Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1307-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1307-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow sensitivity to temperature and precipitation change during compound cold–hot and wet–dry seasons in the Pyrenees
Josep Bonsoms
Department of Geography, Universitat de Barcelona, Barcelona, Spain
Juan Ignacio López-Moreno
CORRESPONDING AUTHOR
Instituto Pirenaico de Ecología (IPE-CSIC), Campus de Aula Dei,
Zaragoza, Spain
Esteban Alonso-González
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France
Related authors
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Helen Flynn, J. Julio Camarero, Alba Sanmiguel-Vallelado, Francisco Rojas Heredia, Pablo Domínguez Aguilar, Jesús Revuelto, and Juan Ignacio López-Moreno
EGUsphere, https://doi.org/10.5194/egusphere-2024-3385, https://doi.org/10.5194/egusphere-2024-3385, 2024
Short summary
Short summary
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could negatively impact tree growth in the montane evergreen forests. We used automatic sensors that measure tree growth to monitor and analyze the interactions between the climate, snow, and tree growth. We found a transition in the daily growth cycle that is triggered by the presence of snow. Additionally, warmer February and May temperatures enhanced tree growth.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Esteban Alonso-González and Víctor Fernández-García
Earth Syst. Sci. Data, 13, 1925–1938, https://doi.org/10.5194/essd-13-1925-2021, https://doi.org/10.5194/essd-13-1925-2021, 2021
Short summary
Short summary
We present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area products. The database inludes monthly scenes with the dNBR, RdNBR and post-burn NBR spectral indices at 500 m spatial resolution from November 2000 onwards. Moreover, in this work we show that there is a close relationship between the burn severity metrics included in MOSEV and the same ones obtained from Landsat-8.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Jesús Revuelto, Cesar Azorin-Molina, Esteban Alonso-González, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Ibai Rico, and Juan Ignacio López-Moreno
Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, https://doi.org/10.5194/essd-9-993-2017, 2017
Short summary
Short summary
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner for certain dates and (iii) time-lapse images showing the evolution of the snow-covered area.
Samuel T. Buisán, Michael E. Earle, José Luís Collado, John Kochendorfer, Javier Alastrué, Mareile Wolff, Craig D. Smith, and Juan I. López-Moreno
Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, https://doi.org/10.5194/amt-10-1079-2017, 2017
Short summary
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
Anita Drumond, Erica Taboada, Raquel Nieto, Luis Gimeno, Sergio M. Vicente-Serrano, and Juan Ignacio López-Moreno
Earth Syst. Dynam., 7, 549–558, https://doi.org/10.5194/esd-7-549-2016, https://doi.org/10.5194/esd-7-549-2016, 2016
Short summary
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Short summary
This paper analyzes the evolution of the Monte Perdido Glacier, Spanish Pyrenees, since 1981. Changes in ice volume were estimated by geodetic methods and terrestrial laser scanning. An acceleration in ice thinning is detected during the 21st century. Local climatic changes observed during the study period do not seem sufficient to explain the acceleration. The strong disequilibrium between the glacier and the current climate and feedback mechanisms seems to be the most plausible explanation.
E. Nadal-Romero, J. Revuelto, P. Errea, and J. I. López-Moreno
SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, https://doi.org/10.5194/soil-1-561-2015, 2015
Short summary
Short summary
Geomatic techniques have been routinely applied in erosion studies, providing the opportunity to build high-resolution topographic models.The aim of this study is to assess and compare the functioning of terrestrial laser scanner and close range photogrammetry techniques to evaluate erosion and deposition processes in a humid badlands area.
Our results demonstrated that north slopes experienced more intense and faster dynamics than south slopes as well as the highest erosion rates.
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11983-2013, https://doi.org/10.5194/hessd-10-11983-2013, 2013
Manuscript not accepted for further review
J. Lorenzo-Lacruz, E. Morán-Tejeda, S. M. Vicente-Serrano, and J. I. López-Moreno
Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, https://doi.org/10.5194/hess-17-119-2013, 2013
Related subject area
Discipline: Snow | Subject: Mountain Processes
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Improving climate model skill over High Mountain Asia by adapting snow cover parameterization to complex-topography areas
Brief communication: How deep is the snow on Mount Everest?
Multi-scale snowdrift-permitting modelling of mountain snowpack
How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024, https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Short summary
Snow covers a vast part of the globe, making snow water equivalent (SWE) crucial for climate science and hydrology. SWE can be inversed from satellite data, but the snow's complex structure highly affects the signal, and thus an educated first guess is mandatory. In this study, a subgridding framework was developed to model snow at the local scale from model weather data. The framework enhanced snow parameter modeling, paving the way for SWE inversion algorithms from satellite data.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023, https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Short summary
This study investigates the impact of topography on snow cover parameterizations using models and observations. Parameterizations without topography-based considerations overestimate snow cover. Incorporating topography reduces snow overestimation by 5–10 % in mountains, in turn reducing cold biases. However, some biases remain, requiring further calibration and more data. Assessing snow cover parameterizations is challenging due to limited and uncertain data in mountainous regions.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Cited articles
Adam, J. C. and Hamlet, A. F.: Implications of Global Climate Change for
Snowmelt Hydrology in the Twenty First Century, Hydrol. Process.,
23, 962–972, https://doi.org/10.1002/hyp.7201, 2009.
Aeris: The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958–present), Aeris [data set], https://doi.org/10.25326/37#v2020.2, last access: 16 December 2022.
Alonso-González, E., López-Moreno, J. I., Navarro-Serrano, F.,
Sanmiguel-Vallelado, A., Revuelto, J., Domínguez-Castro, F., and
Ceballos, A.: Snow climatology for the mountains in the Iberian Peninsula
using satellite imagery and simulations with dynamically downscaled
reanalysis data, Int. J. Climatol., 40, 477–491,
https://doi.org/10.1002/joc.6223, 2019.
Alonso-González, E., López-Moreno, J. I., Navarro-Serrano, F. M., and
Revuelto, J.: Impact of North Atlantic oscillation on the snowpack in
Iberian Peninsula mountains, Water, 12, 105–276,
https://doi.org/10.3390/w12010105, 2020a.
Alonso-González, E., López-Moreno, J. I., Navarro-Serrano, F.,
Sanmiguel-Vallelado, A., Aznárez-Balta, M., Revuelto, J., and Ceballos,
A.: Snowpack Sensitivity to Temperature, Precipitation, and Solar Radiation
Variability over an Elevational Gradient in the Iberian Mountains, Atmos.
Res., 243, 104973, https://doi.org/10.1016/j.atmosres.2020.104973, 2020b.
Alonso-González, E., Gutmann, E., Aalstad, K., Fayad, A., Bouchet, M., and Gascoin, S.: Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area, Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, 2021.
Alonso-González, E., Revuelto, J., Fassnacht, S. R., and
López-Moreno, J. I.: Combined influence of maximum accumulation and melt
rates on the duration of the seasonal snowpack over temperate mountains,
J. Hydrol., 608, 127574,
https://doi.org/10.1016/j.jhydrol.2022.127574, 2022.
Amblar-Francés, M. P., Ramos-Calzado, P., Sanchis-Lladó, J., Hernanz-Lázaro, A., Peral-García, M. C., Navascués, B., Dominguez-Alonso, M., Pastor-Saavedra, M. A., and Rodríguez-Camino, E.: High resolution climate change projections for the Pyrenees region, Adv. Sci. Res., 17, 191–208, https://doi.org/10.5194/asr-17-191-2020, 2020.
Armstrong, A. and Brun, E.: Snow and Climate, Physical Processes, Surface
Energy Exchange and Modeling, Cambridge University press, 222 pp., 1998.
Barnard, D. M., Knowles, J. F., Barnard, H. R., Goulden, M. L., Hu, J.,
Litvak, M. E., and Molotch, N. P.: Reevaluating growing season length
controls on net ecosystem production in evergreen conifer forests,
Sci. Rep.-UK, 8, 17973, https://doi.org/10.1038/s41598-018-36065-0,
2018.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Beniston, M.: Trends in joint quantiles of temperature and precipitation in
Europe since 1901 and projected for 2100, Geophys. Res. Lett., 36,
L07707, https://doi.org/10.1029/2008GL037119, 2009.
Beniston, M. and Goyette, S.: Changes in variability and persistence of
climate in Switzerland: exploring 20th century observations and 21st century
simulations, Global Planet. Change, 57, 1–20,
https://doi.org/10.1016/j.gloplacha.2006.11.004, 2007.
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate
change in the Alps: events may increase with warming up to
4 ∘C and decrease thereafter, Sci. Total Environ., 571, 228–236, https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016.
Beniston, M., Keller, F., Ko, B., and Goyette, S.: Estimates of snow
accumulation and volume in the Swiss Alps under changing climatic
conditions, Theor. Appl. Climatol., 76, 125–140,
https://doi.org/10.1007/S00704-003-0016-5, 2003.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Bonsoms, J., González, S., Prohom, M., Esteban, P., Salvador-Franch, F.,
López- Moreno, J. I., and Oliva, M.: Spatio-temporal patterns of snow in
the Catalan Pyrenees (SE Pyrenees, NE Iberia), Int. J. Climatol., 41,
5676–5697, https://doi.org/10.1002/joc.7147, 2021a.
Bonsoms, J., Salvador-Franch, F., and Oliva, M.: Snowfall and snow cover
evolution in the Eastern Pre-Pyrenees (NE Iberian Peninsula), Cuad.
Investig. Geogr., 47, 291–307, https://doi.org/10.18172/cig.4879,
2021b.
Bonsoms, J., López-Moreno, J. I., González, S., and Oliva, M.:
Increase of the energy available for snow ablation and its relation with
atmospheric circulation, Atmos. Res., 275, 106228,
https://doi.org/10.1016/j.atmosres.2022.106228, 2022.
Brown, R. D. and Mote, P. W.: The response of Northern Hemisphere snow cover
to a changing climate, J. Climate, 22, 2124–2145,
https://doi.org/10.1175/2008JCLI2665.1, 2009.
Buisan, S. T., López-Moreno, J. I., Saz, M. A., and Kochendorfer, J.: Impact
of weather type variability on winter precipitation, temperature and annual
snowpack in the Spanish Pyrenees, Clim. Res., 69, 79–92,
https://doi.org/10.3354/cr01391, 2016.
Buisán Sanz, S. T., Collado Aceituno, J. L., and Alastrue Tierra, J.: ¿Se mide bien la precipitación en forma de nieve?, in: Sexto Simposio Nacional de Predicción “Memorial Antonio Mestre”, Agencia Estatal de Meteorología, 95–102, https://doi.org/10.31978/639-19-010-0.095, 2019.
Carletti, F., Michel, A., Casale, F., Burri, A., Bocchiola, D., Bavay, M., and Lehning, M.: A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change, Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, 2022.
Cooper, A. E., Kirchner, J. W., Wolf, S., Lombardozzi, D. L., Sullivan, B.
W., Tyler, S. W., and Harpold, A. A.: Snowmelt causes different limitations
on transpiration in a Sierra Nevada conifer forest, Agric. Forest
Meteorol., 291, 108089, https://doi.org/10.1016/j.agrformet.2020.108089,
2020.
Corripio, J. and López-Moreno, J. I.: Analysis and predictability of the
hydrological response of mountain catchments to heavy rain on snow events: a
case study in the Spanish Pyrenees, Hydrology, 4,
20, https://doi.org/10.3390/hydrology4020020, 2017.
Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P.-A., and Samsó, M.: The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections, Earth Syst. Dynam., 13, 321–340, https://doi.org/10.5194/esd-13-321-2022, 2022.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.-P., Iglesias, A., Lange, M. A.,
Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis,
M. N., and Xoplaki, E.: Climate change and interconnected risks to sustainable
development in the Mediterranean, Nat. Clim. Chang. 8, 972–980,
https://doi.org/10.1038/s41558-018-0299-2, 2018.
Cuadrat, J., Saz, M. A., and Vicente-Serrano, S.: Atlas climático de
Aragón, Gobierno de Aragón, Zaragoza, 222 pp., 2007.
De Luca, P., Messori, G., Faranda, D., Ward, P. J., and Coumou, D.: Compound warm–dry and cold–wet events over the Mediterranean, Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, 2020.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam.,
38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012.
Durand, Y., Giraud, G., Brun, E., Mérindol, L., and Martin, E.: A
computer-based system simulating snowpack structures as a tool for regional
avalanche forecasting, J. Glaciol., 45, 469–484,
https://doi.org/10.1017/S0022143000001337, 1999.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and
Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps
(1958–2005): Climatology and Trends for Snow Cover, J. Appl. Meteorol.
Clim., 48, 2487–2512, https://doi.org/10.1175/2009JAMC1810.1, 2009a.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and
Lesaffre, B.: Reanalysis of 44 Yr of Climate in the French Alps
(1958–2002): Methodology, Model Validation, Climatology, and Trends for Air
Temperature and Precipitation, J. Appl. Meteorol. Clim., 48,
429–449, https://doi.org/10.1175/2008JAMC1808.1, 2009b.
Essery, R.: A factorial snowpack model (FSM 1.0), Geosci. Model Dev., 8, 3867–3876, https://doi.org/10.5194/gmd-8-3867-2015, 2015 (data available at: https://github.com/RichardEssery/FSM2, last access: 16 December 2022).
Essery, R., Morin, S., Lejeune, Y., and Ménard, C.: A comparison of 1701
snow models using observations from an alpine site, Adv. Water Res., 55,
131–148, https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.
Esteban-Parra, M. J., Rodrigo, F. S., and Castro-Diez, Y.: Spatial and temporal patterns of precipitation in Spain for the period
1880–1992, Int. J. Climatol., 18, 1557–1574, https://doi.org/10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.0.CO;2-J, 1998.
Evans, S. G., Ge, S., Voss, C. I., and Molotch, N. P.: The role of frozen soil in
groundwater discharge predictions forwarming alpine watersheds, Water
Resour. Res., 54, 1599–1615, https://doi.org/10.1002/2017WR022098, 2018.
Evin, G., Somot, S., and Hingray, B.: Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble, Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, 2021.
Fujita, K. and Sakai, A.: Modelling runoff from a Himalayan debris-covered glacier, Hydrol. Earth Syst. Sci., 18, 2679–2694, https://doi.org/10.5194/hess-18-2679-2014, 2014.
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M.,
Lasanta–Martínez, T., and Beguería, S.: Mediterranean water
resources in a global change scenario, Earth Sci. Rev., 105, 121–139,
https://doi.org/10.1016/j.earscirev.2011.01.006, 2011.
Gilaberte-Burdalo, M., Lopez-Martin, F., Pino-Otin, M. R. M., and
López-Moreno, J.: Impacts of climate change on ski industry, Environ. Sci.
Pol., 44, 51–61, https://doi.org/10.1016/j.envsci.2014.07.003, 2014.
Gilaberte-Búrdalo, M., López-Moreno, J., Morán-Tejeda, E., Jerez,
S., Alonso-González, E., López-Martín, F., and Pino-Otín, M.:
Assessment of ski condition reliability in the Spanish and Andorran Pyrenees for the second half of the 20th century, Appl. Geogr., 79, 127–142, https://doi.org/10.1016/j.apgeog.2016.12.013, 2017.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.
Gribovszki, Z., Szilágyi, J., and Kalicz, P.: Diurnal fluctuations in
shallow groundwater levels and streamflow rates and their interpretation –
A review, J. Hydrol., 385,
371–383, https://doi.org/10.1016/j.jhydrol.2010.02.001, 2010.
Hall, A.: Role of surface albedo feedback in climate, J. Climate, 17,
1550–1568, 2004.
Hammond, J. C., Saavedra, F. A. and Kampf, S. K.: Global snow zone maps and
trends in snow persistence 2001–2016, Int. J. Climatol., 38, 4369–4383,
https://doi.org/10.1002/joc.5674, 2018.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in
projections of regional precipitation change, Clim. Dynam., 37,
407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain
Areas, in: IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate, edited by: Pörtner, H.-O., Roberts,
D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., Weyer, N. M., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 131–202,
https://doi.org/10.1017/9781009157964.004, 2019.
Hrbáček, F., Láska, K., and Engel, Z.: Effect of snow cover on
the active-layer thermal regime – a case study from James Ross Island,
Antarctic Peninsula, Permafrost Periglac. Process., 27, 307–315,
https://doi.org/10.1002/ppp.1871, 2016.
Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Regional
temperatures and precipitation,
Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Jefferson, A. J.: Seasonal versus transient snow and the elevation
dependence of climate sensitivity in maritime mountainous regions, Geophys.
Res. Lett., 38, L16402, https://doi.org/10.1029/2011GL048346, 2011.
Jennings, K. S. and Molotch, N. P.: Snowfall fraction, cold content, and
energy balance changes drive differential response to simulated warming in
an alpine and subalpine snowpack, Front. Earth Sci., 8, 2296–6463,
https://doi.org/10.3389/feart.2020.00186, 2020.
Klein, G., Vitasse, Y., Rixen, C., Marty, C., and Rebetez, M.: Shorter snow
cover duration since 1970 in the Swiss Alps due to earlier snowmelt more
than to later snow onset, Clim. Chang., 139, 637–649,
https://doi.org/10.1007/s10584-016-1806-y, 2016.
Knutti, R. and Sedlacek, J.: Robustness and uncertainties in the new CMIP5
climate model projections, Nat. Clim. Chang., 3, 369–373,
https://doi.org/10.1038/nclimate1716, 2013.
Kochendorfer, J., Earle, M. E., Hodyss, D., Reverdin, A., Roulet, Y., Nitu, R.,
Rasmussen, R., Landolt, S., Buisan, S., and Laine, T.: Undercatch adjustments for
tipping bucket gauge measurements of solid precipitation, J. Hydrometeor.,
21, 1193–1205, https://doi.org/10.1175/JHM-D-19-0256.1, 2020.
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018.
Krogh, S. A. and Pomeroy, J. W.: Impact of Future Climate and Vegetation on
the Hydrology of an Arctic Headwater Basin at the Tundra–Taiga Transition,
J. Hydrometeorol., 20, 197–215, https://doi.org/10.1175/JHM-D-18-0187.1,
2019.
Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Elevation-dependent trends in extreme snowfall in the French Alps from 1959 to 2019, The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, 2021.
Lionello, P. and Scarascia, L.: The relation between climate change in the
Mediterranean region and global warming, Reg. Environ. Change, 18,
1481–1493, https://doi.org/10.1007/s10113-018-1290-1, 2018.
López-Moreno, J. I.: Recent variations of snowpack depth in the central
Spanish Pyrenees, Arct. Antarct. Alp. Res., 37, 253–260,
https://doi.org/10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2, 2005.
López Moreno, J. I. and Garcia Ruiz, J. M.: Influence of snow
accumulation and snowmelt on streamflow in the Central Spanish Pyrenees,
International, J. Hydrol. Sci., 49, 787–802,
https://doi.org/10.1623/hysj.49.5.787.55135, 2004.
López-Moreno, J. I. and Vicente-Serrano, S. M.: Atmospheric circulation
influence on the interannual variability of snowpack in the Spanish Pyrenees
during the second half of the twentieth century, Nord. Hydrol., 38,
38–44, https://doi.org/10.2166/nh.2007.030, 2007.
López-Moreno, J. I., Goyette, S., Beniston, M., and Alvera, B.: Sensitivity
of the snow energy balance to climate change: Implications for the evolution
of snowpack in Pyrenees in the 21st century, Clim. Res. 36,
203–217, https://doi.org/10.3354/cr00747, 2008.
López-Moreno, J. I., Goyette, S., Vicente-Serrano, S. M., and Beniston,
M.: Effects of climate change on the intensity and frequency of heavy
snowfall events in the Pyrenees, Clim. Chang., 105, 489–508,
https://doi.org/10.1007/s10584-010-9889-3, 2011a.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo,
J., Kenawy, A., and Beniston, M.: NAO effects on combined temperature and
precipitation winter modes in the Mediterranean mountains: Observed
relationships and projections for the 21st century, Global Planet.
Change, 77, 72–66, https://doi.org/10.1016/j.gloplacha.2011.03.003, 2011b.
López-Moreno, J. I., Pomeroy, J. W., Revuelto, J., and Vicente-Serrano,
S. M.: Response of snow processes to climate change: spatial variability in a
small basin in the Spanish Pyrenees, Hydrol. Process., 27, 2637–2650,
https://doi.org/10.1002/hyp.9408, 2013a.
López-Moreno J. I., Revuelto, J, Gilaberte, M., Morán-Tejeda, E.,
Pons, M., Jover, E., Esteban, P., García, C., and Pomeroy, J. W.: The
effect of slope aspect on the response of snowpack to climate warming in the
Pyrenees, Theor. Appl. Climatol., 117, 1–13,
https://doi.org/10.1007/s00704-013-0991-0, 2013b.
López-Moreno, J. I., Gascoin, S., Herrero, J., Sproles, E. A., Pons, M.,
Alonso-González, E., Hanich, L., Boudhar, A., Musselman, K. N., Molotch,
N. P., Sickman, J., and Pomeroy, J.: Different sensitivities of snowpacks to
warming in Mediterranean climate mountain areas, Environ. Res. Lett., 12, 074006, https://doi.org/10.1088/1748-9326/aa70cb, 2017.
López-Moreno, J. I., Pomeroy, J. W., Alonso-González, E.,
Morán-Tejeda, E., and Revuelto, J.: Decoupling of warming mountain
snowpacks from hydrological regimes, Environ. Res. Lett., 15, 11–15,
https://doi.org/10.1088/1748-9326/abb55f, 2020a.
López-Moreno, J. I., Soubeyroux, J. M., Gascoin, S., Alonso-González,
E., Durán- Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., and
Morin, S.: Long-term trends (1958–2017) in snow cover duration and depth in
the Pyrenees, Int. J. Climatol., 40, 6122–6136,
https://doi.org/10.1002/joc.6571, 2020b.
Luetschg, M., Lehning, M., and Haeberli, W.: A sensitivity study of factors
influencing warm/thin permafrost in the Swiss Alps, J. Glaciol., 54,
696–704, https://doi.org/10.3189/002214308786570881, 2008.
Lundquist, J. D., Dickerson-Lange, S. E., Lutz, J. A., and Cristea, N. C.: Lower
forest density enhances snow retention in regions with warmer winters: a
global framework developed from plot-scale observations and modeling, Water
Resour. Res., 49, 6356–6370, https://doi.org/10.1002/wrcr.20504, 2013.
Lynn, E., Cuthbertson, A., He, M., Vasquez, J. P., Anderson, M. L., Coombe, P., Abatzoglou, J. T., and Hatchett, B. J.: Technical note: Precipitation-phase partitioning at landscape scales to regional scales, Hydrol. Earth Syst. Sci., 24, 5317–5328, https://doi.org/10.5194/hess-24-5317-2020, 2020.
Magnin, F., Westermann, S., Pogliotti, P., Ravanel, L., Deline, P.,
and Malet, E.: Snow control on active layer thickness in steep
alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc
massif), Catena, 149, 648–662, 2017.
Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas,
T.: Evaluating snow models with varying process representations for
hydrological applications, Water Resour. Res., 51, 2707–2723,
https://doi.org/10.1002/2014WR016498, 2015.
Marshall, A. M., Link, T. E., Abatzoglou, J. T., Flerchinger, G. N., Marks,
D. G., and Tedrow, L.: Warming alters hydrologic heterogeneity: Simulated
climate sensitivity of hydrology-based microrefugia in the snow-to-rain
transition zone, Water Resour. Res., 55, 2122–2141, https://doi.org/10.1029/2018WR023063, 2019.
Marty, C., Schlögl, S., Bavay, M., and Lehning, M.: How much can we save? Impact of different emission scenarios on future snow cover in the Alps, The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, 2017.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Mazzotti, G., Essery, R., Moeser, D., and Jonas, T.: Resolving small-scale
forest snow patterns with an energy balance snow model and a 1-layer canopy,
Water Resour. Res., 56, e2019WR026129,
https://doi.org/10.1029/2019WR026129, 2020.
Mazzotti, G., Webster, C., Essery, R., and Jonas, T.: Increasing the
physical representation of forest-snow processes in coarse-resolution
models: Lessons learned from upscaling hyper-resolution simulations, Water
Resour. Research, 57, e2020WR029064, https://doi.org/10.1029/2020WR029064, 2021.
Meng, Y., Hao, Z., Feng, S., Zhang, X., and Hao, F.: Increase in compound
dry-warm and wet-warm events under global warming in CMIP6 models, Global
Planet. Change, 210, 103773,
https://doi.org/10.1016/j.gloplacha.2022.103773, 2022.
Minder, J. R.: The Sensitivity of Mountain Snowpack Accumulation to Climate
Warming, J. Climate, 23, 2634–2650,
https://doi.org/10.1175/2009JCLI3263.1, 2010.
Morán-Tejeda, E., Lorenzo-Lacruz, J., López-Moreno, J. I., Rahman, K.,
and Beniston, M.: Streamflow timing of mountain rivers in Spain: Recent
changes and future projections, J. Hydrol. 517, 1114–1127,
https://doi.org/10.1016/j.jhydrol.2014.06.053, 2014.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining
mountain snowpack in western North America, B. Am. Meteorol. Soc., 86,
39–49, https://doi.org/10.1175/BAMS-86-1-39, 2005.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
declines in snowpack in the western US, npj Clim. Atmos. Sci., 1, 2,
https://doi.org/10.1038/s41612-018-0012-1, 2018.
Musselman, K., Clark, M., Liu, C., Ikeda, K., and Rasmussen, R.: Slower
snowmelt in a warmer world, Nat. Clim. Change, 7,
214–219, https://doi.org/10.1038/NCLIMATE3225, 2017a.
Musselman, K. N., Molotch, N. P., and Margulis, S. A.: Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California, The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017, 2017b.
Navarro-Serrano, F. and López-Moreno, J.I.: Spatio-temporal analysis of
snowfall events in the Spanish Pyrenees and their relationship to
atmospheric circulation, Cuad. Invest. Geogr., 43, 233–254,
https://doi.org/10.18172/cig.3042, 2017.
Notarnicola, C.: Hotspots of snow cover changes in global mountain regions
over 2000–2018, Remote Sens. Environ., 243, 111781,
https://doi.org/10.1016/j.rse.2020.111781, 2020.
Oliva, M., Gómez Ortiz, A., Salvador, F., Salvà, M. Pereira, P., and
Geraldes, M.: Long-term soil temperature dynamics in the Sierra Nevada,
Spain, Geoderma, 235–236, 170–181,
https://doi.org/10.1016/j.geoderma.2014.07.012, 2014.
Peña-Angulo, D., Vicente-Serrano, S., Domínguez-Castro, F., Murphy,
C., Reig, F., Tramblay, Y., Trigo, R., Luna, M. Y.,Turco, M., Noguera, I.,
Aznárez-Balta, M., Garcia-Herrera, R., Tomas-Burguera, M., and Kenawy,
A.: Long-term precipitation in Southwestern Europe reveals no clear trend
attributable to anthropogenic forcing, Environ. Res. Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f, 2020.
Pierce, D. and Cayan, D.: The uneven response of different snow measures to
human-induced climate warming, J. Climate, 26, 4148–4167,
https://doi.org/10.1175/JCLI-D-12-00534.1, 2013.
Pomeroy, J. W. and Li, L.: Prairie and arctic areal snow cover mass balance
using a blowing snowmodel, J.Geophys.Res., 105, 26619–26634,
https://doi.org/10.1029/2000JD900149, 2000.
Pomeroy, J. W., Fang, X., and Rasouli, K.: Sensitivity of snow processes to warming in the Canadian Rockies, 72nd Eastern Snow
Conference, 9–11 June 2015, Sherbrooke, Québec, Canada, 22–33, 2015.
Pons, M., López-Moreno, J., Rosas-Casals, M., and Jover, E.: The
vulnerability of Pyrenean ski resorts to climate-induced changes in the
snowpack, Clim. Change, 131,
591–605, https://doi.org/10.1007/s10584-015-1400-8, 2015.
Pritchard, D. M. W., Forsythe, N., O'Donnell, G., Fowler, H. J., and Rutter, N.: Multi-physics ensemble snow modelling in the western Himalaya, The Cryosphere, 14, 1225–1244, https://doi.org/10.5194/tc-14-1225-2020, 2020.
Quintana-Seguí, P., Turco, M., Herrera, S., and Miguez-Macho, G.: Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim, Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, 2017.
Rajczak, J. and Schär, C.: Projections of Future Precipitation Extremes
Over Europe: A Multimodel Assessment of Climate Simulations, J. Geophys.
Res.-Atmos., 122, 773–710, https://doi.org/10.1002/2017JD027176, 2017.
Rasouli, K., Pomeroy, J. W., Janowicz, J. R., Carey, S. K., and
Williams, T. J.: Hydrological sensitivity of a northern mountain basin to climate
change, Hydrol. Process., 28, 4191–5208,
https://doi.org/10.1002/hyp.10244, 2014.
Rasouli, K. R., Pomeroy, J. W., and Marks, D. G.: Snowpack sensitivity to
perturbed climate in a cool mid-latitude mountain catchment, Hydrol.
Process., 29, 3925–3940, https://doi.org/10.1002/hyp.10587, 2015.
Rasouli, K. R., Pomeroy, J. W., and Whietfiled, P. H.: The sensitivity of snow
hydrology to changes in air temperature and precipitation in three North
American headwater basins, J. Hydrol., 606, 127460,
https://doi.org/10.1016/j.jhydrol.2022.127460, 2022.
Roche, J. W., Bales, R. C., Rice, R., and Marks, D. G.: Management Implications of
Snowpack Sensitivity to Temperature and Atmospheric Moisture Changes in
Yosemite National Park, J. Am. Water Resour. Assoc., 54, 724–741,
https://doi.org/10.1111/1752-1688.12647, 2018.
Salvador Franch, F., Salvà, G., Vilar, F., and García, C.:
Nivometría y perfiles de innivación en Núria (1970 m, Pirineo
Oriental): 1985–2013, in: IX Congreso de la AEC, 729–738,
Almería, http://hdl.handle.net/20.500.11765/8229 (last access: 15 March 2023), 2014.
Salvador-Franch, F., Salvà, G., Vilar, F., and García, C.:
Contribución al análisis nivométrico del Pirineo Oriental: La
Molina, período 1956–1996, in: X Congreso Internacional AEC: Clima,
sociedad, riesgos y ordenación del territorio, 365–375, Alicante,
http://hdl.handle.net/10045/58002 (last access: 15 March 2023), 2016.
Sanmiguel-Vallelado, A., Morán-Tejeda, E., Alonso-González, E., and
López-Moreno, J. I.: Effect of snow on mountain river regimes: An
example from the Pyrenees, Front. Earth Sci., 11, 515–530,
https://doi.org/10.1007/s11707-016-0630-z, 2017.
Sanmiguel-Vallelado, A., McPhee, J., Esmeralda Ojeda Carreño, P., Mor ́an-Tejeda, E.,
Julio Camarero, J., López-Moreno, J. I.: Sensitivity of forest–snow interactions
to climate forcing: Local variability in a Pyrenean valley, J. Hydrol., 605, 127311, https://doi.org/10.1016/j.jhydrol.2021.127311, 2022.
Schirmer, M., Winstral, A., Jonas, T., Burlando, P., and Peleg, N.: Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events, The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, 2022.
Scott, D., McBoyle, G., and Mills, B.: Climate change and the skiing industry in
southern Ontario (Canada): exploring the importance of snowmaking as a
technical adaptation, Clim. Res., 23, 171–181,
https://doi.org/10.3354/CR023171, 2003.
Serrano-Notivoli, R., Buisan, S. T., Abad-Pérez, L. M., Sierra-Alvarez,
E., Rodríguez-Ballesteros, C., López-Moreno, J. I., and Cuadrat,
J. M.: Tendencias recientes en precipitación, temperatura y nieve de alta
montaña en los Pirineos (Refugio de Góriz, Huesca), in: El clima:
aire, agua, tierra y fuego. Madrid, Spain: Asociación Española de
Climatología y Ministerio para la Transición Ecológica –
Agencia Estatal de Climatología y Ministerio para la Transición
Ecológica – Agencia Estatal de Meteorología, 267, 267–280,
2018.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Glob. Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Servei Meteorològic de Catalunya (SMC): Les estacions
meteorològiques automàtiques (EMA),
https://static-m.meteo.cat/wordpressweb/wp-content/uploads/2014/11/18120559/Les_Estacions_XEMA.pdf (last access: 1 March 2022), 2011.
Smyth, E. J., Raleigh, M. S., and Small, E. E.: The challenges of simulating
SWE beneath forest canopies are reduced by data assimilation of snow depth,
Water Resour. Res., 58,
e2021WR030563, https://doi.org/10.1029/2021WR030563, 2022.
Spandre, P., François, H., Verfaillie, D., Pons, M., Vernay, M., Lafaysse, M., George, E., and Morin, S.: Winter tourism under climate change in the Pyrenees and the French Alps: relevance of snowmaking as a technical adaptation, The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019, 2019.
Sproles, E. A., Nolin, A. W., Rittger, K., and Painter, T. H.: Climate change impacts on maritime mountain snowpack in the Oregon Cascades, Hydrol. Earth Syst. Sci., 17, 2581–2597, https://doi.org/10.5194/hess-17-2581-2013, 2013.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover
in a changing climate: A regional climate model perspective, Clim. Dynam.,
41, 735–754, https://doi.org/10.1007/s00382-012-1545-3, 2013.
Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain
regions, Hydrol. Process., 23, 78–94,
https://doi.org/10.1002/hyp.7128, 2009.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
trillion dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Terzago, S., Andreoli, V., Arduini, G., Balsamo, G., Campo, L., Cassardo, C., Cremonese, E., Dolia, D., Gabellani, S., von Hardenberg, J., Morra di Cella, U., Palazzi, E., Piazzi, G., Pogliotti, P., and Provenzale, A.: Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments, Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, 2020.
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S.
M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Albergel,
C., Burak, S., Cailleret, M., Kalin, K. C., Davi, H., Dupuy,
J. L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez,
D., Quintana-Seguí, P., Renard, D., Turco, M., Türke¸s, M.,
Trigo, R., Vidal, J. P., Vilagrosa, A., Zribi, M., and Polcher, J.:
Challenges for drought assessment in the Mediterranean region
under future climate scenarios, Earth-Sci. Rev., 210, 103348,
https://doi.org/10.1016/j.earscirev.2020.103348, 2020.
Trujillo, E., and Molotch, N. P.: Snowpack regimes of the Western United
States, Water Resour. Res., 50, 5611–5623, https://doi.org/10.1002/2013WR014753, 2014.
Tuel, A. and Eltahir, E. A. B.: Why Is the Mediterranean a Climate Change
Hot Spot?, J. Climate, 33,
5829–5843, https://doi.org/10.1175/jcli-d-19-0910.1, 2020.
Tuel, A., El Moçayd, N., Hasnaoui, M. D., and Eltahir, E. A. B.: Future projections of High Atlas snowpack and runoff under climate change, Hydrol. Earth Syst. Sci., 26, 571–588, https://doi.org/10.5194/hess-26-571-2022, 2022.
Urrutia, J., Herrera, C., Custodio, E., Jódar, J., and Medina, A.:
Groundwater recharge and hydrodynamics of complex volcanic aquifers with a
shallow saline lake: Laguna Tuyajto, Andean Cordillera of northern Chile,
Sci. Total Environ., 697, 134116,
https://doi.org/10.1016/j.scitotenv.2019.134116, 2019.
Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S.: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps, The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, 2018.
Vernay, M., Lafaysse, M., Monteiro, D., Hagenmuller, P., Nheili, R., Samacoïts, R., Verfaillie, D., and Morin, S.: The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021), Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022, 2022.
Vicente-Serrano, S. M., McVicar, T., Miralles, D., Yang, Y., and
Tomas-Burguera, M.: Unravelling the Influence of Atmospheric Evaporative
Demand on Drought under Climate Dynamics, Clim. Change, 11,
1757–7780, https://doi.org/10.1002/wcc.632, 2020.
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and
Soubeyroux, J.-M.: A 50-year high-resolution atmospheric reanalysis over
France with the Safran system, Int. J. Climatol., 30,
1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Vidaller, I., Revuelto, J., Izagirre, E., Rojas-Heredia, F.,
Alonso-González, E., Gascoin, S., René P., Berthier, E., Rico, I.,
Moreno, A., Serrano, E., Serreta, A., and López-Moreno, J. I.: Toward an
ice-free mountain range: Demise of Pyrenean glaciers during 2011–2020, J.
Geophys. Res. Lett., 48, e2021GL094339, https://doi.org/10.1029/2021GL094339, 2021.
Viviroli, D. and Weingartner, R.: The hydrological significance of mountains: from regional to global scale, Hydrol. Earth Syst. Sci., 8, 1017–1030, https://doi.org/10.5194/hess-8-1017-2004, 2004.
Vogel, J., Paton, E., Aich, V., and Bronstert, A.: Increasing Compound Warm
Spells and Droughts in the Mediterranean Basin, Weather Clim. Extrem., 32,
100312, https://doi.org/10.1016/j.wace.2021.100312, 2021.
Willibald, F., Kotlarski, S., Grêt-Regamey, A., and Ludwig, R.: Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps, The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, 2020.
Woelber, B., Maneta, M. P., Harper, J., Jencso, K. G., Gardner, W. P., Wilcox, A. C., and López-Moreno, I.: The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response, Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, 2018.
Wu, X., Che, T., Li, X., Wang, N., and Yang, X.: Slower Snowmelt in Spring Along With Climate Warming Across the Northern Hemisphere, Geophys. Res. Lett., 45, 12331–12339, https://doi.org/10.1029/2018GL079511, 2018.
Xercavins, A.: Els climes del Pirineu Oriental: des de les terres
gironines fins a la Catalunya Nord, Andorra, Documents d'Anàlisi
Geogràfica, 7, 81–102, 1985.
Zappa, G., Hoskins, B. J., and Shepherd, T. G.: The dependence of wintertime
Mediterranean precipitation on the atmospheric circulation response to
climate change, Environ. Res. Lett., 10, 104012,
https://doi.org/10.1088/1748-9326/10/10/104012, 2015.
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During...