloss, P. D.: Development of a dual-index sequencing strategy and curation
pipeline for analyzing amplicon sequence data on the MiSeq Illumina
sequencing platform, Appl. Environ. Microbiol., 79, 5112–5120,
https://doi.org/10.1128/AEM.01043-13, 2013.
Lanoil, B., Skidmore, M. L., Priscu, J. C., Han, S., Foo, W., Vogel, S. W.,
Tulaczyk, S., and Engelhardt, H.: Bacteria beneath the West Antarctic ice
sheet, Environ. Microbiol., 11, 609–615,
https://doi.org/10.1111/j.1462-2920.2008.01831.x, 2009.
Lawson, E. C., Bhatia, M. P., Wadham, J. L., and Kujawinski, E. B.:
Continuous summer export of nitrogen-rich organic matter from the Greenland
Ice Sheet inferred by ultrahigh resolution mass spectrometry, Environ. Sci.
Technol., 48, 14248–14257, https://doi.org/10.1021/es501732h, 2014.
Li, X., Wang, N., Ding, Y., Hawkings, J. R., Yde, J. C., Raiswell, R., Liu,
J., Zhang, S., Kang, S., Wang, R., Liu, Q., Liu, S., Bol, R., You, X., and
Li, G.: Globally elevated chemical weathering rates beneath glaciers, Nat.
Commun., 13, 1–13, https://doi.org/10.1038/s41467-022-28032-1, 2022.
Macdonald, M. L., Wadham, J. L., Telling, J. P., and Skidmore, M. L.:
Glacial Erosion Liberates Lithologic Energy Sources for Microbes and Acidity
for Chemical Weathering Beneath Glaciers and Ice Sheets, Front. Earth Sci.,
6, 1–15, https://doi.org/10.3389/feart.2018.00212, 2018.
Madigan, M. T., Jung, D. O., Woese, C. R., and Achenbach, L. A.: Rhodoferax
antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium
isolated from an Antarctic microbial mat, Arch. Microbiol., 173, 269–277,
https://doi.org/10.1007/s002030000140, 2000.
Majoube, M.: fractionnement en oxygéne-18 et en deuterium entre l'eau et
la vapeur, J. Chim. Phys., 68, 1423–1436, 1971.
Makino, W., Cotner, J. B., Sterner, R. W., and Elser, J. J.: Are bacteria
more like plants or animals? Growth rate and resource dependence of
bacterial C:N:P stoichiometry, Funct. Ecol., 17, 121–130,
https://doi.org/10.1046/j.1365-2435.2003.00712.x, 2003.
Margesin, R. and Miteva, V.: Diversity and ecology of psychrophilic
microorganisms, Res. Microbiol., 162, 346–361,
https://doi.org/10.1016/j.resmic.2010.12.004, 2011.
Martinussen, I. and Thingstad, T.: Utilization of N, P and organic C by
heterotrophic bacteria. II. Comparison of experiments and a mathematical
model, Mar. Ecol. Prog. Ser., 37, 285–293,
https://doi.org/10.3354/meps037285, 1987.
Mathworks Inc.: MATLAB version 9.9.0.1592791, Mathworks
Inc., Natick, MA, 2020.
Mattes, T. E., Alexander, A. K., Richardson, P. M., Munk, A. C., Han, C. S.,
Stothard, P., and Coleman, N. V: The genome of Polaromonas sp. strain JS666:
insights into the evolution of a hydrocarbon- and xenobiotic-degrading
bacterium, and features of relevance to biotechnology, Appl. Environ.
Microbiol., 74, 6405–6416, https://doi.org/10.1128/AEM.00197-08, 2008.
Meyer, A. F., Lipson, D. A., Martin, A. P., Schadt, C. W., and Schmidt, S.
K.: Molecular and metabolic characterization of cold-tolerant alpine soil
Pseudomonas sensu stricto, Appl. Environ. Microbiol., 70, 483–489,
https://doi.org/10.1128/AEM.70.1.483-489.2004, 2004.
Michaud, A. B., Skidmore, M. L., Mitchell, A. C., Vick-Majors, T. J.,
Barbante, C., Turetta, C., Van Gelder, W., and Priscu, J. C.: Solute sources
and geochemical processes in Subglacial Lake Whillans, West Antarctica,
Geology, 44, 347–350, https://doi.org/10.1130/G37639.1, 2016.
Michaud, A. B., Dore, J. E., Achberger, A. M., Christner, B. C., Mitchell,
A. C., Skidmore, M. L., Vick-Majors, T. J., and Priscu, J. C.: Microbial
oxidation as a methane sink beneath the West Antarctic Ice Sheet, Nat.
Geosci., 10, 582–586, https://doi.org/10.1038/NGEO2992, 2017.
Michel, B. and Ramseier, R. O.: Classification of river and lake ice, Can.
Geotech. J., 8, 36–45, https://doi.org/10.1139/t71-004, 1971.
Mikucki, J. A., Pearson, A., Johnston, D. T., Turchyn, A. V, Farquhar, J.,
Schrag, D. P., Anbar, A. D., Priscu, J. C., and Lee, P. A.: A contemporary
microbially maintained subglacial ferrous “ocean”, Science, 324,
397–400, https://doi.org/10.1126/science.1167350, 2009.
Mitchell, A. C., Lafrenière, M. J., Skidmore, M. L., and Boyd, E. S.:
Influence of bedrock mineral composition on microbial diversity in a
subglacial environment, Geology, 41, 855–858,
https://doi.org/10.1130/G34194.1, 2013.
Miteva, V. I., Sheridan, P. P., and Brenchley, J. E.: Phylogenetic and
Physiological Diversity of Microorganisms Isolated from a Deep Greenland
Glacier Ice Core, Appl. Environ. Microbiol., 70, 202–213, https://doi.org/10.1128/AEM.70.1.202-213.2004, 2004.
Montross, S., Skidmore, M. L., Christner, B. C., Samyn, D., Tison, J.-L.,
Lorrain, R., Doyle, S., and Fitzsimons, S.: Debris-Rich Basal Ice as a
Microbial Habitat, Taylor Glacier, Antarctica, Geomicrobiol. J., 31, 76–81,
https://doi.org/10.1080/01490451.2013.811316, 2014.
Morono, Y., Terada, T., Kallmeyer, J., and Inagaki, F.: An improved cell
separation technique for marine subsurface sediments: applications for
high-throughput analysis using flow cytometry and cell sorting., Environ.
Microbiol., 15, 2841–2849, https://doi.org/10.1111/1462-2920.12153, 2013.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques. PARAFAC, Anal. Methods-UK, 5, 6557,
https://doi.org/10.1039/c3ay41160e, 2013.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods-UK, 6, 658–661, https://doi.org/10.1039/C3AY41935E,
2014.
Nye, J. F.: Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins, J.
Glaciol., 17, 181–207, https://doi.org/10.3189/S002214300001354X,
1976.
Nyyssönen, M., Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine,
P., Itävaara, M., and Auvinen, P.: Taxonomically and functionally
diverse microbial communities in deep crystalline rocks of the Fennoscandian
shield, ISME J., 8, 126–138, https://doi.org/10.1038/ismej.2013.125, 2014.
Ohno, T. and Bro, R.: Dissolved Organic Matter Characterization Using
Multiway Spectral Decomposition of Fluorescence Landscapes, Soil Sci. Soc.
Am. J., 70, 2028, https://doi.org/10.2136/sssaj2006.0005, 2006.
Osborne, T. H., Jamieson, H. E., Hudson-Edwards, K. A., Nordstrom, D. K.,
Walker, S. R., Ward, S. A., and Santini, J. M.: Microbial oxidation of
arsenite in a subarctic environment: diversity of arsenite oxidase genes and
identification of a psychrotolerant arsenite oxidiser, BMC Microbiol., 10,
205, https://doi.org/10.1186/1471-2180-10-205, 2010.
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.:
IceBridge MCoRDS L2 Ice Thickness, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/GDQ0CUCVTE2Q, 2019.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters:
Assessing small subunit rRNA primers for marine microbiomes with mock
communities, time series and global field samples, Environ. Microbiol., 18,
1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Paul, E. A. and Clark, F. E.: Soil Microbiology and Biochemistry, 2nd ed.,
Academic Press, San Diego, 340 pp., https://doi.org/10.1017/S0014479797213128, 1996.
Pautler, B. G., Woods, G. C., Dubnick, A., Simpson, A. J., Sharp, M. J.,
Fitzsimons, S. J., and Simpson, M. J.: Molecular characterization of
dissolved organic matter in glacial ice: coupling natural abundance 1H NMR
and fluorescence spectroscopy, Environ. Sci. Technol., 46, 3753–3761,
https://doi.org/10.1021/es203942y, 2012.
Perini, L., Gostinčar, C., and Gunde-Cimerman, N.: Fungal and bacterial
diversity of Svalbard subglacial ice, Sci. Rep., 9, 1–15,
https://doi.org/10.1038/s41598-019-56290-5, 2019.
Pinti, D.: Delta, Isotopic BT – Encyclopedia of Astrobiology, edited by:
Gargaud, M., Amils, R., Quintanilla, J. C., Cleaves, H. J. (Jim), Irvine, W.
M., Pinti, D. L., and Viso, M., Springer Berlin Heidelberg, Berlin,
Heidelberg, 623–624, https://doi.org/10.1007/978-3-642-11274-4_406, 2011.
Polz, M. F., Hunt, D. E., Preheim, S. P., and Weinreich, D. M.: Patterns and
mechanisms of genetic and phenotypic differentiation in marine microbes,
Philos. T. R. Soc. B, 361, 2009–2021,
https://doi.org/10.1098/rstb.2006.1928, 2006.
Porter, C., Morin, P., Howat, I., Noh, My.-J., Bates, B., Peterman,
K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis,
M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H.,
Platson, M., Wethington, M. J., Williamson, C., Bauer, G., Enos,
J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C.,
Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM V1,
Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Price, P. B. and Sowers, T.: Temperature dependence of metabolic rates for
microbial growth, maintenance, and survival, P. Natl. Acad. Sci. USA, 101, 4631–4636, https://doi.org/10.1073/pnas.0400522101, 2004.
Retelletti Brogi, S., Ha, S. Y., Kim, K., Derrien, M., Lee, Y. K., and Hur,
J.: Optical and molecular characterization of dissolved organic matter (DOM)
in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada):
Implication for increased autochthonous DOM during ice melting, Sci. Total
Environ., 627, 802–811, https://doi.org/10.1016/j.scitotenv.2018.01.251,
2018.
Röthlisberger, H.: Water Pressure in Intra- and Subglacial Channels, J.
Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188,
1972.
Saadi, I., Borisover, M., Armon, R., and Laor, Y.: Monitoring of effluent
DOM biodegradation using fluorescence, UV and DOC measurements, Chemosphere,
63, 530–539, https://doi.org/10.1016/j.chemosphere.2005.07.075, 2006.
Santibáñez, P. A., Michaud, A. B., Vick-Majors, T. J., D'Andrilli,
J., Chiuchiolo, A., Hand, K. P., and Priscu, J. C.: Differential
incorporation of bacteria, organic matter, and inorganic ions into lake ice
during ice formation, J. Geophys. Res.-Biogeo., 124, 585–600,
https://doi.org/10.1029/2018JG004825, 2019.
Schroth, A. W., Crusius, J., Hoyer, I., and Campbell, R.: Estuarine removal
of glacial iron and implications for iron fluzes to the oceans, Geophys.
Res. Lett., 41, 3951–3958, https://doi.org/110.1002/2014GL060199, 2014.
Sharp, M. J., Parkes, J., Cragg, B., Fairchild, I. J., Lamb, H., and
Tranter, M.: Widespread bacterial populations at glacier beds and their
relationship to rock weathering and carbon cycling, Geology, 27, 107–110,
https://doi.org/10.1130/0091-7613(1999)027<0107:WBPAGB>2.3.CO;2, 1999.
Sheik, C. S., Stevenson, E. I., Den Uyl, P. A., Arendt, C. A., Aciego, S.
M., and Dick, G. J.: Microbial communities of the Lemon Creek Glacier show
subtle structural variation yet stable phylogenetic composition over space
and time, Front. Microbiol., 6, 495,
https://doi.org/10.3389/fmicb.2015.00495, 2015.
Sheridan, P. P., Miteva, V. I., and Brenchley, J. E.: Phylogenetic analysis
of anaerobic psychrophilic enrichment cultures obtained from a Greenland
glacier ice core, Appl. Environ. Microbiol., 69, 2153–2160,
https://doi.org/10.1128/AEM.69.4.2153-2160.2003, 2003.
Sizova, M. and Panikov, N.: Polaromonas hydrogenivorans sp. nov., a
psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil, Int. J.
Syst. Evol. Micr., 57, 616–619, https://doi.org/10.1099/ijs.0.64350-0,
2007.
Skidmore, M. L., Anderson, S. P., Sharp, M. J., Foght, J. M., and Lanoil,
B.: Comparison of microbial community compositions of two subglacial
environments reveals a possible role for microbes in chemical weathering
processes, Appl. Environ. Microbiol., 71, 6986–6997,
https://doi.org/10.1128/AEM.71.11.6986-6997.2005, 2005.
Stibal, M., Wadham, J. L., Lis, G. P., Telling, J. P., Pancost, R. D.,
Dubnick, A., Sharp, M. J., Lawson, E. C., Butler, C. E. H., Hasan, F.,
Tranter, M., and Anesio, A. M.: Methanogenic potential of Arctic and
Antarctic subglacial environments with contrasting organic carbon sources,
Glob. Change Biol., 18, 3332–3345,
https://doi.org/10.1111/j.1365-2486.2012.02763.x, 2012a.
Stibal, M., Hasan, F., Wadham, J. L., Sharp, M. J., and Anesio, A. M.:
Prokaryotic diversity in sediments beneath two polar glaciers with
contrasting organic carbon substrates, Extremophiles, 16, 255–265,
https://doi.org/10.1007/s00792-011-0426-8, 2012b.
Strickland, J. D. H. and Parsons, T. R.: A Practical Handbook of Seawater
Analysis, 2nd ed., Fisheries Research Board of Canada Bulletin, No 167, 310
pp., https://doi.org/10.25607/OBP-1791, 1972.
Telling, J. P., Boyd, E. S., Bone, N., Jones, E. L., Tranter, M.,
MacFarlane, J. W., Martin, P. G., Wadham, J. L., Lamarche-Gagnon, G.,
Skidmore, M. L., Hamilton, T. L., Hill, E., Jackson, M., and Hodgson, D. A.:
Rock comminution as a source of hydrogen for subglacial ecosystems, Nat.
Geosci., 8, 851–855, https://doi.org/10.1038/ngeo2533, 2015.
Tranter, M.: Geochemical Weathering in Glacial and Proglacial Environments,
in: Treatise on Geochemistry, vol. 5–9, Elsevier Inc., 189–205,
https://doi.org/10.1016/B0-08-043751-6/05078-7, 2003.
Tranter, M., Sharp, M. J., Lamb, H. R., Brown, G. H., Hubbard, B. P., and
Willis, I. C.: Geochemical weathering at the bed of Haut Glacier d'Arolla,
Switzerland – a new model, Hydrol. Process., 16, 959–993,
https://doi.org/10.1002/hyp.309, 2002.
Tranter, M., Skidmore, M. L., and Wadham, J. L.: Hydrological controls on
microbial communities in subglacial environments, Hydrol. Process., 19,
995–998, https://doi.org/10.1002/hyp.5854, 2005.
Van Wychen, W., Davis, J., Copland, L., Burgess, D. O., Gray, L., Sharp, M.
J., Dowdeswell, J. A., and Benham, T. J.: Variability in ice motion and
dynamic discharge from Devon Ice Cap, Nunavut, Canada, J. Glaciol., 63,
436–449, https://doi.org/10.1017/jog.2017.2, 2017.
Vick-Majors, T. J., Mitchell, A. C., Achberger, A. M., Christner, B. C.,
Dore, J. E., Michaud, A. B., Mikucki, J. A., Purcell, A. M., Skidmore, M.
L., Priscu, J. C., and the WISSARD Science Team: Physiological ecology of
microorganisms in subglacial lake whillans, Front. Microbiol., 7, 1705,
https://doi.org/10.3389/fmicb.2016.01705, 2016.
Vincent, L. A., van Wijngaarden, W. A., and Hopkinson, R.: Surface
temperature and humidity trends in Canada for 1953–2005, J. Climate, 20,
5100–5113, https://doi.org/10.1175/JCLI4293.1, 2007.
Wadham, J. L., Bottrell, S. H., Tranter, M., and Raiswell, R.: Stable
isotope evidence for microbial sulphate reduction at the bed of a
polythermal high Arctic glacier, Earth Planet. Sc. Lett., 219, 341–355,
https://doi.org/10.1016/S0012-821X(03)00683-6, 2004.
Wadham, J. L., Tranter, M., Skidmore, M. L., Hodson, A. J., Priscu, J. C.,
Lyons, W. B., Sharp, M. J., Wynn, P. M., and Jackson, M.: Biogeochemical
weathering under ice: Size matters, Global Biogeochem. Cy., 24, 1–11,
https://doi.org/10.1029/2009GB003688, 2010.
Wadham, J. L., Arndt, S., Tulaczyk, S., Stibal, M., Tranter, M., Telling, J.
P., Lis, G. P., Lawson, E. C., Ridgwell, A., Dubnick, A., Sharp, M. J.,
Anesio, A. M., and Butler, C. E. H.: Potential methane reservoirs beneath
Antarctica, Nature, 488, 633–637, https://doi.org/10.1038/nature11374,
2012.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 1–17,
https://doi.org/10.1038/s41467-019-11394-4, 2019.
Walker, S. A., Amon, R. M. W., Stedmon, C., Duan, S., and Louchouarn, P.:
The use of PARAFAC modeling to trace terrestrial dissolved organic matter
and fingerprint water masses in coastal Canadian Arctic surface waters, J.
Geophys. Res.-Biogeo., 114, 1–12,
https://doi.org/10.1029/2009JG000990, 2009.
Wang, H., Zhang, X., Wang, S., Zhao, B., Lou, K., and Xing, X. H.: Massilia
violaceinigra sp. Nov., a novel purple-pigmented bacterium isolated from
glacier permafrost, Int. J. Syst. Evol. Micr., 68, 2271–2278,
https://doi.org/10.1099/ijsem.0.002826, 2018.
Wu, F. C., Tanoue, E., and Liu, C. Q.: Fluorescence and amino acid
characteristics of molecular size fractions of DOM in the waters of Lake,
Biogeochemistry, 65, 245–257, 2003.
Xu, Q., Luo, G., Guo, J., Xiao, Y., Zhang, F., Guo, S., Ling, N., and Shen,
Q.: Microbial generalist or specialist: Intraspecific variation and dormancy
potential matter, Mol. Ecol., 31, 161–173,
https://doi.org/10.1111/mec.16217, 2021.
Yagi, J. M., Sims, D., Brettin, T., Bruce, D., and Madsen, E. L.: The genome
of Polaromonas naphthalenivorans strain CJ2, isolated from coal
tar-contaminated sediment, reveals physiological and metabolic versatility
and evolution through extensive horizontal gene transfer, Environ.
Microbiol., 11, 2253–2270,
https://doi.org/10.1111/j.1462-2920.2009.01947.x, 2009.
Yamashita, Y., Cory, R. M., Nishioka, J., Kuma, K., Tanoue, E., and
Jaffé, R.: Fluorescence characteristics of dissolved organic matter in
the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean,
Deep-Sea Res. Pt. II, 57, 1478–1485,
https://doi.org/10.1016/j.dsr2.2010.02.016, 2010.
Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., and Jaffé,
R.: Effects of Watershed History on Dissolved Organic Matter Characteristics
in Headwater Streams, Ecosystems, 14, 1110–1122,
https://doi.org/10.1007/s10021-011-9469-z, 2011.
Yde, J. C., Finster, K. W., Raiswell, R., Steffensen, J. P., Heinemeier, J.,
Olsen, J., Gunnlaugsson, H. P., and Nielsen, O. B.: Basal ice microbiology
at the margin of the Greenland Ice Sheet, Ann. Glaciol., 51, 71–79,
https://doi.org/10.3189/172756411795931976, 2010.
Short summary
At the end of an Arctic winter, we found ponded water 500 m under a glacier. We explored the chemistry and microbiology of this unique, dark, and cold aquatic habitat to better understand ecology beneath glaciers. The water was occupied by cold-loving and cold-tolerant microbes with versatile metabolisms and broad habitat ranges and was depleted in compounds commonly used by microbes. These results show that microbes can become established beneath glaciers and deplete nutrients within months.
At the end of an Arctic winter, we found ponded water 500 m under a glacier. We explored the...