Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3489-2022
https://doi.org/10.5194/tc-16-3489-2022
Research article
 | 
01 Sep 2022
Research article |  | 01 Sep 2022

Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles

Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis

Data sets

Meteorological inputs Marie-Amélie Boucher https://doi.org/10.7910/DVN/BXXRHL

HYDROTEL Snow Model Parameters Marie-Amélie Boucher https://doi.org/10.7910/DVN/RJSZIP

Historical Snow Simulation (Open Loop) Marie-Amélie Boucher https://doi.org/10.7910/DVN/CJYMCV

Snow Observation Data Marie-Amélie Boucher https://doi.org/10.7910/DVN/NPB1JY

Model code and software

TheDroplets/Snow_spatial_particle_filter: First release of the codes for the spatial particle filte Jean Odry https://doi.org/10.5281/zenodo.5531771

Download
Short summary
The research deals with the assimilation of in-situ local snow observations in a large-scale spatialized snow modeling framework over the province of Quebec (eastern Canada). The methodology is based on proposing multiple spatialized snow scenarios using the snow model and weighting them according to the available observations. The paper especially focuses on the spatial coherence of the snow scenario proposed in the framework.