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Abstract. Data assimilation is an essential component of any
hydrological forecasting system. Its purpose is to incorporate
some observations from the field when they become available
in order to correct the state variables of the model prior to
the forecasting phase. The goal is to ensure that the forecasts
are initialized from state variables that are as representative
of reality as possible, and also to estimate the uncertainty of
the state variables. There are several data assimilation meth-
ods, and particle filters are increasingly popular because of
their minimal assumptions. The baseline idea is to produce an
ensemble of scenarios (i.e. the particles) using perturbations
of the forcing variables and/or state variables of the model.
The different particles are weighted using the observations
when they become available. However, implementing a par-
ticle filter over a domain with large spatial dimensions re-
mains challenging, as the number of required particles rises
exponentially as the domain size increases. Such a situation
is referred to as the “curse of dimensionality”, or a “dimen-
sionality limit”. A common solution to overcome this curse
is to localize the particle filter. This consists in dividing the
large spatial domain into smaller portions, or “blocks”, and
applying the particle filter separately for each block. This can
solve the above-mentioned dimensionality problem because
it reduces the spatial scale at which each particle filter must
be applied. However, it can also cause spatial discontinuities
when the blocks are reassembled to form the whole domain.
This issue can become even more problematic when addi-
tional data are assimilated. The purpose of this study is to
test the possibility of remedying the spatial discontinuities of
the particles by locally reordering them.

We implement a spatialized particle filter to estimate the
snow water equivalent (SWE) over a large territory in eastern

Canada by assimilating local SWE observations from man-
ual snow surveys. We apply two reordering strategies based
on (1) a simple ascending-order sorting and (2) the Schaake
shuffle and evaluate their ability to maintain the spatial struc-
ture of the particles. To increase the amount of assimilated
data, we investigate the inclusion of a second data set (SR50),
in which the SWE is indirectly estimated from automatic
measurements of snow depth using sonic sensors. The two
reordering solutions maintain the spatial structure of the in-
dividual particles throughout the winter season, which sig-
nificantly reduces the spatial random noise in the distribution
of the particles and decreases the uncertainty associated with
the estimation. The Schaake shuffle proves to be a better tool
for maintaining a realistic spatial structure for all particles,
although we also found that sorting provides a simpler and
satisfactory solution. The assimilation of the secondary data
set improved SWE estimates in ungauged sites when com-
pared with the deterministic model, but we noted no signif-
icant improvement when both snow courses and the SR50
data were assimilated.

1 Introduction

The accumulation and melting of snow dominate the hydrol-
ogy of Nordic and mountainous regions (Doesken and Jud-
son, 1997; Barnett et al., 2005; Hock et al., 2006). In these
regions, accurate information about the snow water equiva-
lent (SWE) is crucial for streamflow forecasting (Li and Si-
monovic, 2002) and reservoir management (Schaefli et al.,
2007). Over large territories or catchments, the spatial distri-
bution of SWE can be assessed using remote sensing (Goïta
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et al., 2003) or snow modelling (Marks et al., 1999; Ohmura,
2001; Essery et al., 2013). The advantages of snow mod-
elling include the possibility to generalize over large terri-
tories and ensure complete temporal coverage with a resolu-
tion determined by the user. However, as with any kind of
model, snow modelling is subject to uncertainty and inaccu-
racy stemming from errors in the inputs or the model struc-
ture itself (structural uncertainty). The origin of structural un-
certainty includes both epistemic uncertainty and one’s per-
ceptual model (Beven, 2012). Those factors, in addition to
tradition (or “legacy”; see, for instance, Addor and Melsen,
2019) influence one’s choice of model algorithmic structure,
level of complexity and process description (e.g. Clark et al.,
2011).

Given that SWE is a cumulative variable, these errors ob-
viously increase in importance throughout the winter, mak-
ing SWE estimates highly uncertain at the beginning of the
melting season. Nonetheless, a correct assessment of the spa-
tial distribution of SWE over large domains is often required
for diverse applications, including flood forecasting in large
catchments. Therefore, any data assimilation technique for
snow that can be applied to such a large spatial domain with
satisfactory results is of very high practical importance for
operational hydrology, as it could potentially improve flood
forecasting and reservoir management.

Data assimilation can be used to limit the accumulation of
uncertainty and error from input data and models. The gen-
eral idea is to correct the state variables of the model using
the observations when they become available. Several elab-
orate data assimilation schemes have been proposed in the
literature to deal with these limitations, including optimal in-
terpolation (Burgess and Webster, 1980), ensemble Kalman
filtering (Evensen, 2003) and particle filtering (Gordon et al.,
1993; Moradkhani et al., 2005). The latter relies on fewer hy-
potheses than the other schemes in relation to the nonlinear-
ity and non-normality of the uncertainty distributions of the
model’s input variables, state variables and outputs. The par-
ticle filter (PF) is based on the simulation and weighting of
different scenarios (particles) rather than modifying the state
variables of the model; thus, the physical consistency of state
variables is ensured and the disruption of cross-correlations
between state variables is avoided. These scenarios are gener-
ated within the range of uncertainty of the input data and/or
the model structure. Assessing or defining the range of un-
certainty for each variable is not a trivial task, but it is also
not unique to the particle filter (see, for instance, Thiboult
and Anctil, 2015). The particles are weighted using the ob-
servations when they become available. These weights can
be used to build the distribution of the variable of interest
(model output).

A common limitation of the PF is the risk of particle de-
generacy. After a certain number of time steps, the evolution
of most particles brings them so far from the observation that
they are associated with a weight close to zero. This can be
seen as an impoverishment of the filter with fewer and fewer

useful particles. At some point, a single particle concentrates
all the weight, and a distribution can no longer be built. This
degeneracy can be avoided using some kind of particle re-
sampling; the particles with the lowest weights are discarded,
whereas the better ones are duplicated. Several resampling
algorithms have been proposed in the literature, such as those
of Gordon et al. (1993); Douc and Cappe (2005); Leisenring
and Moradkhani (2011).

The PF has been successfully used for the local (onsite) as-
similation of snow data (Leisenring and Moradkhani, 2011;
Magnusson et al., 2017). The application of PF over large ter-
ritories, however, remains challenging. The number of parti-
cles must grow exponentially with the dimension of the ob-
served space to avoid filter degeneracy (Snyder et al., 2015).
This “curse of dimensionality” (Bengtsson et al., 2008) is a
severe drawback for the application of the PF over large spa-
tial domains with a consequent number of observations.

Several procedures have been proposed to overcome the
curse of dimensionality. A first approach, known as error in-
flation (Larue et al., 2018), consists of increasing the error
associated with the observation to make the filter more tol-
erant. Cluzet et al. (2021) proposed a generalization of this
approach to apply it over large domains. The most common
approach to overcome the curse of dimensionality is local-
ization (Farchi and Bocquet, 2018). This family of methods
assumes that points separated by a sufficiently large distance
are independent. Then, given this independence, the assimi-
lation is performed locally; that is to say, only observations
close enough to a given site of interest are considered. This
can be achieved with techniques such as a spatially limited
block (where the space is divided into fixed spatial tiles) or
localization radius (where observations are selected in a site-
specific manner for each site of interest). In this way, the im-
pact of each observation is limited in space, and the assimi-
lation is performed on several subregions with lower spatial
dimensions.

Recent work involving spatialization of the PF for assimi-
lating SWE over large spatial domains includes that of Cluzet
et al. (2021), who developed the k-local framework to se-
lect the appropriate data set to be assimilated for each site
of interest; this selection is based on the cross-correlation
between ensemble values at the site of interest and obser-
vation sites. Poterjoy (2016) introduced a Bayesian updating
of particles near observation sites while preserving particles
located far from observations. This method for locally updat-
ing the particle is similar to the covariance localization used
in ensemble Kalman filtering. Cantet et al. (2019) proposed
a spatialized particle filter using the localization approach.
They used spatially structured perturbations to generate the
particles, computed the weights of the particles locally for
each observation site, and then interpolated the weights in
space. The underlying assumption of their method is that for
any spatially coherent particle (i.e. model simulation), sites
that are close to each other in space should be characterized
by similar weights. The method was successfully applied to
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the assimilation of SWE data from manual snow surveys in
the snow module of the HYDROTEL model (Turcotte et al.,
2007) over the province of Quebec in eastern Canada. The
spatialized particle filter from Cantet et al. (2019) is now
fully operational for SWE assimilation in the context of flood
forecasting in Quebec. This approach is then considered the
baseline from an operational perspective in Quebec.

Although localization is an effective means of circum-
venting the curse of dimensionality, this approach can cre-
ate physically unrealistic spatial discontinuities because of
the local resampling implemented independently at different
sites and because of the resulting noise (Farchi and Bocquet,
2018). This can occur when a global particle is formed (post-
resampling) with a given particle on block a and with a dif-
ferent particle on the adjacent block b. The appearance of
these discontinuities can be mitigated by improving the re-
sampling algorithm. For instance, Farchi and Bocquet (2018)
proposed the use of the optimal transport theory to minimize
the movements of local particles during resampling. Such
a technique aims to prevent the appearance of discontinu-
ities. Nevertheless, when resampling must be performed fre-
quently, it cannot prevent every discontinuity. Rather than (or
in addition to) preventing the discontinuities, it is possible to
mitigate them. Such a process can be called particle gluing.
Some authors suggest smoothing out the discontinuities by
space averaging the resampled fields (Penny and Miyoshi,
2016). This appears to be an effective but rather subjective
way to remove the discontinuities, as this smoothing is not
related to the underlying spatial structure of the physical vari-
able. A solution for gluing the particles back together and
solving the spatial discontinuities becomes necessary when
the number of observation sites or the temporal frequency of
the observations increases. Whereas being able to assimilate
more data is always appealing to better capture the spatial
and temporal variability of the snowpack properties, a greater
amount of resampling is expected when more observations
are used to evaluate the particles of the PF. Unfortunately,
a greater number of resampling iterations is likely to create
new spatial discontinuities.

In Cantet et al. (2019), only the data from manual snow
surveys were assimilated in the snow model. The fact that
this type of measurement is not available continuously in
time reduces the risk of spatial discontinuities appearing be-
cause of resampling. However, a large number of SR50 sonic
sensors, which measure snow depth at an hourly frequency,
have been deployed across Quebec since 2000. Furthermore,
Odry et al. (2020) recently proposed a machine-learning
model to evaluate SWE from snow depth, temperature, and
precipitation indicators in Quebec. On the one hand, there
is potential added value in including multiple types of snow
data in the particle filter. Those advantages include the addi-
tion of new observation sites, but also a finer consideration of
the temporal variation of the snowpack (snowfall, detection
of the beginning of the snowmelt, . . . ). On the other hand,
including data that is available continuously and performing

data assimilation more frequently increase the risk of a spa-
tial discontinuity appearing.

In a context where snow observations are increasingly au-
tomated, it becomes crucial to remedy the curse of dimen-
sionality. Here we present an innovative means of gluing the
particles of a localized particle filter back together using the
Schaake shuffle (Clark et al., 2004). The Schaake shuffle was
introduced to rebuild the spatial structure in forecasted en-
semble meteorological fields. It uses a set of spatial obser-
vations of the variable to reorganize the members of an en-
semble cell by cell over a spatial grid to bring their spatial
structures closer to the observations. It is an actual shuffling
of the members, and there is no alteration in the distribu-
tion of the local ensemble. Considering that a localized set-
ting of the particle filter is necessary to overcome the curse
of dimensionality, and considering that spatial discontinuities
can arise from this localized setting, we hypothesize that the
Schaake shuffle can be used within a localized particle fil-
ter to glue the resampled particles back together and restore
the spatial correlation. To rebuild the short-range correlation
among the particles using an alternative and simpler solu-
tion, we also implement a simple sorting, in ascending order,
of the particles’ SWE.

To verify this hypothesis, we propose to use the spatial par-
ticle filter developed by Cantet et al. (2019) and to implement
the Schaake shuffle after each resampling of the particles. For
comparison purposes, we use a study area that includes that
of Cantet et al. (2019) and the same model. The reference set
of the Schaake shuffle is simulated over a historical period
using a deterministic run of the model without any assimi-
lation, as no reliable spatial observation of snow is available
for this region.

The availability of SR50 data provides a great opportunity
to test both particle reordering when the amount of data is
increased and the ability of our approach to assimilate other
types of data that have different uncertainties in the spatial
particle filter (SPF). In this context, and as a secondary ob-
jective of this study, we also hypothesize that the assimila-
tion of this secondary SWE data set improves the estimates
of SWE compared with the deterministic simulation and that
the addition of data in the assimilation scheme improves the
overall quality of the SWE estimates at ungauged sites.

The next section describes the study area and the data. The
methodology is outlined in a third section, and the results and
related discussion are presented in the fourth part.

2 Experimental setup

2.1 Study area and snow data

Quebec is a province in eastern Canada. For most catch-
ments, the hydrology of rivers within the province is largely
influenced by the marked accumulation of snow during the
winter, with an annual maximum peak flow occurring during
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the spring freshet. For this reason, the Quebec government
has put much effort into monitoring and simulating SWE
across the province. Our research forms part of this strategy.

Historically, SWE monitoring has occurred through man-
ual snow surveys using standard federal snow samplers. The
measurements are undertaken manually at various sites along
predetermined snow lines at differing temporal frequencies
(monthly to bi-weekly). This sampling strategy provides in-
formation regarding SWE, snow depth and snow bulk den-
sity.

Since the beginning of the 2000s, automated snow sensors
have been installed across Quebec. These automatic sonic
sensors (SR50) measure snow depth continuously at hourly
time steps. Although the temporal continuity of these snow
depth series is a clear advantage, the absence of information
regarding SWE is a drawback. This limitation is overcome
by deriving daily time series of SWE from the SR50 data
using an artificial neural network model developed for this
purpose and trained and validated against the manual snow
survey data set (Odry et al., 2020). Because this is an indi-
rect estimation of SWE, it is assumed that this second SWE
data set is characterized by greater uncertainty than the data
from the manual snow surveys. To be able to make use of
both data sets, we focus on the 2011–2015 period, for which
both data sets have a relatively high and more stable number
of SR50 sensors.

All snow data used in this research were provided
by the Réseau de surveillance du climat du Québec
(MELCC, 2019), operated by the Quebec Ministère de
l’Environnement et de la Lutte contre les Changements Cli-
matiques (MELCC), from the other private and public sec-
tor members of the Réseau météorologique coopératif du
Québec (RMCQ) and from their partners outside Quebec.
The spatial distribution of observation sites is presented in
Fig. 1.

Figure 2 provides the observed SWE values from the en-
tire manual snow survey data set averaged by month or by
year for the individual sites and the whole area. This infor-
mation has to be used with caution, as the number of obser-
vations per site and year as well as the date of observations
can change throughout the period. Nevertheless, it is possi-
ble to appreciate that the maximum SWE value is reached in
March for most stations (i.e. the south of the province), but
only in April for stations with the largest SWE values (i.e.
the northern part of the province). No general trend is visible
in the evolution of the monthly average. Nevertheless, it is
possible to see that the mean April SWE used to be higher in
the 1970s, which is a known reality in Quebec hydrology.

This research focuses on a portion of the province located
south of 53◦ N, where most of the population is concentrated.
Northern Quebec differs markedly from the more southern
region in terms of the amount of available snow data and
snow characteristics; therefore, its inclusion would require a
separate study.

Figure 1. Snow observation sites in and around Quebec (Canada).

2.2 Snow model and meteorological forcing

We use the HYDROTEL snowpack model (HSM) in this
study (Turcotte et al., 2007), which is used operationally
for real-time SWE estimation at the MELCC. HSM is a
temperature-index-based model and therefore provides a
simplified representation of the water and energy budgets of
the snowpack. It is a rather simple snow model that only re-
quires daily precipitation and minimum and maximum tem-
peratures as inputs. The implementation and parameteriza-
tion of the model are those proposed by Cantet et al. (2019).
More detailed specifications about the model structure and
physics can be found in Turcotte et al. (2007).

To force the HSM, daily grids of precipitation and min-
imum and maximum temperatures are used. They are pro-
duced by the MELCC by kriging in situ measurements from
local meteorological ground stations (Bergeron, 2015) on a
regular 0.1◦ resolution grid. Along with the interpolated vari-
ables, the corresponding kriging variances are also produced.
They cover the entire 1961–2018 period.

3 Methodology

3.1 Spatialized particle filter

The particle filter implemented in this study is the one de-
veloped and tested by Cantet et al. (2019). This method was
developed to assimilate at-site snow data into a large-scale
modelling framework. The main feature is to generate parti-
cles characterized by a realistic temporal and spatial corre-
lation so that each particle can be seen as a reasonable sce-
nario. The observations are then used to weight the different
particles when and where they are available. In this context,
it is hypothesized that the weights should be spatially corre-
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Figure 2. Averaged SWE observations in the study area between 1961 and 2018 (a) over the entire year, (b) in January, (c) in February, (d)
in March and (e) in April.

lated, given that the particles are also spatially correlated. In
a second step, the weights estimated at observation sites are
interpolated in space. To avoid filter degeneracy, Cantet et al.
(2019) implemented the sampling importance resampling al-
gorithm from Gordon et al. (1993).

The spatialized particle filter proposed by Cantet et al.
(2019) differs from more traditional approaches such as the
ones described by Farchi and Bocquet (2018). In Cantet et al.
(2019), the likelihood of the particles is evaluated locally at
each observation site. The likelihood is then multiplied by the
prior weights to derive the posterior weights. The posterior
weights at observation sites are then interpolated in space. In
the traditional localized approach, the likelihood is evaluated
over a certain area (a block or radius around an observation),
and the posterior weights are directly derived for this area by
multiplying the prior by the likelihood. However, the interpo-
lation step in the approach of Cantet et al. (2019) could tend
to make it less selective and to keep a particle as long as an
observation provides it with a sufficiently high weight.

Following Cantet et al. (2019), we generated 500 particles
using perturbations of the meteorological input data and the
predicted SWE. Perturbations of the precipitation and tem-

perature inputs should represent the uncertainty associated
with the forcing. Given that these inputs are created through
a spatial interpolation, they are perturbed using an additive
noise following Gaussian distribution for which the variance
is set to the interpolation variance. The simulated SWE is
perturbed with a multiplicative uniform noise proposed by
Clark et al. (2008) and used in Leisenring and Moradkhani
(2011); this perturbation process represents the structural
uncertainty associated with the snow model. The temporal
correlation of the noise is maintained using the formulation
(Evensen, 1994)

st = αst−1+
√

1−α2ηt , with s0 ∼N (0,1), (1)

where st is the random noise at time t , α represents the tem-
poral correlation and is set at 0.95, and ηt is a random white
noise following a standard normal distribution.

The spatial correlation of the noise is built up using the
exponential model (Uboldi et al., 2008)

r = exp
−d2

L2 , (2)
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where r is the spatial correlation between two points sepa-
rated by a distance d, and L is the range of the correlation,
set at 200 km (Cantet et al., 2019).

In our study, local particle filters are implemented at the
observation sites. The weight of a given particle at an obser-
vation site at a specific time when an observation is available
depends on the likelihood of the measured SWE value given
the SWE associated with this particle. This likelihood is rep-
resented by a Gaussian process:

yt |x
i
t ∼N (yt − xit ,σ 2), (3)

where yt represents the observed SWE at time t , xit is the
SWE simulated by the ith particle, and σ is the standard
deviation of the Gaussian process, which is related to the
uncertainty associated with each type of SWE observation
and is expressed in SWE units. For manual snow surveys, σ
should represent both the uncertainty of the measurement it-
self and the error of the spatial representativeness, i.e. how
well a local measurement can represent the SWE averaged
over a grid cell. σ is tuned to a× (0.1× yt + 1), where a
is a unitless parameter set at 3 for the snow survey obser-
vations (by trial and error by Cantet et al., 2019) and is to
be determined for the SR50. In the case of the SWE esti-
mated from the SR50 snow depth measurements, σ should
also represent the structural uncertainty of the artificial neu-
ral network model (Odry et al., 2020) used to estimate SWE.
Moreover, although manual snow surveys average 10 mea-
surements along a 100–300 m snow line, SR50 sensors pro-
vide a purely at-point measurement. As a consequence, the
error for the spatial representativeness should be larger for
SR50 than for manual snow surveys.

Under these assumptions, when a given observation be-
comes available at time t , the weight xit associated with the
ith particle at the observation site can be updated to

wit =
wit−1p(yt |x

i
t )

NP∑
i=1
wit−1p(yt |x

i
t )

, (4)

where NP is the number of particles. One can notice that
the weight of a particle at a given time step depends on the
weight at the previous time step. Therefore, the assimilation
of continuous data with a time correlation can lead to the
assimilation of the same information several times and can
cause too much weight to be given to this information. Here,
it is chosen that the SR50 should be assimilated at a weekly
frequency. In operational real-time simulations, the model is
restarted each day from 7 days in the past to include all ob-
servations obtained over that 1-week period. It would thus be
possible to assimilate only the most recent SR50 observation
and have an assimilation frequency of close to weekly.

At a given time step, the weights are updated for any newly
available observation using Eq. (4). The weights at the obser-
vation sites are spatially interpolated using a simple inverse

distance-weighted method to estimate the weights for each
grid cell. This process makes it possible to include different
observations obtained inside the same grid cell.

Once the weights have been updated and interpolated, it is
possible to investigate the risk of filter degeneracy. Degener-
acy occurs when a few particles concentrate all the weight.
For each observation site and grid cell, Neff

t , the effective
sample size at time t , is computed as

Neff
t =

1
NP∑
i=1
(wit )

2

. (5)

If the effective sample size falls below the 0.8NP threshold
(Magnusson et al., 2017), the particles are then locally resam-
pled. It is important to highlight that whereas the particles are
generated with a spatial structure, they are evaluated and re-
sampled locally. The resampling is performed using the SIR
algorithm (Gordon et al., 1993) and consists of deleting the
particles with the lowest weights and duplicating those with
the largest weights. The objective of this resampling is to ob-
tain a set of particles associated with equal weights of 1

NP
that describe the same distribution as the weighted particles
before resampling. Through this process, the filter retains a
large number of meaningful particles while the posterior dis-
tribution of SWE is marginally affected (the resampling al-
gorithm should be selected to limit the impact on the poste-
rior distribution). Moreover, the SWE values and other state
variables of the different particles are not modified.

Although the resampling aims to preserve the filter from
degeneracy, it is also responsible for the risk of spatial dis-
continuity, as it is performed independently for each site and
grid cell. The risk of discontinuity is managed using a re-
ordering of the particles.

3.2 Recovering the spatial structure by reordering the
particles

We implemented two alternative procedures to maintain the
spatial structure of each particle despite resampling: the
Schaake shuffle, proposed by Clark et al. (2004), and a sim-
ple sorting of the particles at each site. The use of any of
these strategies in the context of particle filtering constitutes
the novelty of this piece of research.

The Schaake shuffle is a reordering method that aims to
recover the space–time structure in an ensemble of precipita-
tion or temperature forecast fields. In the original application
of the Schaake shuffle, the spatial structure of the ensemble
members is lost during a downscaling procedure. The idea
behind the Schaake shuffle is to rank the members of the
ensemble and match these ranks with those of past obser-
vations selected randomly from similar dates in the historical
records. Although the Schaake shuffle was not initially devel-
oped to be applied to the field of snow or data assimilation,
there is no technical difficulty in transferring its application
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from an ensemble of meteorological forecasts to a set of par-
ticles describing a snowpack.

For a given time and location, letX be the vector (of length
NP) of SWE values for all the particles. A vector of equal size
Y is built from the historical record at the same location and
a similar date. Considerations about the construction of Y are
provided in the following sections. The vectors χ and γ are
the sorted versions of X and Y , respectively:

X = (x1,x2, . . .,xNP), (6)
χ = (x(1),x(2), . . .,x(NP)), where x(1) ≤ x(2) ≤ . . .≤ x(NP), (7)
Y = (y1,y2, . . .,yNP), (8)
γ = (y(1),y(2), . . .,y(NP)), where y(1) ≤ y(2) ≤ . . .≤ y(NP). (9)

Moreover, B is taken as the vector of indices describing
the positions of the elements of γ in the original vector Y .
That is to say, the ith element ofB describes where to find the
ith element of γ in Y . Finally, if Z is the reordered version
of X, then

Z = (z1,z2, . . .,zNP), (10)

with

zq = x(r), (11)
q = B[r], (12)

and

r = 1, . . .,NP. (13)

This reordering must be applied at each site or grid cell. A
more detailed procedure and a visual example are provided
in (Clark et al., 2004).

As it appears in Eqs. (7)–(13), the main limitation to the
application of the Schaake shuffle is the availability of his-
torical records for the construction of vector Y . It is neces-
sary to have records covering each site (observation sites and
grid cells) and for them to be of sufficient length to be able
to draw NP values from similar periods for each site. Given
that an extensive data set does not exist for the SWE in Que-
bec, we propose to use a record of simulations made using
the HSM in its deterministic configuration without assimila-
tion. This selection relies on the assumption that the model
without data assimilation can correctly estimate the spatial
structure of the SWE. This is a fairly strong assumption; nev-
ertheless, in the absence of a spatially distributed SWE prod-
uct covering the whole study area for a long period of time,
and considering that the spatial structure in the HSM deter-
ministic simulation is controlled by the meteorological inputs
and not a pre-imposed spatial structure, this choice is consid-
ered reasonable. One can notice that the actual SWE values
in the historical records are not used in the Schaake shuffle;
only their respective rank is used to reorder the particles, so
the estimation errors and biases from the model are not of

prime importance. In our application, the vector Y is con-
structed from a reference set of simulations produced with
a deterministic run of the HSM for the years 1961 to 2004.
It is assumed that the overall spatial structure of the SWE
remains the same during this period. This assumption is dif-
ficult to verify as there is no spatial observation of the SWE
covering the whole area and period, but Fig. 2 does not show
any strong tendency over the period. Following Clark et al.
(2004), only values associated with a date within a window of
±7 d around the assimilation date (but with different years)
are used. The vector Y is built by randomly drawing 500 val-
ues from the 660 available records.

As a simpler alternative to the Schaake shuffle, we also
implemented a sorting of the particles. In this case, at each
site, all 500 particles are sorted in ascending order of SWE
value. The idea is to rebuild the correlation between the sets
of particles in neighbouring sites in the sense of the rank cor-
relation. Although the sorting procedure is much simpler to
implement and does not require any reference record, it also
removes the possibility to consider each particle as a reason-
able snow scenario at a large scale. Compared to the Schaake
shuffle, the sorting can be seen as a way of trading the large-
scale structure for a short-scale one.

3.3 Validation procedure and metrics

To evaluate the impacts of the different reordering strategies
on the spatial structure of the particles and the final SWE esti-
mation, we use experimental variograms. These plots provide
the evolution of the variance between the sites as a function
of the separation distance. Because the variograms are only
computed for a single date, the Pearson correlation between
the 500 SWE values (from each particle) at two nearby sites
is also used and computed at each time step so that the tem-
poral evolution of the spatial structure can also be assessed.
When investigating the spatial structure, all snow survey sites
are used for assimilation.

To assess the ability of the overall method to estimate the
SWE, we compute two deterministic scores, the root mean
squared error (RMSE) and the mean bias error (MBE), as
well as two ensemble-based scores: the continuous ranked
probability score (CRPS, Matheson and Winkler, 1976) and
the skill-to-spread ratio (Fortin et al., 2014). The CRPS con-
siders two, sometimes competing, aspects of ensemble qual-
ity. The first aspect is resolution. An ensemble has a good
resolution (or sharpness) when it discriminates events. For
instance, a climatological ensemble that covers the whole
range of possibilities has no resolution. A deterministic sim-
ulation series that follows the observed series very closely
has an excellent resolution. The second aspect is reliability.
Reliable ensembles display exactly the right amount of vari-
ability. For instance, a 95 % confidence interval computed
from the daily ensemble is reliable if it contains the observa-
tion 95 % of the time on average. The RMSE is a measure of
accuracy, which is related to the resolution. If two different
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series of ensemble simulations have the same level of reso-
lution (similar RMSEs) but very different reliability values,
the more reliable one will obtain a lower (better) CRPS.

The metrics are summarized in Table 1. As the purpose of
the spatialized particle filter is mainly to produce estimates
at ungauged sites, only 50 % of the manual snow survey sites
are used for the assimilation; the other half are kept as a
validation subset. This sub-sampling strategy is presented in
Fig. 1. All provided scores are computed only on the valida-
tion subset.

4 Results and discussion

4.1 Spatial structure of the particles

The variograms of the estimated SWE for 28 February 2012,
for the different configurations (deterministic run, ensemble
open loop, assimilation without reordering, assimilation with
sorting of the particles, and assimilation with the Schaake
shuffle) are provided in Fig. 3. We selected 28 February be-
cause February is considered to be the last month of the ac-
cumulation season in Quebec. The deterministic run corre-
sponds to the deterministic simulation of the HSM without
any assimilation, whereas the three other curves correspond
to the weighted average of the 500 particles. The five vari-
ograms are very similar, which demonstrates that the differ-
ent assimilation strategies lead to final SWE estimates that
are comparable to the deterministic run of the HSM, with
similar spatial structures. This similarity is a desired behav-
ior, as the spatial structure should be guided by the snow
model and its meteorological forcings. In particular, Fig. 3
demonstrates that particle reordering does not affect the over-
all spatial structure of the final SWE estimate.

The variograms in Fig. 3 have a semi-variance of below
1 cm2 for separation distances close to 0. The semi-variance
that corresponds to a null distance (also called the nugget ef-
fect) is important, as it describes the spatial roughness or lo-
cal noise. The presence of spatial discontinuities would cre-
ate a noticeable nugget effect. As expected, the deterministic
model is characterized by the lowest nugget effect (around
0 cm2), which means an absence of local random noise. In
addition, it is interesting to note that the assimilation without
reordering has the largest nugget effect, with a value around
1 cm2. This large nugget effect can be a symptom of some
noise affecting the correlation between neighbouring sites.
Finally, the ensemble open loop displays the largest long-
distance semi-variance, which is a result of a larger disper-
sion of the particles. This is expected in the absence of data
assimilation. Despite those small differences, we conclude
that the different configurations result in comparable spatial
structures.

The maps corresponding to the variograms in Fig. 3 are
provided in Fig. 4. The five maps exhibit a similar spatial
pattern, although the map from the deterministic simulation

Figure 3. Variograms of the estimated snow water equivalent
(SWE) on 28 February 2012.

(panel a) is the most distinct from the other ones. This was
expected because no assimilation is involved in this simula-
tion. The deterministic simulation also provides a smoother
map compared with the other three, which is compatible with
what is observed in the variograms. The overall similarity
of the different maps was expected, considering that they
are characterized by similar variograms. Figure 4 evidences
that the assimilation process as well as the different reorder-
ing methods do not impact the spatial structure of the final
SWE estimate. This behaviour was expected, since the over-
all structure is driven by the forcing data and the spatially
correlated perturbations. Figure 4 shows that the reordering
process does not affect the overall spatial structure of the es-
timated SWE.

Nevertheless, although it is important to assess the spa-
tial structure of the final SWE estimates, the spatialized par-
ticle filter relies on the assumption that the weights of the
particles can be interpolated in space. Therefore, the spatial
structure of each particle must be preserved. To verify this,
we plotted the variograms of the 500 particles for the three
reordering options: no reordering, sorting the particles in as-
cending order and the Schaake shuffle (Fig. 5). In Fig. 5, the
thin grey curves represent the variograms of individual parti-
cles, whereas the bold coloured lines are identical to those in
Fig. 3. Note that the vertical axes do not share the same scale.
Moreover, the maps corresponding to two particles (number
250 and number 500) are provided in Fig. 6 to illustrate the
link between the variograms and the overall spatial structure.
First, for both the ensemble open loop and the assimilation
without reordering (Fig. 5a and b), it is clear that the indi-
vidual spatial structure of each particle is different from the
weighted average. More specifically, all particles are charac-
terized by a much larger nugget effect, ranging from approxi-
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Table 1. Performance metrics.

Metric Focus Perfect value Formula

RMSE Predictive accuracy 0 RMSE=

√
1
n

n∑
k=1

(ŷk − yk)
2

MBE Systematic bias 0 MBE= 1
n

n∑
k=1

(ŷk − yk)

CRPS Global ensemble evaluation 0 CRPS= 1
n

n∑
k=1

+∞∫
−∞

(F e
k
(u)−F o

k
(u))2du

Skill-to-spread ratio Adequacy of spread and skill 1 r = RMSE√
1
n

n∑
k=1

vark

n is the number of points, xk and x̂k are respectively the estimated and observed SWE values, vark is the variance of the particles of the kth point, F e
k

is the cumulative distribution function described by the weighted particles of the kth point, and F o
k

is the Heaviside function associated with the
observation.

Figure 4. Estimated snow water equivalent (SWE) maps for 28 February 2012: (a) deterministic run, (b) ensemble open loop, (c) no
reordering, (d) sorting and (e) Schaake shuffle; points represent the locations of the available snow surveys on this day.
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mately 100 to around 600 cm2. Therefore, there is significant
short-range random variability. This nugget effect can also
be observed in Fig. 6a and b as well as c and d, where the
maps display a very granular aspect. The fact that individ-
ual particles exhibit an important nugget effect whereas their
weighted average does not exhibit this effect indicates that
a large amount of random noise is associated with each par-
ticle, which is in disagreement with the underlying assump-
tions of the spatialized particle filter.

Figure 5c shows the variograms of the individual particles
when the particles are sorted in ascending order following
each resampling. This sorting attenuates the random noise
associated with individual particles very effectively. Follow-
ing this sorting, most particles fall around the final estimate.
Nevertheless, some still exhibit a very large nugget effect.
This granularity is associated with the accumulation of small
random differences between neighbouring cells throughout
the winter. Even though the perturbations (in precipitation,
temperature and SWE) are spatially correlated, they are not
perfectly identical. This nugget effect on individual particles
dissipates when the particles are averaged, as seen in Figs. 3,
4 and 5. Upon reordering the particles in ascending order,
we expected that some of those particles would display a
disturbed spatial structure. Panels e and f of Fig. 6 provide
more insight regarding this expectation. The maps represent
the states of two individual particles (#250 and #500) for a
given moment in time. The two particles present very differ-
ent patterns. This difference was expected, as particle #250
is located in the middle of the ensemble, whereas particle
#500 gathers all the highest SWE values. Such differences il-
lustrate that when particles are sorted in ascending order, the
individual particles cannot be considered potential SWE map
scenarios anymore. Sorting can rebuild the short-range cor-
relation, which is necessary overall for the spatialized parti-
cle filter, but that same sorting can jeopardize the long-range
correlation and the general spatial pattern.

Reordering the particles with the Schaake shuffle appears
to be a better option to fix the spatial structure of the par-
ticles. Figure 5d illustrates that all particles have a near-zero
nugget effect, and their variograms lie around that of the final
estimate. This is compatible with the idea that the particles
are alternative SWE scenarios, each providing a reasonable
spatial structure. The same conclusions can be drawn from
Fig. 6h and g.

As a summary, Figs. 5 and 6 demonstrate that the individ-
ual particles are characterized by a nonrealistic spatial struc-
ture in the ensemble open loop and when the assimilation is
performed without any reordering. In both cases, the particles
are characterized a strong nugget effect, which is also associ-
ated with granular SWE maps. This behaviour is incompati-
ble with the underlying assumptions of the spatialized parti-
cle filter. On the contrary, the two reordering methods result
in more realistic spatial structures for the individual particles.
However, simply sorting the particles in ascending order pro-
duces some problematic particles. Only the Schaake shuffle

is able to maintain an acceptable spatial structure for all in-
dividual particles.

To evidence the temporal evolution of the spatial structure,
we refer to Fig. 7, which shows the evolution of the corre-
lation coefficient between the sets of particles at two given
neighbouring sites for winter 2011–2012. In this figure, the
vertical dotted lines represent assimilation dates. Due to the
proximity of the two sites, a strong correlation between both
sets of particles is to be expected, as the SWE is correlated
in space at a short distance in reality.

Figure 7 also shows the results for data assimilation with-
out any resampling, in order to assess the impact of resam-
pling on the spatial structure. Correlation decreases continu-
ously with time for the assimilation without resampling (nor
reordering) and without reordering. The main difference be-
tween those two options is a sudden drop in correlation val-
ues in late February for the case of resampling without re-
ordering. This drop is associated with a resampling. Whereas
resampling can be associated with a large and immediate
drop in correlation because of a disassociation of particles
at different sites, resampling cannot explain the continuous
decrease in correlation. This decrease can be explained, how-
ever, by the cumulative nature of the snowpack and the per-
turbations. In this study and following Cantet et al. (2019),
precipitation, temperature and SWE itself are perturbed in-
dependently. The perturbations are generated with a spatial
structure, meaning that perturbations applied to neighbouring
sites are strongly correlated but are not identical. The simu-
lated snowpack accumulates these differences throughout the
winter, thus explaining the continuous decrease in correla-
tion. Therefore, it appears that the assumption used to justify
the interpolation of particle weights is not supported after a
certain number of time steps without reordering, and resam-
pling only aggravates the problem.

In Fig. 7, the two reordering strategies maintain a very
high correlation between neighbouring sites. Some momen-
tary correlation losses are observed in April, which can be
associated with the disappearing snow (some grid cells and
particles have no snow).

As a consequence, it appears that both reordering strate-
gies can maintain the spatial structure of the particles. In
the present context, such reordering is necessary to verify
the underlying assumption of the spatial particle filter and to
ensure that the weights of the particles can be interpolated
meaningfully. From a more general point of view, reorder-
ing the particles appears to be an effective way to deal with
the spatial discontinuities created by the resampling step of
the particle filter. Reordering by sorting the particles in as-
cending order is easy to implement, as it does not require
any additional data set, but in this case, the individual parti-
cles cannot be seen as scenarios that each have a reasonable
long-range correlation. In contrast, the Schaake shuffle pre-
serves the idea of each particle representing a potential real-
istic scenario. Consequently, because the spatialized particle
filter relies largely on spatially structured perturbations and
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Figure 5. Variograms of the particles for the different reordering strategies for 28 February 2012: (a) ensemble open loop; (b) no reordering,
(c) sorting and (d) Schaake shuffle. Solid lines represent the variograms of the estimated SWE as displayed in Fig. 3, and grey lines represent
the variograms of individual particles.

particles, the Schaake shuffle appears to be a better solution.
Nonetheless, the Schaake shuffle requires a long spatialized
record to build the reference set. Here, we demonstrate that a
simulated deterministic run can be used as a pseudo-historic
climatology of SWE if we assume that the model can sim-
ulate a realistic spatial structure. Still, in situations where a
reference set cannot be acquired or created, reordering parti-
cles by sorting them in ascending order can be an acceptable
alternative to maintain the short-range correlation of the par-
ticles.

4.2 Snow water equivalent estimation

In this and the following sections, all scores are computed
solely on the validation subset (see Fig. 1); the SWE data
from the validation sites are never assimilated. The calcu-
lated scores are intended to show the ability of the spatialized
PF to estimate SWE in ungauged sites.

Figure 8 presents the cumulative distributions of the differ-
ent performance metrics over the validation sites when only
manual snow surveys are assimilated. Table 2 provides the
scores averaged over all the sites in the validation sample.
The shift from the deterministic to the ensemble open-loop
configuration as well as the data assimilation noticeably re-
duce the RMSE (panel a) and the MBE (panel b) relative
to the deterministic run simulation. The ensemble open-loop
simulation is characterized by as much bias as the simu-
lations with data assimilation, but the ensemble open-loop
simulation obtains a higher (worse) RMSE. Nonetheless, the
three assimilation and reordering strategies show compara-
ble values of RMSE and MBE. There seems to be only a
slight decrease in RMSE when using the Schaake shuffle.
Differences are more noticeable for ensemble-based perfor-
mance metrics. First and foremost, Fig. 8c exhibits a large
decrease in CRPS when using one of the reordering meth-
ods. As the RMSE values are comparable, this improvement
of the CRPS is necessarily associated with a narrowing of
the posterior distribution described by the particles. This re-
sult can be linked with the reduced amount of random noise
associated with the reordering of the particles (see Sect. 4.1).

A reduction in ensemble spread is also apparent in Fig. 8d.
Because the skill (evaluated using the RMSE) is not sensi-
tive to the reordering, the increase in the skill-to-spread ratio
can only be explained by a reduction of the spread. The ratio
is also systematically higher with the Schaake shuffle than
with the sorting, meaning that the Schaake shuffle makes the
spread of the ensemble of particles even narrower. In the case
of simple sorting, 80 % of the sites have a ratio below 1;
thus, the particles are over-dispersive. The situation improves
slightly with the use of the Schaake shuffle. As expected, the
ensemble open-loop simulation is characterized by the worst
ensemble scores. In the absence of assimilation, the parti-
cles are free to evolve, and the dispersion of the ensemble
becomes very large.

Figure 8 shows that the gain in deterministic error reduc-
tion from particle reordering is very limited. Nevertheless, re-
ordering the particles greatly improves the ensemble scores,
which means that the posterior distribution of the particles is
a better estimate of the actual uncertainty. Considering that
data assimilation techniques in hydrology are mainly used
for forecast applications, better quantification of the uncer-
tainty is a very important achievement. According to those
results, the simple sorting of the particles appears to be as ef-
fective as the more elaborate Schaake shuffle at maintaining
the spatial structure of the particles.

4.3 Inclusion of the data from the SR50 sensors within
the assimilation scheme

The inclusion of the data from SR50 sensors in the experi-
ment aims at improving the spatio-temporal coverage of the
territory in terms of observations. This new dataset includes
new observation sites and continuous time series. The first
step before including the SR50 data is to estimate the un-
certainty associated with the indirect observations. The total
uncertainty is composed of the measurement uncertainty, the
depth-to-SWE conversion error, and the spatial representa-
tiveness error. Here, the spatial representativeness error rep-
resents the difference between the local in situ observation
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Figure 6. Snow water equivalent (SWE) for two particles on 28 February 2012: particle #250 (a, c, e, g) and particle #500 (b, d, f, h);
ensemble open loop (a, b), no reordering (c, d), sorting (e, f) and Schaake shuffle (g, h).

Table 2. Scores averaged over the 50 % validation snow courses.

Score Deterministic Ensemble open loop No reordering Sorting Schaake shuffle

RMSE (mm) 45.8 44.6 43.3 41.8 41.9
MBE (mm) −8.5 12.9 12.6 10.1 11.2
CRPS (mm) NA 47.8 47.2 25.8 26.0
Skill/spread NA 0.17 0.35 0.85 1.06
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Figure 7. Evolution of the correlation between between two adja-
cent grid cells over the winter of 2011–2012.

and the simulated value, which is averaged over a 0.1◦ reso-
lution grid cell.

We assume that the uncertainty associated with the SR50
data follows the specifications provided in Sect. 3.1. Figure 9
displays the cumulative distributions of the performance met-
rics at validation sites when only the SR50 data are assimi-
lated for different a values. The first observation is that the
lowest (worst) scores are achieved for an a value of 4. Higher
(better) scores are attained at higher a values, which con-
firms that the uncertainty associated with the SR50 must be
greater than that of the snow surveys. It also appears that if a
is greater than 4, there are no large differences in the distri-
butions of RMSE, MBE or CRPS. Thus, the performance is
not very sensitive to the a value as long as this is sufficiently
high (greater than 4). In Fig. 9d, the skill-to-spread ratio in-
creases with the a value of the uncertainty associated with
the SR50 observations. This result indicates that greater un-
certainty for these observations creates a larger spread of the
particles, which is expected, as a higher observation uncer-
tainty provides greater flexibility to the particles around the
observation and gives more weight to the prior distribution.
Here, in the end, and considering the observations above, we
selected an a value of 10 for the SR50 data as a reasonable
compromise.

Figure 10 displays the cumulative distributions of the per-
formance metrics over the validation sites according to the
type of data that is assimilated: snow surveys only, SR50
only, or both. First, all assimilation schemes significantly re-
duce the RMSE (panel a) for most sites compared to the
deterministic run. These results, similar to those of Cantet
et al. (2019), demonstrate that the spatialized particle filter
can assimilate local observations and use them to improve

the global estimation of SWE. In panel b, the assimilation
schemes increase the MBE values at all sites relative to those
of the deterministic simulation, which confirms that assimila-
tion tends to correct the underestimation of the deterministic
simulation. When comparing the dependence of the RMSE
(panel a) and that of the CRPS (panel c) on the type of
data that are assimilated, improved results are obtained when
only the snow surveys are assimilated. The assimilation of
SR50 observations only or both types of observations simul-
taneously yields comparable performance, although it is still
higher (better) than that of the deterministic run. Thus, in
the absence of snow surveys, it is possible and even desir-
able to assimilate estimated SWE data from SR50 observa-
tions to improve the simulation of SWE. Nonetheless, at this
point, the validation process reaches its limitations. In our
study, 50 % of the snow survey sites are used in validation;
therefore, it is assumed that these observations represent the
actual amount of SWE. Nevertheless, the model simulates
the SWE over a grid having a 0.1◦ resolution, so local ob-
servations may not be representative. Moreover, SR50 sen-
sors and snow survey sites tend not to be installed in the
same environment; SR50 sensors are generally installed as
parts of ground meteorological stations, which are located in
more open environments, as per the World Meteorological
Organization’s guidelines (World Meteorological Organiza-
tion, 2018), whereas snow surveys are almost always con-
ducted in a forested environment. According to the official
guidelines, a radius of 3 m around each sampling point must
be cleared from trees and other vegetation. Therefore, while
manual snow survey sampling points are not directly under
the canopy, they are protected from the wind. Consequently,
the validation of snow survey sites only may produce a bias.
Finally, in Fig. 10d, we note that the type of assimilated data
has a large effect on the skill-to-spread ratio. The assimila-
tion of SR50 data greatly increases the ratio compared with
the assimilation of snow surveys alone, whereas the assim-
ilation of both types of data produces the highest values of
the skill-to-spread ratio. Given that the level of skill (RMSE
in panel a) cannot explain this difference, the assimilation of
SR50 data only or of both types of data therefore decreases
the ensemble spread. These results may be explained by the
amount of assimilated data, as the greater the number of ob-
servations assimilated, the more the particles are constrained.
The numbers of assimilated snow survey sites and SR50 sites
are similar, but even with a weekly frequency, the number of
observations is much higher for SR50, which explains the
decrease in spread. Obviously, the number of observations is
even higher when assimilating both types of observations.

5 Conclusions

In this study, we propose an improvement of the spatialized
particle filter introduced by Cantet et al. (2019). By reorder-
ing the particles of the filter, it was possible to slightly reduce
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Figure 8. Cumulative distributions of the scores calculated for the 50 % validation snow courses.

Figure 9. Cumulative distributions of the scores for the validation sites when assimilating SR50 data, according to the applied uncertainty
model.
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Figure 10. Cumulative distributions of the scores for the validation sites according to the nature of the assimilated data.

the RMSE associated with SWE estimation at validation sites
as well as to greatly improve the CRPS, which means that the
uncertainty associated with SWE estimation at an ungauged
site is significantly reduced. In a more general context, par-
ticle reordering is a good remedial solution to solve spatial
discontinuity problems arising from resampling and local-
ization when applying a particle filter to large spatial areas.
Particle reordering may then be a new solution to the curse
of dimensionality for particle filtering. To confirm this result,
integration of the reordering procedures into different kinds
of localized particle filters should be considered. While it has
been shown that the spatialized particle filter described in this
paper improved SWE estimation and provided better uncer-
tainty estimates than previous versions or the open loop sim-
ulation, it would be beneficial to undertake a more general
comparison of different localized particle filters (such as the
ones described by Farchi and Bocquet, 2018 or Cluzet et al.,
2021).

The reordering of particles using the Schaake shuffle tech-
nique or a sorting procedure can help maintain the spatial
structure of the particles within the ensemble. The Schaake
shuffle appears to be more effective at recreating the over-
all spatial structure of all particles. This solution makes it
more reasonable to assume that it is possible to interpolate
the weights of the particles in space; this is the basic assump-
tion behind the spatialized particle filter. In cases where a suf-

ficiently long reference record cannot be acquired, reordering
by sorting the particles can provide a good alternative.

This research was also an opportunity to test the possi-
bility of assimilating SWE estimates derived from automatic
snow depth observations (SR50) and an ensemble of artificial
neural networks (Odry et al., 2020). We demonstrated that
the assimilation of this additional data set alone outperforms
the deterministic simulation. This observation confirms the
relevance of this new SWE data set. However, the assimila-
tion of both SR50 data and snow surveys did not improve the
simulation when compared with the assimilation of only the
manual snow surveys. We attribute this result to the lower
quality of the SWE estimates from SR50 and also to the val-
idation process itself, which involves preserving a portion of
snow survey sites for validation. Nevertheless, the exercise
demonstrated the possibility of assimilating different types
of data together in the spatialized particle filter, using the un-
certainty associated with each type of snow observation to
weight its relative influence. In this context, the current on-
going deployment in Quebec of automatic sensors capable of
measuring the SWE (rather than snow depth) by using natu-
ral gamma radiation constitutes a great opportunity. Not only
could this third source of information be assimilated into the
particle filter, but, alternatively, it could also be used as an
improved validation set, as these new gamma-ray-based sen-
sors provide sub-daily observations, and the added value of
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the SR50 data in terms of temporal representativeness may
be better captured. The ability of the spatialized particle filter
to assimilate different types of data could also be compared
to other operational assimilation frameworks such as the one
described by Zhang and Yang (2016).
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lation using the spatialized PF with particle reordering is
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dataverse/Odry_etal2021_largeScaleSpatialStructure (last access:
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