Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice-shelf ocean boundary layer dynamics from large-eddy simulations
Carolyn Branecky Begeman
CORRESPONDING AUTHOR
Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
Xylar Asay-Davis
Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
Luke Van Roekel
Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
Related authors
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
The Cryosphere, 19, 507–523, https://doi.org/10.5194/tc-19-507-2025, https://doi.org/10.5194/tc-19-507-2025, 2025
Short summary
Short summary
We study the effect of subglacial discharge on basal melting for Antarctic ice shelves. We find that the results from previous studies of vertical ice fronts and two-dimensional ice tongues do not translate to the rotating ice-shelf framework. The melt rate dependence on discharge is stronger in the rotating framework. Further, there is a substantial melt-rate sensitivity to the location of the discharge along the grounding line relative to the directionality of the Coriolis force.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Trevor R. Hillebrand, Matthew J. Hoffman, Holly K. Han, Mauro Perego, Alexander O. Hager, Andrew Nolan, Xylar Asay-Davis, Stephen F. Price, Jerry Watkins, and Max Carlson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3942, https://doi.org/10.5194/egusphere-2025-3942, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present new simulations that complement our contribution to the ISMIP6-Antarctica-2300 ensemble. We find significant mass loss after 2300 under both low-emissions and present-day forcing. Thermal evolution is extremely important, with fixed temperature yielding up to twice as much mass loss as simulations with evolving temperature. External forcing uncertainty dominates the ensemble spread after 2050. Initial condition uncertainty could explain the inter-model spread in the ISMIP6 ensembles.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
The Cryosphere, 19, 507–523, https://doi.org/10.5194/tc-19-507-2025, https://doi.org/10.5194/tc-19-507-2025, 2025
Short summary
Short summary
We study the effect of subglacial discharge on basal melting for Antarctic ice shelves. We find that the results from previous studies of vertical ice fronts and two-dimensional ice tongues do not translate to the rotating ice-shelf framework. The melt rate dependence on discharge is stronger in the rotating framework. Further, there is a substantial melt-rate sensitivity to the location of the discharge along the grounding line relative to the directionality of the Coriolis force.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Sara Calandrini, Darren Engwirda, and Luke Van Roekel
EGUsphere, https://doi.org/10.5194/egusphere-2024-472, https://doi.org/10.5194/egusphere-2024-472, 2024
Preprint withdrawn
Short summary
Short summary
Most modern ocean circulation models only consider the hydrostatic pressure, but for coastal phenomena nonhydrostatic effects become important, creating the need to include the nonhydrostatic pressure. In this work, we present a nonhydrostatic formulation for MPAS-Ocean (MPAS-O NH) and show its correctness on idealized benchmark test cases. MPAS-O NH is the first global nonhydrostatic model at variable resolution and is the first nonhydrostatic ocean model to be fully coupled in a climate model.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021, https://doi.org/10.5194/tc-15-3229-2021, 2021
Short summary
Short summary
We present numerical features of the Community Ice Sheet Model in representing ocean termini glaciers. Using idealized test cases, we show that applying melt in a partly grounded cell is beneficial, in contrast to recent studies. We confirm that parameterizing partly grounded cells yields accurate ice sheet representation at a grid resolution of ~2 km (arguably 4 km), allowing ice sheet simulations at a continental scale. The choice of basal friction law also influences the ice flow.
Steven R. Brus, Phillip J. Wolfram, Luke P. Van Roekel, and Jessica D. Meixner
Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, https://doi.org/10.5194/gmd-14-2917-2021, 2021
Short summary
Short summary
Wind-generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCH III model which allows model resolution to be varied globally across the coastal open ocean. This allows for improved accuracy at reduced computing time.
Qing Li and Luke Van Roekel
Geosci. Model Dev., 14, 2011–2028, https://doi.org/10.5194/gmd-14-2011-2021, https://doi.org/10.5194/gmd-14-2011-2021, 2021
Short summary
Short summary
Physical processes in the ocean span multiple spatial and temporal scales. Simultaneously resolving all these in a simulation is computationally challenging. Here we develop a more efficient technique to better study the interactions across scales, particularly focusing on the ocean surface turbulent mixing, by coupling a global ocean circulation model MPAS-Ocean and a large eddy simulation model PALM. The latter is customized and ported on a GPU to further accelerate the computation.
William H. Lipscomb, Gunter R. Leguy, Nicolas C. Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki
The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, https://doi.org/10.5194/tc-15-633-2021, 2021
Short summary
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.
Tong Zhang, Stephen F. Price, Matthew J. Hoffman, Mauro Perego, and Xylar Asay-Davis
The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020, https://doi.org/10.5194/tc-14-3407-2020, 2020
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Abkar, M. and Moin, P.: Large-Eddy Simulation of Thermally Stratified
Atmospheric Boundary-Layer Flow Using a Minimum Dissipation
Model, Bound.-Lay. Meteorol., 165, 405–419,
https://doi.org/10.1007/s10546-017-0288-4, 2017. a, b, c, d
Abkar, M., Bae, H. J., and Moin, P.: Minimum-dissipation scalar transport model
for large-eddy simulation of turbulent flows, Physical Review Fluids, 1,
041701, https://doi.org/10.1103/PhysRevFluids.1.041701, 2016. a, b
Armenio, V. and Sarkar, S.: An investigation of stably stratified turbulent
channel flow using large-eddy simulation, J. Fluid Mech., 459,
1–42, https://doi.org/10.1017/S0022112002007851, 2002. a
Arya, S. P. S.: Buoyancy effects in a horizontal flat-plate boundary layer,
J. Fluid Mech., 68, 321–343, https://doi.org/10.1017/S0022112075000833, 1975. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Begeman, C. B., Qing, L., Van Roekel, L. R., Smith, K., and Asay-Davis, X. S.: LANL Contributions to PArallelized Large-Eddy Simulation Model (PALM), 1.0.0, Los Alamos National Laboratory, GitHub [software], available at: https://github.com/lanl/palm_lanl, 2021. a
Begeman, C. B., Asay-Davis, X., and Van Roekel, L. R.: Simulation data for “Ice-ocean boundary layer dynamics from large-eddy simulations”, FigShare [data set], https://doi.org/10.6084/m9.figshare.17900177, 2022. a
Carpenter, J. R., Balmforth, N. J., and Lawrence, G. A.: Identifying unstable
modes in stratified shear layers, Phys. Fluids, 22, 054104,
https://doi.org/10.1063/1.3379845, 2010. a
Cheng, C., Jenkins, A., Wang, Z., and Liu, C.: Modeling the vertical structure
of the ice shelf–ocean boundary current under supercooled condition with
suspended frazil ice processes: A case study underneath the Amery Ice
Shelf, East Antarctica, Ocean Model., 156, 101712,
https://doi.org/10.1016/j.ocemod.2020.101712, 2020. a
Davis, P. E. D. and Nicholls, K. W.: Turbulence Observations beneath Larsen
C Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 124, 5529–5550,
https://doi.org/10.1029/2019JC015164, 2019. a
del Álamo, J. C. and Jiménez, J.: Spectra of the very large anisotropic
scales in turbulent channels, Phys. Fluids, 15, L41–L44,
https://doi.org/10.1063/1.1570830, 2003. a
Dinniman, M., Asay-Davis, X., Galton-Fenzi, B., Holland, P., Jenkins, A., and
Timmermann, R.: Modeling Ice Shelf/Ocean Interaction in Antarctica:
A Review, Oceanography, 29, 144–153, https://doi.org/10.5670/oceanog.2016.106,
2016. a
Donda, J. M. M., van Hooijdonk, I. G. S., Moene, A. F., Jonker, H. J. J.,
van Heijst, G. J. F., Clercx, H. J. H., and van de Wiel, B. J. H.: Collapse of
turbulence in stably stratified channel flow: a transient phenomenon,
Q. J. Roy. Meteor. Soc., 141, 2137–2147,
https://doi.org/10.1002/qj.2511, 2015. a
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H.,
Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M.,
Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne,
A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B.,
Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers,
C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C.,
Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R.,
Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A.,
Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P.,
Le Clec’h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles,
J.-H., Martin, D. F., Maussion, F., Morlighem, M., O’Neill, J. F., Nias,
I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R.,
Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon,
S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D.,
Van Breedam, J., van de Wal, R., van den Broeke, M., Winkelmann, R.,
Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.: Projected land ice
contributions to twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a
Flores, O. and Riley, J. J.: Analysis of Turbulence Collapse in the
Stably Stratified Surface Layer Using Direct Numerical
Simulation, Bound.-Lay. Meteorol., 139, 241–259,
https://doi.org/10.1007/s10546-011-9588-2, 2011. a
Franks, P. J. S.: Has Sverdrup's critical depth hypothesis been tested? Mixed
layers vs. turbulent layers, ICES J. Mar. Sci., 72, 1897–1907,
https://doi.org/10.1093/icesjms/fsu175, 2015. a
Galton-Fenzi, B. K., Hunter, J. R., Coleman, R., Marsland, S. J., and Warner,
R. C.: Modeling the basal melting and marine ice accretion of the Amery
Ice Shelf, J. Geophys. Res.-Oceans, 117, C09031,
https://doi.org/10.1029/2012JC008214, 2012. a
García-Villalba, M. and del Álamo, J. C.: Turbulence modification by stable
stratification in channel flow, Phys. Fluids, 23, 045104,
https://doi.org/10.1063/1.3560359, 2011. a
Gwyther, D. E., Spain, E. A., King, P., Guihen, D., Williams, G. D., Evans, E.,
Cook, S., Richter, O., Galton‐Fenzi, B. K., and Coleman, R.: Cold Ocean
Cavity and Weak Basal Melting of the Sørsdal Ice Shelf
Revealed by Surveys Using Autonomous Platforms, J.
Geophys. Res.-Oceans, 125, e2019JC015882,
https://doi.org/10.1029/2019JC015882, 2020. a, b, c, d, e
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H.: Two years of
oceanic observations below the Fimbul Ice Shelf, Antarctica,
Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012, 2012. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean
Interactions at the Base of an Ice Shelf, J. Phys.
Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a, b
Holland, P. R. and Feltham, D. L.: The Effects of Rotation and Ice
Shelf Topography on Frazil-Laden Ice Shelf Water Plumes,
J. Phys. Oceanogr., 36, 2312–2327, https://doi.org/10.1175/JPO2970.1, 2006. a
Holland, P. R., Jenkins, A., and Holland, D. M.: The Response of Ice
Shelf Basal Melting to Variations in Ocean Temperature, J. Climate, 21, 2558–2572, https://doi.org/10.1175/2007JCLI1909.1, 2008. a, b, c
Holt, S. E., Koseff, J. R., and Ferziger, J. H.: A numerical study of the
evolution and structure of homogeneous stably stratified sheared turbulence, J. Fluid Mech., 237, 499–539,
https://doi.org/10.1017/S0022112092003513, 1992. a
Howard, L. N.: Note on a paper of John W. Miles, J. Fluid Mech.,
10, 509–512, https://doi.org/10.1017/S0022112061000317, 1961. a
Hoyas, S. and Jiménez, J.: Scaling of the velocity fluctuations in turbulent
channels up to Reτ=2003, Phys. Fluids, 18, 011702,
https://doi.org/10.1063/1.2162185, 2006. a
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, IPCC, Geneva,
Switzerland, Core Writing Team, edited by: Pachauri, R. K. and Meyer, L. A., 151 pp. 2014. a
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies,
S. M.: Algorithms for Density, Potential Temperature, Conservative
Temperature, and the Freezing Temperature of Seawater, J.
Atmos. Ocean. Tech., 23, 1709–1728,
https://doi.org/10.1175/JTECH1946.1, 2006. a, b
Jenkins, A.: A Simple Model of the Ice Shelf-Ocean Boundary Layer
and Current, J. Phys. Oceanogr., 46, 1785–1803,
https://doi.org/10.1175/JPO-D-15-0194.1, 2016. a, b, c
Jenkins, A., Hellmer, H. H., and Holland, D. M.: The Role of Meltwater
Advection in the Formulation of Conservative Boundary Conditions at
an Ice–Ocean Interface, J. Phys. Oceanogr., 31,
285–296, https://doi.org/10.1175/1520-0485(2001)031<0285:TROMAI>2.0.CO;2, 2001. a
Jenkins, A., Nicholls, K. W., and Corr, H. F. J.: Observation and
Parameterization of Ablation at the Base of Ronne Ice Shelf,
Antarctica, J. Phys. Oceanogr., 40, 2298–2312,
https://doi.org/10.1175/2010JPO4317.1, 2010. a, b, c, d
Jiménez, M. A. and Cuxart, J.: Large-Eddy Simulations of the Stable
Boundary Layer Using the Standard Kolmogorov Theory: Range of
Applicability, Bound.-Lay. Meteorol., 115, 241–261,
https://doi.org/10.1007/s10546-004-3470-4, 2005. a
Jordan, J. R., Kimura, S., Holland, P. R., Jenkins, A., and Piggott, M. D.: On
the Conditional Frazil Ice Instability in Seawater, J. Phys.
Oceanogr., 45, 1121–1138, https://doi.org/10.1175/JPO-D-14-0159.1,
2015. a
Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence,
P., Dutrieux, P., and Madec, G.: Ocean circulation and sea-ice thinning
induced by melting ice shelves in the Amundsen Sea, J.
Geophys. Res.-Oceans, 122, 2550–2573, https://doi.org/10.1002/2016JC012509,
2017. a
Kerr, R. C. and McConnochie, C. D.: Dissolution of a vertical solid surface by
turbulent compositional convection, J. Fluid Mech., 765,
211–228, https://doi.org/10.1017/jfm.2014.722, 2015. a
Klemp, J. B. and Lilly, D. K.: Numerical Simulation of Hydrostatic
Mountain Waves, J. Atmos. Sci., 35, 78–107,
https://doi.org/10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2, 1978. a
Komori, S., Ueda, H., Ogino, F., and Mizushina, T.: Turbulence structure in
stably stratified open-channel flow, J. Fluid Mech., 130, 13–26,
https://doi.org/10.1017/S0022112083000944, 1983. a
Little, C. M., Gnanadesikan, A., and Oppenheimer, M.: How ice shelf morphology
controls basal melting, J. Geophys. Res.-Oceans, 114,
C12007, https://doi.org/10.1029/2008JC005197, 00031, 2009. a, b
MacAyeal, D. R.: Numerical simulations of the Ross Sea tides, J.
Geophys. Res.-Oceans, 89, 607–615, https://doi.org/10.1029/JC089iC01p00607, 1984. a
Magorrian, S. J. and Wells, A. J.: Turbulent plumes from a glacier terminus
melting in a stratified ocean, J. Geophys. Res.-Oceans,
121, 4670–4696, https://doi.org/10.1002/2015JC011160, 2016. a, b
Makinson, K. and Nicholls, K. W.: Modeling tidal currents beneath
Filchner-Ronne Ice Shelf and on the adjacent continental shelf:
Their effect on mixing and transport, J. Geophys. Res.-Oceans, 104, 13449–13465, https://doi.org/10.1029/1999JC900008, 1999. a
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, L06601,
https://doi.org/10.1029/2010GL046462, 2011. a
Malyarenko, A., Wells, A. J., Langhorne, P. J., Robinson, N. J., Williams, M.
J. M., and Nicholls, K. W.: A synthesis of thermodynamic ablation at
ice-ocean interfaces from theory, observations and models, Ocean Model., 154,
101692, https://doi.org/10.1016/j.ocemod.2020.101692, 2020. a
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 2515–2551, https://doi.org/10.5194/gmd-8-2515-2015, 2015. a, b, c
McConnochie, C. D. and Kerr, R. C.: Dissolution of a sloping solid surface by
turbulent compositional convection, J. Fluid Mech., 846,
563–577, https://doi.org/10.1017/jfm.2018.282, 2018. a, b
McPhee, M. G.: An analytic similarity theory for the planetary boundary layer
stabilized by surface buoyancy, Bound.-Lay. Meteorol., 21, 325–339,
https://doi.org/10.1007/BF00119277, 1981. a
McPhee, M. G.: Air-ice-ocean interaction: turbulent ocean boundary layer
exchange processes, 2008 edn., Springer, Dordrecht, ISBN 978-0-387-78334-5,
2008. a
McPhee, M. G., Morison, J. H., and Nilsen, F.: Revisiting heat and salt
exchange at the ice-ocean interface: Ocean flux and modeling
considerations, J. Geophys. Res., 113, C06014,
https://doi.org/10.1029/2007JC004383, 2008. a
Middleton, L., Vreugdenhil, C. A., Holland, P. R., and Taylor, J. R.: Numerical
Simulations of Melt-Driven Double-Diffusive Fluxes in a
Turbulent Boundary Layer beneath an Ice Shelf, J. Phys.
Oceanogr., 51, 403–418, https://doi.org/10.1175/JPO-D-20-0114.1,
2021. a, b
Miles, J. W.: On the stability of heterogeneous shear flows, J. Fluid
Mech., 10, 496–508, https://doi.org/10.1017/S0022112061000305, 1961. a
Mondal, M., Gayen, B., Griffiths, R. W., and Kerr, R. C.: Ablation of sloping
ice faces into polar seawater, J. Fluid Mech., 863, 545–571,
https://doi.org/10.1017/jfm.2018.970, 2019. a, b
Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H. A.,
and King, M. A.: Impact of tide-topography interactions on basal melting of
Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 117, C05005, https://doi.org/10.1029/2011JC007263, 2012. a
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice
Shelf Melting Based on CMIP5 Scenarios, J. Climate, 31,
5243–5261, https://doi.org/10.1175/JCLI-D-17-0854.1, 2018. a
Nicholls, K. W., Østerhus, S., Makinson, K., and Johnson, M. R.: Oceanographic
conditions south of Berkner Island, beneath Filchner-Ronne Ice
Shelf, Antarctica, J. Geophys. Res.-Oceans, 106,
11481–11492, https://doi.org/10.1029/2000JC000350, 2001. a
Nicholls, K. W., Abrahamsen, E. P., Buck, J. J. H., Dodd, P. A., Goldblatt, C.,
Griffiths, G., Heywood, K. J., Hughes, N. E., Kaletzky, A., Lane-Serff,
G. F., McPhail, S. D., Millard, N. W., Oliver, K. I. C., Perrett, J., Price,
M. R., Pudsey, C. J., Saw, K., Stansfield, K., Stott, M. J., Wadhams, P.,
Webb, A. T., and Wilkinson, J. P.: Measurements beneath an Antarctic ice
shelf using an autonomous underwater vehicle, Geophys. Res. Lett.,
33, L08612, https://doi.org/10.1029/2006GL025998, 2006. a
Nieuwstadt, F. T. M.: Direct Numerical Simulation of Stable Channel
Flow at Large Stability, Bound.-Lay. Meteorol., 116, 277–299,
https://doi.org/10.1007/s10546-004-2818-0, 2005. a
Ohya, Y.: Wind-Tunnel Study Of Atmospheric Stable Boundary Layers
Over A Rough Surface, Bound.-Lay. Meteorol., 98, 57–82,
https://doi.org/10.1023/A:1018767829067, 2001. a
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on
the Antarctic and Greenland Ice Sheets, Rev. Geophys., 56, 142–184,
https://doi.org/10.1002/2016RG000546, 2018. a
Peltier, W. R. and Caulfield, C. P.: Mixing Efficiency in Stratified
Shear Flows, Annu. Rev. Fluid Mech., 35, 135–167,
https://doi.org/10.1146/annurev.fluid.35.101101.161144, 2003. a
Piacsek, S. A. and Williams, G. P.: Conservation properties of convection
difference schemes, J. Comput. Phys., 6, 392–405,
https://doi.org/10.1016/0021-9991(70)90038-0, 1970. a
Purkey, S. G., Johnson, G. C., Talley, L. D., Sloyan, B. M., Wijffels, S. E.,
Smethie, W., Mecking, S., and Katsumata, K.: Unabated Bottom Water
Warming and Freshening in the South Pacific Ocean, J.
Geophys. Res.-Oceans, 124, 1778–1794 https://doi.org/10.1029/2018JC014775, 2018. a
Raasch, S. and Schröter, M.: PALM-A large-eddy simulation model
performing on massively parallel computers, Meteorol. Z., 10, 363–372,
https://doi.org/10.1127/0941-2948/2001/0010-0363, 2001. a
Ramudu, E., Gelderloos, R., Yang, D., Meneveau, C., and Gnanadesikan, A.: Large
Eddy Simulation of Heat Entrainment Under Arctic Sea Ice,
J. Geophys. Res.-Oceans, 123, 287–304,
https://doi.org/10.1002/2017JC013267, 2018. a, b
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far reach
of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018. a
Rignot, E. and Jacobs, S. S.: Rapid Bottom Melting Widespread near
Antarctic Ice Sheet Grounding Lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013. a
Robertson, R.: Tidally induced increases in melting of Amundsen Sea ice
shelves, J. Geophys. Res.-Oceans, 118, 3138–3145,
https://doi.org/10.1002/jgrc.20236, 2013. a
Rohr, J. J., Itsweire, E. C., Helland, K. N., and Atta, C. W. V.: Growth and
decay of turbulence in a stably stratified shear flow, J. Fluid
Mech., 195, 77–111, https://doi.org/10.1017/S0022112088002332, 1988. a
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.: The role of
double-diffusive convection in basal melting of Antarctic ice shelves,
P. Natl. Acad. Sci. USA, 118, e2007541118,
https://doi.org/10.1073/pnas.2007541118, 2021. a
Rozema, W., Bae, H. J., Moin, P., and Verstappen, R.: Minimum-dissipation
models for large-eddy simulation, Phys. Fluids, 27, 085107,
https://doi.org/10.1063/1.4928700, 2015. a
Ruan, X., Speer, K. G., Thompson, A. F., Chretien, L. M. S., and Shoosmith,
D. R.: Ice-Shelf Meltwater Overturning in the Bellingshausen Sea,
J. Geophys. Res.-Oceans, 126, e2020JC016957,
https://doi.org/10.1029/2020JC016957, 2021. a
Schmidtko, S., Heywood, K. J., Thompson, A. F., and Aoki, S.: Multidecadal
warming of Antarctic waters, Science, 346, 1227–1231,
https://doi.org/10.1126/science.1256117, 2014. a
Stoll, R. and Porté-Agel, F.: Large-Eddy Simulation of the Stable
Atmospheric Boundary Layer using Dynamic Models with Different
Averaging Schemes, Bound.-Lay. Meteorol., 126, 1–28,
https://doi.org/10.1007/s10546-007-9207-4, 2008. a, b
Sutherland, G., Reverdin, G., Marié, L., and Ward, B.: Mixed and mixing layer
depths in the ocean surface boundary layer under conditions of diurnal
stratification, Geophys. Res. Lett., 41, 8469–8476,
https://doi.org/10.1002/2014GL061939, 2014. a
Temperton, C.: A Generalized Prime Factor FFT Algorithm for any N=2p3q5r,
SIAM J. Sci. Stat. Comp., 13, 676–686,
https://doi.org/10.1137/0913039, 1992.
a
Webber, B. G. M., Heywood, K. J., Stevens, D. P., and Assmann, K. M.: The
Impact of Overturning and Horizontal Circulation in Pine Island
Trough on Ice Shelf Melt in the Eastern Amundsen Sea, J. Phys. Oceanogr., 49, 63–83, https://doi.org/10.1175/JPO-D-17-0213.1, 2018. a
Wiel, B. J. H. V. d., Moene, A. F., and Jonker, H. J. J.: The Cessation of
Continuous Turbulence as Precursor of the Very Stable Nocturnal
Boundary Layer, J. Atmos. Sci., 69, 3097–3115,
https://doi.org/10.1175/JAS-D-12-064.1, 2012. a
Wåhlin, A. K., Graham, A. G. C., Hogan, K. A., Queste, B. Y., Boehme, L.,
Larter, R. D., Pettit, E. C., Wellner, J., and Heywood, K. J.: Pathways and
modification of warm water flowing beneath Thwaites Ice Shelf, West
Antarctica, Science Advances, 7, eabd7254, https://doi.org/10.1126/sciadv.abd7254, 2021. a
Zhou, Q., Taylor, J. R., and Caulfield, C. P.: Self-similar mixing in
stratified plane Couette flow for varying Prandtl number, J.
Fluid Mech., 820, 86–120, https://doi.org/10.1017/jfm.2017.200, 2017. a
Zonta, F. and Soldati, A.: Stably Stratified Wall-Bounded Turbulence,
Appl. Mech. Rev., 70, 040801, https://doi.org/10.1115/1.4040838, 2018. a, b
Short summary
This study uses ocean modeling at ultra-high resolution to study the small-scale ocean mixing that controls ice-shelf melting. It offers some insights into the relationship between ice-shelf melting and ocean temperature far from the ice base, which may help us project how fast ice will melt when ocean waters entering the cavity warm. This study adds to a growing body of research that indicates we need a more sophisticated treatment of ice-shelf melting in coarse-resolution ocean models.
This study uses ocean modeling at ultra-high resolution to study the small-scale ocean mixing...