Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Convective heat transfer of spring meltwater accelerates active layer phase change in Tibet permafrost areas
Yi Zhao
Key Laboratory of Ministry of Education on Virtual Geographic
Environment, Nanjing Normal University, Nanjing, 210023, China
Key Laboratory of Ministry of Education on Virtual Geographic
Environment, Nanjing Normal University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, 210023, China
Hailong Ji
Key Laboratory of Ministry of Education on Virtual Geographic
Environment, Nanjing Normal University, Nanjing, 210023, China
School of Geographical Sciences, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Related authors
No articles found.
Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, and Wangping Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-114, https://doi.org/10.5194/essd-2024-114, 2024
Preprint under review for ESSD
Short summary
Short summary
This study provides a baseline data of permafrost temperature at 15 meters depth in the Qinghai-Tibet Plateau (QTP) over the period 2010–2019 at a spatial resolution of nearly 1 km, using 231 borehole records and a machine learning method. The average MAGT15m of the QTP permafrost was -1.85 °C, with 90% of values ranging from -5.1 °C to -0.1 °C and 51.2% exceeding -1.5 °C. The data can serve as a crucial boundary condition for deeper permafrost assessments and a reference for model simulations.
Zetao Cao, Zhuotong Nan, Jianan Hu, Yuhong Chen, and Yaonan Zhang
Earth Syst. Sci. Data, 15, 3905–3930, https://doi.org/10.5194/essd-15-3905-2023, https://doi.org/10.5194/essd-15-3905-2023, 2023
Short summary
Short summary
This study provides a new 2010 permafrost distribution map of the Qinghai–Tibet Plateau (QTP), using an effective mapping approach based entirely on satellite temperature data, well constrained by survey-based subregion maps, and considering the effects of local factors. The map shows that permafrost underlies about 41 % of the total QTP. We evaluated it with borehole observations and other maps, and all evidence indicates that this map has excellent accuracy.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Lihui Luo, Yanli Zhuang, Mingyi Zhang, Zhongqiong Zhang, Wei Ma, Wenzhi Zhao, Lin Zhao, Li Wang, Yanmei Shi, Ze Zhang, Quntao Duan, Deyu Tian, and Qingguo Zhou
Earth Syst. Sci. Data, 13, 4035–4052, https://doi.org/10.5194/essd-13-4035-2021, https://doi.org/10.5194/essd-13-4035-2021, 2021
Short summary
Short summary
We implement a variety of sensors to monitor the hydrological and thermal deformation between permafrost slopes and engineering projects in the hinterland of the Qinghai–Tibet Plateau. We present the integrated observation dataset from the 1950s to 2020, explaining the instrumentation, processing, data visualisation, and quality control.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Related subject area
Discipline: Frozen ground | Subject: Energy Balance Obs/Modelling
A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry
The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India
Water tracks intensify surface energy and mass exchange in the Antarctic McMurdo Dry Valleys
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
Short summary
New variational principle suggests that a semi-ellipsoid talik shape (3D Stefan equation) is optimum for incoming energy. However, the lake bathymetry tends to be less ellipsoidal due to the ice-rich layers near the surface. Wind wave erosion is likely responsible for the elongation of lakes, while thaw subsidence slows the wave effect and stabilizes the thermokarst lakes. The derived 3D Stefan equation was compared to the field-observed talik thickness data using geophysical methods.
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
Tobias Linhardt, Joseph S. Levy, and Christoph K. Thomas
The Cryosphere, 13, 2203–2219, https://doi.org/10.5194/tc-13-2203-2019, https://doi.org/10.5194/tc-13-2203-2019, 2019
Short summary
Short summary
This study presents surface energy fluxes in an Antarctic polar desert in the summer season, comparing wetted soil at a water track with dominating dry soils. Elevated energy uptake, evaporation, and soil heat fluxes at the water track highlight the importance of wetted soils for water and energy cycling in polar deserts. This connection will grow more relevant, as wetted soils are expected to expand due to climate warming, with implications for landscape-scale hydrology and soil ecosystems.
Cited articles
Akyurt, M., Zaki, G., Habeebullah, B.: Freezing phenomena in ice-water
systems, Energ. Convers. Manage., 43, 1773–1789,
https://doi.org/10.1016/s0196-8904(01)00129-7, 2002.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J., Luo, D., Malkova, G., Meiklejohn,
I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K.,
Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K.,
Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat.
Commun., 10, 1–11,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of the
active layer at a continuous permafrost site (Taymyr Peninsula, Siberia),
Water Resour. Res., 34, 355–363,
https://doi.org/10.1029/97WR03498, 1998.
Cahill, A. T. and Parlange, M. B.: On water vapor transport in field soils,
Water Resour. Res., 34, 731–739,
https://doi.org/10.1029/97WR03756, 1998.
Chen, F., Ding, L., Piao, S., Zhou, T., Xu, B., Yao, T., and Li, X.: The Tibetan
Plateau as the engine for Asian environmental change: the Tibetan Plateau
Earth system research into a new era, Sci. Bull., 66, 1263–1266, https://doi.org/10.1016/j.scib.2021.04.017, 2021.
Chen, J., Gao, X., Zheng, X., Miao, C., Zhang, Y., Du, Q., and Xu, Y.:
Simulation of soil freezing and thawing for different groundwater table
depths, Vadose Zone J., 18, 1–14,
https://doi.org/10.2136/vzj2018.08.0157, 2019.
Cheng, G.: The mechanism of repeated-segregation for the formation of thick
layered ground ice, Cold Reg. Sci. Technol., 8, 57–66, https://doi.org/10.1016/0165-232X(83)90017-4, 1983.
Cheng, G.: Influences of local factors on permafrost occurrence and their
implications for Qinghai-Xizang Railway design, Sci. China Ser. D, 47, 704–709, 2004.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys.
Res., 112, 1–10, https://doi.org/10.1029/2006JF000631,
2007.
Cheng, G., Sun, Z., and Niu, F.: Application of the roadbed cooling approach in
Qinghai–Tibet railway engineering, Cold Reg. Sci.
Technol., 53, 241–258,
https://doi.org/10.1016/j.coldregions.2007.02.006, 2008.
Cui, L., Zhu, Y., Zhao, T., Ye, M., Yang, J., and Wu, J.: Evaluation of upward
flow of groundwater to freezing soils and rational per-freezing water table
depth in agricultural areas, J. Hydrol., 585,
124825, https://doi.org/10.1016/j.jhydrol.2020.124825, 2020.
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall stimulates
permafrost thaw across a variety of Interior Alaskan boreal ecosystems, npj
Clim. Atmos. Sci., 3, 1–7,
https://doi.org/10.1038/s41612-020-00155-6, 2020.
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.
Fisher, D. A., Lacelle, D., and Pollard, W.: A model of unfrozen water content
and its transport in icy permafrost soils: Effects on ground ice content and
permafrost stability, Permafrost Periglac., 31, 184–199, https://doi.org/10.1002/ppp.2031, 2020.
Flerchinger, G. N.: Sensitivity of soil freezing simulated by the SHAW
model, T. ASAE, 34, 2381–2389,
https://doi.org/10.13031/2013.31883, 1991.
Flerchinger, G. N.: The Simultaneous Heat and Water (SHAW) Model: Technical
Documentation, Northwest Watershed Research Center USDA Agricultural Research
Service, Boise, Idaho, 2000.
Flerchinger, G. N.: SHAW Model – Version 3.0.2 Release with Graphical User Interface, Northwest Watershed Research Center: Boise, Idaho [code], https://www.ars.usda.gov/pacific-west-area/boise-id/northwest-watershed-research-center/docs/shaw-model/ (lsat access: 29 November 2021), 2019.
Flerchinger, G. N. and Pierson, F. B.: Modelling plant canopy effects on
variability of soil temperature and water: model calibration and validation,
J. Arid Environ., 35, 641–653,
https://doi.org/10.1006/jare.1995.0167, 1997.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model of a
freezing snow-residue-soil system I. Theory and development, T. ASAE, 32, 565–571,
https://doi.org/10.13031/2013.31040, 1989a.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model of a
freezing snow-residue-soil system II. Field verification, T. ASAE, 32, 573–576,
https://doi.org/10.13031/2013.31041, 1989b.
Flerchinger, G. N., Caldwell, T. G., and Cho, J.: Simultaneous Heat and Water
(SHAW) Model: model use, calibration, and validation, T.
ASABE, 55, 1395–1411, https://doi.org/10.13031/2013.42250,
2012.
Gao, J., Xie, Z., Wang, A., Liu, S., Zeng, Y., Liu, B., Li, R., Jia, B.,
Qin, P., and Xie, J.: A new frozen soil parameterization including frost and
thaw fronts in the Community Land Model, J. Adv. Model.
Earth Sy., 11, 659–679,
https://doi.org/10.1029/2018MS001399, 2019.
Gao, T., Liu, J., Zhang, T., Kang, S., Liu, C., Wang, S., Sillanpää,
M., and Zhang, Y.: Estimating interaction between surface water and groundwater
in a permafrost region of the northern Tibetan Plateau using heat tracing
method, Sci. Cold Arid Reg., 12, 71–82,
2020.
Guan, X. J., Spence, C., and Westbrook, C. J.: Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes, Hydrol. Earth Syst. Sci., 14, 1387–1400, https://doi.org/10.5194/hess-14-1387-2010, 2010.
Guo, D. and Wang, H.: Simulation of permafrost and seasonally frozen ground
conditions on the Tibetan Plateau, 1981–2010, J. Geophys.
Res.-Atmos., 118, 5216–5230,
https://doi.org/10.1002/jgrd.50457, 2013.
Halliwell, D. H. and Rouse, W. R.: Soil heat flux in permafrost:
characteristics and accuracy of measurement, J.
Climatol., 7, 571–584,
https://doi.org/10.1002/joc.3370070605, 1987.
Hasler, A., Talzi, I., Beutel, J., Tschudin, C., and Gruber, S.: Wireless sensor
networks in permafrost research: concept, requirements, implementation, and
challenges, in: 9th International Conference on Permafrost, Fairbanks,
Alaska, 29 June 2008–3 July 2008, 669–674,
https://doi.org/10.5167/uzh-3095, 2008.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Sci. Data, 7, 1–11,
https://doi.org/10.1038/s41597-020-0369-y, 2020.
He, Z., Zhang, S., Teng, J., Yao, Y., and Sheng, D.: A coupled model for liquid
water-vapor-heat migration in freezing soils, Cold Reg. Sci.
Technol., 148, 22–28,
https://doi.org/10.1016/j.coldregions.2018.01.003, 2018.
Hinkel, K. M., Nelson, F. E., Shur, Y., Brown, J., and Everett, K. R.: Temporal
changes in moisture content of the active layer and near-surface permafrost
at Barrow, Alaska, U.S.A.: 1962–1994, Arc. Alp.
Res., 28, 300–310, 1996.
Hinkel, K. M., Outcalt, S. I., and Taylor, A. E.: Seasonal patterns of coupled
flow in the active layer at three sites in northwest North America, Can.
J. Earth Sci., 34, 667–678,
https://doi.org/10.1139/e17-053, 1997.
Hinkel, K. M., Paetzold, F., Nelson, F. E., and Bockheim, J. G.: Patterns of
soil temperature and moisture in the active layer and upper permafrost at
Barrow, Alaska: 1993–1999, Global Planet. Change, 29, 293–309, https://doi.org/10.1016/S0921-8181(01)00096-0, 2001.
Hu, G., Zhao, L., Li, R., Wu, T., Wu, X., Pang, Q., Xiao, Y., Qiao, Y., and Shi,
J.: Modeling hydrothermal transfer processes in permafrost regions of
Qinghai-Tibet Plateau in China, Chin. Geogr.
Sci., 25, 713–727,
https://doi.org/10.1007/s11769-015-0733-6, 2015.
Huang, M. and Gallichand, J.: Use of the SHAW model to assess soil water
recovery after apple trees in the gully region of the Loess Plateau, China,
Agr. Water Manage., 85, 67–76,
https://doi.org/10.1016/j.agwat.2006.03.009, 2006.
Iijima, Y., Fedorov, A. N., Park, H., Suzuki, K., Yabuki, H., Maximov, T.
C., and Ohata, T.: Abrupt increases in soil temperatures following increased
precipitation in a permafrost region, central Lena River basin, Russia,
Permafrost Periglac., 21, 30–41,
https://doi.org/10.1002/ppp.662, 2010.
Jiang, H., Zhang, W., Yi, Y., Yang, K., Li, G., Wang, G.: The impacts of
soil freeze/thaw dynamics on soil water transfer and spring phenology in the
Tibetan Plateau, Arct. Antarct. Alp. Res., 50, e1439155, https://doi.org/10.1080/15230430.2018.1439155, 2018.
Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., Lü, L., and Chang, X.: Changes
in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet
Plateau, China, and their eco-environmental impacts, Environ. Res.
Lett., 4, 45206,
https://doi.org/10.1088/1748-9326/4/4/045206, 2009.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost degradation and ecological changes associated with a
warmingclimate in central Alaska, Climate Change, 48,
551–579, https://doi.org/10.1023/A:1005667424292, 2001.
Kahimba, F. C., Ranjan, R. S., and Mann, D. D.: Modeling soil temperature, frost
depth, and soil moisture redistribution in seasonally frozen agricultural
soils, Appl. Eng. Agr., 25, 871–882,
https://doi.org/10.13031/2013.29237, 2009.
Kane, D. L. and Stein, J.: Water movement into seasonally frozen soils, Water
Resour. Res., 19, 1547–1557,
https://doi.org/10.1029/WR019i006p01547, 1983.
Kane, D. L., Hinzman, L. D., and Zarling, J. P.: Thermal response of the active
layer to climatic warming in a permafrost environment, Cold Reg. Sci.
Technol., 19, 111–122,
https://doi.org/10.1016/0165-232X(91)90002-X, 1991.
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S. I.:
Non-conductive heat transfer associated with frozen soils, Global
Planet. Change, 29, 275–292,
https://doi.org/10.1016/S0921-8181(01)00095-9, 2001.
Karjalainen, O., Luoto, M., Aalto, J., and Hjort, J.: New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas, The Cryosphere, 13, 693–707, https://doi.org/10.5194/tc-13-693-2019, 2019.
Kurylyk, B. L. and Watanabe, K.: The mathematical representation of freezing
and thawing processes in variably-saturated, non-deformable soils, Adv.
Water Resour., 60, 160–177,
https://doi.org/10.1016/j.advwatres.2013.07.016, 2013.
Kurylyk, B. L., McKenzie, J. M., MacQuarrie, K. T. B., and Voss, C. I.:
Analytical solutions for benchmarking cold regions subsurface water flow and
energy transport models: One-dimensional soil thaw with conduction and
advection, Adv. Water Resour., 70, 172–184,
https://doi.org/10.1016/j.advwatres.2014.05.005, 2014.
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., and Voss, C. I.:
Influence of vertical and lateral heat transfer on permafrost thaw, peatland
landscape transition, and groundwater flow, Water Resour.
Res., 52, 1286–1305,
https://doi.org/10.1002/2015WR018057, 2016.
Li, Q., Sun, S., and Xue, Y.: Analyses and development of a hierarchy of frozen
soil models for cold region study, J. Geophys.
Res., 115, 1–18, https://doi.org/10.1029/2009JD012530,
2010.
Li, R., Zhao, L., Wu, T., Wang, Q., Ding, Y., Yao, J., Wu, X., Hu, G., Xiao,
Y., Du, Y., Zhu, X., Qin, Y., Yang, S., Bai, R., Du, E., Liu, G., Zou, D.,
Qiao, Y., and Shi, J.: Soil thermal conductivity and its influencing factors at
the Tanggula permafrost region on the Qinghai-Tibet Plateau, Agr.
Forest Meteorol., 264, 235–246,
https://doi.org/10.1016/j.agrformet.2018.10.011, 2019.
Li, X., Wu, T., Zhu, X., Jiang, Y., Hu, G., Hao, J., Ni, J., Li, R., Qiao,
Y., Yang, C., Ma, W., Wen, A., and Ying, X.: Improving the Noah-MP model for
simulating hydrothermal regime of the active layer in the permafrost regions
of the Qinghai-Tibet Plateau, J. Geophys. Res.-Atmos., 125, e2020J–e32588J,
https://doi.org/10.1029/2020JD032588, 2020.
Li, Z., Feng, Q., Wang, Q. J., Yong, S., Cheng, A., and Li, J.: Contribution
from frozen soil meltwater to runoff in an in-land river basin under water
scarcity by isotopic tracing in northwestern China, Global Planet.
Change, 136, 41–51,
https://doi.org/10.1016/j.gloplacha.2015.12.002, 2016.
Link, T. E., Flerchinger, G. N., Unsworth, M., and Marks, D.: Simulation of
water and energy fluxes in an old-growth seasonal temperate rain forest
using the Simultaneous Heat and Water (SHAW) Model, J.
Hydrometeorol., 5, 443–457,
https://doi.org/10.1175/1525-7541(2004)005<0443:SOWAEF>2.0.CO;2, 2004.
Liu, Y., Zhao, L., and Li, R.: Simulation of the soil water-thermal features
within the active layer in Tanggula Region, Tibetan Plateau, by using SHAW
model, J. Glaciol. Geocryol., 35, 280–290,
2013.
Luethi, R., Phillips, M., and Lehning, M.: Estimating non-conductive heat flow
leading to intra-permafrost Talik formation at the Ritigraben Rock Glacier
(Western Swiss Alps), Permafrost Periglac., 28, 183–194, https://doi.org/10.1002/ppp.1911, 2017.
Magnin, F., Westermann, S., Pogliotti, P., Ravanel, L., Deline, P., and Malet,
E.: Snow control on active layer thickness in steep alpine rock walls
(Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif), Catena, 149, 648–662, https://doi.org/10.1016/j.catena.2016.06.006, 2017.
Mekonnen, Z. A., Riley, W. J., Grant, R. F., and Romanovsky, V. E.: Lawrence
Berkeley National Lab, LBNL, B. C. U. S.: Changes in precipitation and air
temperature contribute comparably to permafrost degradation in a warmer
climate, Environ. Res. Lett., 16, 24008,
https://doi.org/10.1088/1748-9326/abc444, 2021.
Ming, F., Li, D. Q., and Liu, Y. H.: A predictive model of unfrozen water
content including the influence of pressure, Permafrost Periglac., 31, 213–222, https://doi.org/10.1002/ppp.2037,
2020.
Neumann, R. B., Moorberg, C. J., Lundquist, J. D., Turner, J. C., Waldrop,
M. P., McFarland, J. W., Euskirchen, E. S., Edgar, C. W., and Turetsky, M. R.:
Warming effects of spring rainfall increase methane emissions from thawing
permafrost, Geophys. Res. Lett., 46, 1393–1401,
https://doi.org/10.1029/2018GL081274, 2019.
Orgogozo, L., Prokushkin, A. S., Pokrovsky, O. S., Grenier, C., Quintard,
M., Viers, J., and Audry, S.: Water and energy transfer modeling in a
permafrost-dominated, forested catchment of Central Siberia: The key role of
rooting depth, Permafrost Periglac., 30,
75–89, https://doi.org/10.1002/ppp.1995, 2019.
Outcalt, S. I., Nelson, F. E., and Hinkel, K. M.: The zero-curtain effect: Heat
and mass transfer across an isothermal region in freezing soil, Water
Resour. Res., 26, 1509–1516,
https://doi.org/10.1029/WR026i007p01509, 1990.
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated surface/subsurface
permafrost thermal hydrology: Model formulation and proof-of-concept
simulations, Water Resour. Res., 52, 6062–6077,
https://doi.org/10.1002/2015WR018427, 2016.
Perfect, E. and Williams, P. J.: Thermally induced water migration in frozen
soils, Cold Reg. Sci. Technol., 3, 101–109,
https://doi.org/10.1016/0165-232X(80)90015-4, 1980.
Pogliotti, P., Cremonese, E., Morra Di Cella, U., Gruber, S., and Giardino, M.:
Thermal diffusivity variability in alpine permafrost rock walls, in: 9th
International Conference on Permafrost, Fairbanks, US, Institute of
Northern Engineering, University of Alsaka, Fairbanks, US, 2008.
Prunty, L. and Bell, J.: Infiltration rate vs. gas composition and pressure in
soil columns, Soil Sci. Soc. Am. J., 71,
1473–1475, https://doi.org/10.2136/sssaj2007.0072N, 2016.
Putkonen, J.: Soil thermal processes and heat transfer processes near
Ny-Ålesund, northwestern Spitsbergen, Svalbard, Polar
Res., 17, 165–179,
https://doi.org/10.3402/polar.v17i2.6617, 1998.
Rachlewicz, G. and Szczuciński, W.: Changes in thermal structure of
permafrost active layer in a dry polar climate, Petuniabukta, Svalbard,
Polish Polar Res., 29, 261–278, 2008.
Rogger, M., Chirico, G. B., Hausmann, H., Krainer, K., Brückl, E.,
Stadler, P., and Blöschl, G.: Impact of mountain permafrost on flow path and
runoff response in a high alpine catchment, Water Resour.
Res., 53, 1288–1308,
https://doi.org/10.1002/2016WR019341, 2017.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat and
mass transport processes in the active layer and permafrost, Permafrost
Periglac., 11, 219–239,
https://doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7, 2000.
Roth, K. and Boike, J.: Quantifying the thermal dynamics of a permafrost site
near Ny-Alesund, Svalbard, Water Resour. Res., 37,
2901–2914, https://doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7, 2001.
Rowland, J. C., Travis, B. J., and Wilson, C. J.: The role of advective heat
transport in talik development beneath lakes and ponds in discontinuous
permafrost, Geophys. Res. Lett., 38, L17504,
https://doi.org/10.1029/2011GL048497, 2011.
Scherler, M., Hauck, C., Hoelzle, M., Stahli, M., and Volksch, I.: Meltwater
infiltration into the frozen active layer at an alpine permafrost site,
Permafrost Periglac., 21, 325–334,
https://doi.org/10.1002/ppp.694, 2011.
Shen, M., Piao, S., Jeong, S., Zhou, L., Zeng, Z., Ciais, P., Chen, D.,
Huang, M., Jin, C., Li, L. Z. X., Li, Y., Myneni, R. B., Yang, K., Zhang,
G., Zhang, Y., and Yao, T.: Evaporative cooling over the Tibetan Plateau induced
by vegetation growth, P. Natl. Acad. Sci. USA, 112, 9299–9304,
https://doi.org/10.1073/pnas.1504418112, 2015.
Stein, J. and Kane, D. L.: Monitoring the unfrozen water content of soil and
snow using time domain reflectometry, Water Resour.
Res., 19, 1573–1584,
https://doi.org/10.1029/WR019i006p01573, 1983.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E.,
Hill, P., Andersson, A., Kirchner, N., Noormets, R., Dudarev, O., Semiletov,
I., and Gustafsson, Ö.: Massive remobilization of permafrost carbon during
post-glacial warming, Nat. Commun., 7, 1–10,
https://doi.org/10.1038/ncomms13653, 2016.
van der Velde, R., Su, Z., Ek, M., Rodell, M., and Ma, Y.: Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site, Hydrol. Earth Syst. Sci., 13, 759–777, https://doi.org/10.5194/hess-13-759-2009, 2009.
Wang, C. and Yang, K.: A new scheme for considering soil water-heat transport
coupling based on Community Land Model: Model description and preliminary
validation, J. Adv. Model. Earth Sy., 10, 927–950, https://doi.org/10.1002/2017MS001148, 2018.
Wei, Z., Jin, H., Zhang, J., Yu, S., Han, X., Ji, Y., He, R., and Chang, X.:
Prediction of permafrost changes in Northeastern China under a changing
climate, Sci. China Earth Sci., 54, 924–935,
https://doi.org/10.1007/s11430-010-4109-6, 2011.
Wen, Z., Niu, F., Yu, Q., Wang, D., Feng, W., and Zheng, J.: The role of
rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of
Qinghai-Tibetan plateau, Environ. Earth Sci., 71,
1195–1204, https://doi.org/10.1007/s12665-013-2523-8, 2014.
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017. blackboxReference not mentioned in text.
Woo, M. K., Marsh, P., and Pomeroy, J. W.: Snow, frozen soils and permafrost
hydrology in Canada, 1995–1998, Hydrol. Process., 9,
1591–1611, https://doi.org/10.1002/1099-1085(20000630)14:9<1591::AID-HYP78>3.0.CO;2-W, 2000.
Wright, N., Hayashi, M., and Quinton, W. L.: Spatial and temporal variations in
active layer thawing and their implication on runoff generation in
peat-covered permafrost terrain, Water Resour. Res., 45, W5414, https://doi.org/10.1029/2008WR006880, 2009.
Wu, X., Nan, Z., Zhao, S., Zhao, L., and Cheng, G.: Spatial modeling of
permafrost distribution and properties on the Qinghai-Tibet Plateau,
Permafrost Periglac., 29, 86–99,
https://doi.org/10.1002/ppp.1971, 2018.
Xiao, Y., Zhao, L., Dai, Y., Li, R., Pang, Q., and Yao, J.: Representing
permafrost properties in CoLM for the Qinghai–Xizang (Tibetan) Plateau,
Cold Reg. Sci. Technol., 87, 68–77,
https://doi.org/10.1016/j.coldregions.2012.12.004, 2013a.
Xiao, Y., Zhao, L., Li, R., Jiao, K., Qiao, Y., and Yao, J.: The evaluation of
SR-50 for snow depth measurements at Tanggula area, J. Appl.
Meteorol. Sci., 24, 342–348, 2013b.
Yang, K. and He, J.: China meteorological forcing dataset (1979–2018), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yang, S., Li, R., Wu, T., Wu, X., Zhao, L., Hu, G., Zhu, X., Du, Y., Xiao,
Y., Zhang, Y., Ma, J., Du, E., Shi, J., and Qiao, Y.: Evaluation of soil thermal
conductivity schemes incorporated into CLM5.0 in permafrost regions on the
Tibetan Plateau, Geoderma, 401, 115330,
https://doi.org/10.1016/j.geoderma.2021.115330, 2021.
Yang, Y., Wu, Z., He, H., Du, H., Wang, L., Guo, X., and Zhao, W.: Differences
of the changes in soil temperature of cold and mid-temperate zones,
Northeast China, Theor. Appl. Climatol., 134,
633–643, https://doi.org/10.1007/s00704-017-2297-0, 2018.
Yu, L., Zeng, Y., Wen, J., and Su, Z.: Liquid-vapor-air flow in the frozen soil,
J. Geophys. Res.-Atmos., 123,
7393–7415, https://doi.org/10.1029/2018JD028502, 2018.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020.
Zhang, G., Nan, Z., Zhao, L., Liang, Y., and Cheng, G.: Qinghai-Tibet Plateau
wetting reduces permafrost thermal responses to climate warming, Earth
Planet. Sc. Lett., 562, 116858,
https://doi.org/10.1016/j.epsl.2021.116858, 2021.
Zhang, M., Wen, Z., Li, D., Chou, Y., Zhou, Z., Zhou, F., and Lei, B.: Impact
process and mechanism of summertime rainfall on thermal-moisture regime of
active layer in permafrost regions of central Qinghai-Tibet Plateau, Sci.
Total Environ., 796, 148970,
https://doi.org/10.1016/j.scitotenv.2021.148970, 2021.
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.:
Statistics and characteristics of permafrost and ground-ice distribution in
the Northern Hemisphere, Polar Geogr., 23, 132–154,
https://doi.org/10.1080/10889379909377670, 1999.
Zhao, L., Wu, Q., Marchenko, S. S., and Sharkhuu, N.: Thermal state of
permafrost and active layer in Central Asia during the international polar
year, Permafrost Periglac., 21, 198–207,
https://doi.org/10.1002/ppp.688, 2010.
Zhao, L., Hu, G., Zou, D., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost for the Qinghai-Xizang (Tibet) Plateau, China (2002–2018), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.271107, 2021.
Zhao, Y.: Convective Heat Transfer of Spring Meltwater Accelerates Active Layer Phase Change in Tibet Permafrost Areas, figshare [data set], https://doi.org/10.6084/m9.figshare.14827959.v5, 2021.
Zhou, Z., Zhou, F., Zhang, M., Lei, B., and Ma, Z.: Effect of increasing
rainfall on the thermal-moisture dynamics of permafrost active layer in the
central Qinghai-Tibet Plateau, J. Mount. Sci., 18, 2929–2945, https://doi.org/10.1007/s11629-021-6707-5, 2021.
Zhu, X., Wu, T., Li, R., Xie, C., Hu, G., Qin, Y., Wang, W., Hao, J., Yang,
S., Ni, J., and Yang, C.: Impacts of summer extreme precipitation events on the
hydrothermal dynamics of the active layer in the Tanggula permafrost region
on the Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 122, 11549–11567,
https://doi.org/10.1002/2017JD026736, 2017.
Zhu, X., Wu, T., Hu, G., Ni, J., Zou, D., Chen, J., Li, X., Wu, X., and Li, R.:
Non-negligible contribution to seasonally thawing depth of active layer from
extreme warming events in the Tanggula permafrost region of Qinghai-Tibet
Plateau, J. Geophys. Res.-Atmos., 126, e2021J–e35088J, https://doi.org/10.1029/2021JD035088, 2021.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Zuo, Y., Guo, Y., Song, C., Jin, S., and Qiao, T.: Study on soil water and heat
transport characteristic responses to land use change in Sanjiang Plain,
Sustainability, 11, 157,
https://doi.org/10.3390/su11010157, 2019.
Zweigel, R. B., Westermann, S., Nitzbon, J., Langer, M., Boike, J.,
Etzelmüller, B., and Vikhamar Schuler, T.: Simulating snow redistribution
and its effect on ground surface temperature at a high-Arctic site on
Svalbard, J. Geophys. Res.-Earth, 126, e2020J–e5673J, https://doi.org/10.1029/2020JF005673, 2021.
Short summary
Convective heat transfer (CHT) is important in affecting thermal regimes in permafrost regions. We quantified its thermal impacts by contrasting the simulation results from three scenarios in which the Simultaneous Heat and Water model includes full, partial, and no consideration of CHT. The results show the CHT commonly happens in shallow and middle soil depths during thawing periods and has greater impacts in spring than summer. The CHT has both heating and cooling effects on the active layer.
Convective heat transfer (CHT) is important in affecting thermal regimes in permafrost regions....