Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Joëlle Voglimacci-Stephanopoli
CORRESPONDING AUTHOR
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Anna Wendleder
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Hugues Lantuit
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 14473 Potsdam, Germany
Alexandre Langlois
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Samuel Stettner
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
German Space Agency, German Aerospace Center, Bonn, Germany
Andreas Schmitt
Institute for Applications of Machine Learning and Intelligent
Systems, Munich University of Applied Sciences, Munich, Germany
Jean-Pierre Dedieu
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Institute of Environmental Geosciences, Université
Grenoble-Alpes/CNRS/IRD, 38058 Grenoble, France
Achim Roth
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Alain Royer
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Related authors
No articles found.
Vincent Vionnet, Nicolas Romain Leroux, Vincent Fortin, Maria Abrahamowicz, Georgina Woolley, Giulia Mazzotti, Manon Gaillard, Matthieu Lafaysse, Alain Royer, Florent Domine, Nathalie Gauthier, Nick Rutter, Chris Derksen, and Stéphane Bélair
EGUsphere, https://doi.org/10.5194/egusphere-2025-3396, https://doi.org/10.5194/egusphere-2025-3396, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Snow microstructure controls snowpack properties, but most land surface models overlook this factor. To support future satellite missions, we created a new land surface model based on the Crocus scheme that simulates snow microstructure. Key improvements include better snow albedo representation, enhanced Arctic snow modeling, and improved forest module to capture Canada's diverse snow conditions. Results demonstrate improved simulations of snow density and melt across large regions of Canada.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025, https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Short summary
We generated annual maps of snow melt-out days at 20 m resolution over a period of 38 years from 10 different satellites. This study fills a knowledge gap regarding the evolution of mountain snow in Europe by covering a much longer period and characterizing trends at much higher resolutions than previous studies. We found a trend for earlier melt-out with average reductions of 5.51 d per decade over the French Alps and 4.04 d per decade over the Pyrenees for the period 1986–2023.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Charlotte Crevier, Alexandre Langlois, Chris Derksen, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3580, https://doi.org/10.5194/egusphere-2024-3580, 2025
Short summary
Short summary
A multisensor C-Band SAR near-daily time series in an Arctic environment was developed to create a high-resolution freeze/thaw algorithm with an accuracy of 96 %. The FT detection was highly correlated to near-surface state as measured by soil temperature. Small but significant FT date differences were identified for different Arctic ecotypes, showing the spatial variability of freeze/thaw process in Arctic environment.
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963, https://doi.org/10.5194/egusphere-2024-3963, 2025
Short summary
Short summary
We propose a new method to determine the ground surface temperature under the snowpack in the Arctic area from satellite observations. The obtained ground temperatures time series were evaluated over 21 reference sites in Northern Alaska and compared with ground temperatures obtained with global models. The method is excessively promising for monitoring ground temperature below the snowpack and studying the spatiotemporal variability thanks to 15 years of observations over the whole Arctic area.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024, https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Short summary
Snow covers a vast part of the globe, making snow water equivalent (SWE) crucial for climate science and hydrology. SWE can be inversed from satellite data, but the snow's complex structure highly affects the signal, and thus an educated first guess is mandatory. In this study, a subgridding framework was developed to model snow at the local scale from model weather data. The framework enhanced snow parameter modeling, paving the way for SWE inversion algorithms from satellite data.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024, https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Birgit Wessel, Martin Huber, Christian Wohlfart, Adina Bertram, Nicole Osterkamp, Ursula Marschalk, Astrid Gruber, Felix Reuß, Sahra Abdullahi, Isabel Georg, and Achim Roth
The Cryosphere, 15, 5241–5260, https://doi.org/10.5194/tc-15-5241-2021, https://doi.org/10.5194/tc-15-5241-2021, 2021
Short summary
Short summary
We present a new digital elevation model (DEM) of Antarctica derived from the TanDEM-X DEM, with new interferometric radar acquisitions incorporated and edited elevations, especially at the coast. A strength of this DEM is its homogeneity and completeness. Extensive validation work shows a vertical accuracy of just -0.3 m ± 2.5 m standard deviation on blue ice surfaces compared to ICESat laser altimeter heights. The new TanDEM-X PolarDEM 90 m of Antarctica is freely available.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Alex Mavrovic, Renato Pardo Lara, Aaron Berg, François Demontoux, Alain Royer, and Alexandre Roy
Hydrol. Earth Syst. Sci., 25, 1117–1131, https://doi.org/10.5194/hess-25-1117-2021, https://doi.org/10.5194/hess-25-1117-2021, 2021
Short summary
Short summary
This paper presents a new probe that measures soil microwave permittivity in the frequency range of satellite L-band sensors. The probe capacities will allow for validation and calibration of the models used to estimate landscape physical properties from raw microwave satellite datasets. Our results show important discrepancies between model estimates and instrument measurements that will need to be addressed.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Cited articles
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, ISBN 978-82-7971-101-8,
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (last access: 27 May 2022), 2017.
Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F.,
Lévesque, E., and Yoccoz, N.: Effects of changing permafrost and snow
conditions on tundra wildlife: critical places and times, Arct. Sci., 3,
65–90, https://doi.org/10.1139/as-2016-0023, 2017.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Bokhorst, S., Pedersen, S. H., Brucker, L., Anisimov, O., Bjerke, J. W.,
Brown, R. D., Ehrich, D., Essery, R. L. H., Heilig, A., Ingvander, S.,
Johansson, C., Johansson, M., Jónsdóttir, I. S., Inga, N., Luojus,
K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G. N., Sato, A.,
Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S. A., Terzago, S.,
Vikhamar-Schuler, D., Williamson, S., Qiu, Y., and Callaghan, T. V: Changing
Arctic snow cover: A review of recent developments and assessment of future
needs for observations, modelling, and impacts, Ambio, 45, 516–537,
https://doi.org/10.1007/s13280-016-0770-0, 2016.
Burn, C. R. and Zhang, Y.: Permafrost and climate change at Herschel Island
(Qikiqtaruq), Yukon Territory, Canada, J. Geophys. Res.-Earth, 114,
1–16, https://doi.org/10.1029/2008JF001087, 2009.
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014.
Chang, P. S., Mead, J. B., Knapp, E. J., Sadowy, G. A., Davis, R. E. and
Mcintosh, R. E.: Polarimetric Backscatter from fresh and metamorphic
snowcover at millimeter wavelengths, IEEE T. Antenn. Propag., 44,
58–73, https://doi.org/10.1109/8.477529, 1996.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.:
Representing spatial variability of snow water equivalent in hydrologic and
land-surface models: A review, Water Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Colbeck, S. C.: Theory of metamorphism of wet snow, United States
Army Corps of Engineers, Hanover, NH, USACRREL Report
73, 1–11, 1973.
Colbeck, S. C.: An overview of seasonal snow metamorphism, Rev. Geophys.,
20, 45–61, https://doi.org/10.1029/RG020i001p00045, 1982.
Cray, H. A. and Pollard, W. H.: Vegetation recovery patterns following
permafrost disturbance in a Low Arctic setting: Case study of Herschel
Island, Yukon, Canada, Arctic, Antarct. Alp. Res., 47, 99–113,
https://doi.org/10.1657/AAAR0013-076, 2015.
Dedieu, J., Negrello, C., Jacobi, H., Duguay, Y., Boike, J., Bernard, E.,
Westermann, S., Gallet, J., and Wendleder, A.: Improvement of snow physical
parameters retrieval using SAR data in the Arctic (Svalbard), in
International Snow Science Workshop, Innsbruck, Austria, 303–307,
https://hal.archives-ouvertes.fr/hal-01963077/file/Bernard_20ISSW2018.pdf (last access: 27 May 2022), 2018.
Dolant, C., Montpetit, B., Langlois, A., Brucker, L., Zolina, O., Johnson,
C. A., Royer, A., and Smith, P.: Assessment of the Barren Ground Caribou
Die-off During Winter 2015–2016 Using Passive Microwave Observations,
Geophys. Res. Lett., 45, 4908–4916, https://doi.org/10.1029/2017GL076752, 2018.
Domine, F., Barrere, M., and Morin, S.: The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime, Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, 2016.
Domine, F., Picard, G., Morin, S., and Barrere, M.: Major Issues in
Simulating some Arctic Snowpack Properties Using Current Detailed Snow
Physics Models, Consequences for the Thermal Regime and Water Budget of
Permafrost, J. Adv. Model. Earth Sys., 11, 34–44, https://doi.org/10.1029/2018MS001445, 2018a.
Domine, F., Belke-Brea, M., Sarrazin, D., Arnaud, L., Barrere, M., and
Poirier, M.: Soil moisture, wind speed and depth hoar formation in the
Arctic snowpack, J. Glaciol., 64, 990–1002, https://doi.org/10.1017/jog.2018.89,
2018b.
Duguay, Y., Bernier, M., Lévesque, E., and Tremblay, B.: Potential of C
and X band SAR for shrub growth monitoring in sub-arctic environments,
Remote Sens., 7, 9410–9430, https://doi.org/10.3390/rs70709410, 2015.
Eischeid, I.: Mapping of soil organic carbon and nitrogen in two small
adjacent Arctic watersheds on Herschel Island, Yukon Territory, University
of Hohenheim, https://doi.org/10.013/epic.47347.d001, 2015.
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The International Classification for Seasonal Snow on the Ground (ICSSG), Tech. Rep., IHP-VII Technical Documents in Hydrology, No. 83, IACS Contribution No. 1, UNESCO-IHP, https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 27 May 2022), 2009.
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and
Robinson, D. A.: A review of global satellite-derived snow products, Adv.
Sp. Res., 50, 1007–1029, https://doi.org/10.1016/j.asr.2011.12.021, 2012.
Games, P. A. and Howell, J. F.: Statistics Key words: Multiple Comparisons;
iances; Unequal Sample Sizes Means; Heterogeneous Games and Howell, J.
Educ. Stat., 1, 113–125, 1976.
Goodrich, L. E.: The influence of snow cover on the ground thermal regime,
Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982.
Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais,
P., Tarnocai, C., and Boike, J.: How the insulating properties of snow affect
soil carbon distribution in the continental pan-Arctic area, J. Geophys.
Res.-Biogeo., 117, 1–11, https://doi.org/10.1029/2011JG001916, 2012.
Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., and Schneebeli, M.: Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications, The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, 2018.
IPCC: The Ocean and Cryosphere in a Changing Climate, A Special Report of
the Intergovernmental Panel on Climate Change, Intergov. Panel Clim. Chang., https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/ (last access: 27 May 2022), 2019.
Kankaanpää, T., Skov, K., Abrego, N., Lund, M., Schmidt, N. M., and
Roslin, T.: Spatiotemporal snowmelt patterns within a high Arctic landscape,
with implications for flora and fauna, Arctic, Antarct. Alp. Res., 50,
1–17, https://doi.org/10.1080/15230430.2017.1415624, 2018.
King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J.,
Marsh, P., Montpetit, B., Roy, A., Rutter, N., and Sturm, M.: The influence
of snow microstructure on dual-frequency radar measurements in a tundra
environment, Remote Sens. Environ., 215, 242–254,
https://doi.org/10.1016/j.rse.2018.05.028, 2018.
Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and
retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea,
Yukon Territory, Canada, Geomorphology, 95, 84–102,
https://doi.org/10.1016/j.geomorph.2006.07.040, 2008.
Leinss, S., Parrella, G., and Hajnsek, I.: Snow height determination by
polarimetric phase differences in X-band SAR data, IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens., 7, 3794–3810, 2014.
Leinss, S., Löwe, H., Proksch, M., Lemmetyinen, J., Wiesmann, A., and Hajnsek, I.: Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series, The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016, 2016.
Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional
and Global Models, J. Climate, 17, 1381–1397, https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2, 2004.
Mätzler, C.: Applications of the interaction of microwaves with the
natural snow cover, Remote Sens. Rev., 2, 259–387,
https://doi.org/10.1080/02757258709532086, 1987.
Meloche, J., Langlois, A., Rutter, N., Royer, A., King, J., Walker, B., Marsh, P., and Wilcox, E. J.: Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals, The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, 2022.
Myers-Smith, I., Grabowski, M. M., Thomas, H. J. D., Bjorkman, A. D.,
Cunliffe, A. M., Assmann, J. J., Boyle, J., Mcleod, E., Mcleod, S., Joe, R.,
Lennie, P., Arey, D., and Gordon, R.: Eighteen years of ecological monitoring
reveals multiple lines of evidence for tundra vegetation change, Ecol.
Monogr., 89, e01351, https://doi.org/10.1002/ecm.1351, 2019.
Myers-Smith, I. H. and Hik, D. S.: Shrub canopies influence soil
temperatures but not nutrient dynamics: An experimental test of tundra
snow560 shrub interactions, Ecol. Evol., 3, 3683–3700,
https://doi.org/10.1002/ece3.710, 2013.
Myers-Smith, I. H., Hik, D. S., Kennedy, C., Cooley, D., Johnstone, J. F.,
Kenney, A. J., and Krebs, C. J.: Expansion of canopy-forming willows over the
twentieth century on Herschel Island, Yukon Territory, Canada, Ambio, 40,
610–623, https://doi.org/10.1007/s13280-011-0168-y, 2011a.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., MacIas-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub,
G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
Dynamics, impacts and research priorities, Environ. Res. Lett., 6, 045509,
https://doi.org/10.1088/1748-9326/6/4/045509, 2011b.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from
digital elevation data, Comput. Vision, Graph. Image Process., 28,
323–344, https://doi.org/10.1016/0734-189X(89)90053-4, 1984.
Patil, A., Singh, G. and Rüdiger, C.: Retrieval of snow depth and snow
water equivalent using dual polarization SAR data, Remote Sens., 12,
1–11, https://doi.org/10.3390/rs12071183, 2020.
Poirier, M., Gauthier, G., and Domine, F.: What guides lemmings movements
through the snowpack?, J. Mammal., 100, 1416–1426,
https://doi.org/10.1093/jmammal/gyz129, 2019.
Pollard, W.: The nature and origin of ground ice in the herschel island
area, Yukon Territory, Nordicana, 54, 23–30, 1990.
Pomeroy, J. W., Bewley, D. S., Essery, R. L. H., Hedstrom, N. R., Link, T.,
Granger, R. J., Sicart, J. E., Ellis, C. R., and Janowicz, J. R.: Shrub
tundra snowmelt, Hydrol. Process., 20, 923–941, https://doi.org/10.1002/hyp.6124,
2006.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington
Michael, J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen,
M.: ArcticDEM [dataset], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Rott, H. and Matzler, C.: Possibilities and limits of synthetic aperture
radar for snow and glacier surveying, Ann. Glaciol., 9, 195–199,
https://doi.org/10.1071/SRB04Abs021, 1987.
Royer, A., Domine, F., Roy, A., Langlois, A., Davesne, G., Royer, A.,
Domine, F., Roy, A. and Langlois, A.: New northern snowpack classification
linked to vegetation cover on a latitudinal mega-transect across
northeastern Canada, Écoscience, 28, 1–18,
https://doi.org/10.1080/11956860.2021.1898775, 2021.
Rutter, N., Sandells, M., Derksen, C., Toose, P., Royer, A., Montpetit, B.,
Langlois, A., Lemmetyinen, J., and Pulliainen, J.: Snow stratigraphic
heterogeneity within ground-based passive microwave radiometer footprints:
Implications for emission modeling, J. Geophys. Res.-Earth, 119,
550–565, https://doi.org/10.1002/2013JF003017, 2014.
Schmitt, A.: Multiscale and Multidirectional Multilooking for SAR Image
Enhancement, IEEE T. Geosci. Remote, 54, 5117–5134,
https://doi.org/10.1109/TGRS.2016.2555624, 2016.
Schmitt, A., Wendleder, A., and Hinz, S.: The Kennaugh element framework for
multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image
preparation, ISPRS J. Photogramm. Remote Sens., 102, 122–139,
https://doi.org/10.1016/j.isprsjprs.2015.01.007, 2015.
Schneebeli, M. and Sokratov, S. A.: Tomography of temperature gradient
metamorphism of snow and associated changes in heat conductivity, Hydrol.
Process., 18, 3655–3665, https://doi.org/10.1002/hyp.5800, 2004.
Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., and
Budkewitsch, P.: A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR
interferometry for monitoring permafrost environments, case study from
Herschel Island, Canada, Remote Sens. Environ., 115, 3491–3506,
https://doi.org/10.1016/j.rse.2011.08.012, 2011.
Smith, C. A. S., Kennedy, C. E., Hargrave, A. E., and McKenna, K. M.: Soil
and vegetation of Herschel Island, Yukon territory, Yukon Soil Surv. Rep., 111 pp., 1989.
Solomon, S. M.: Spatial and temporal variability of shoreline change in the
Beaufort-Mackenzie region, northwest territories, Canada, Geo-Mar. Lett.,
25, 127–137, https://doi.org/10.1007/s00367-004-0194-x, 2005.
Stettner, S., Lantuit, H., Heim, B., Eppler, J., Roth, A., Bartsch, A., and
Rabus, B.: TerraSAR-X time series fill a gap in spaceborne Snowmelt
Monitoring of small Arctic Catchments-A case study on Qikiqtaruk (Herschel
Island), Canada, Remote Sens., 10, 1155, https://doi.org/10.3390/rs10071155, 2018.
Stieglitz, M., Déry, S. J., Romanovsky, V. E., and Osterkamp, T. E.: The
role of snow cover in the warming of arctic permafrost, Geophys. Res. Lett.,
30, 1721, https://doi.org/10.1029/2003GL017337, 2003.
Sturm, M. and Holmgren, J.: Effects of microtopography on texture,
temperature and heat flow in Arctic and sub-Arctic snow, Ann. Glaciol., 19,
63–68, https://doi.org/10.1017/s0260305500010995, 1994.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover
classification system for local to global applications, J. Climate, 8,
1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Sturm, M., McFadden, J. P., Liston, G. E., Stuart Chapin, F., Racine, C. H.,
and Holmgren, J.: Snow-shrub interactions in Arctic Tundra: A hypothesis
with climatic implications, J. Climate, 14, 336–344,
https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2,
2001.
Sturm, M., Derksen, C., Liston, G., Silis, A., Solie, D., Holmgren, J.,
Huntington, H., and Liston, G.: A Reconnaissance Snow Survey across Northwest
Territories and Nunavut, Canada, April 2007, Erdc/Crrel, (April 2007), http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA476959 (last access: 27 May 2022), 2008.
Thompson, A., Kelly, R., and Marsh, P.: Spatial variability of snow at Trail
Valley Creek, NWT, in 73rd Eastern Snow Conference, Columbus,
Ohio, USA, 101–108, 2016.
Wilcox, E. J., Keim, D., de Jong, T., Walker, B., Sonnentag, O., Sniderhan,
A. E., Mann, P., and Marsh, P.: Tundra shrub expansion may amplify permafrost
thaw by advancing snowmelt timing, Arct. Sci., 5, 202–217,
https://doi.org/10.1139/as-2018-0028, 2019.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50,
293–305, https://doi.org/10.1002/2012WR013038, 2014.
Wolter, J., Lantuit, H., Fritz, M., Macias-Fauria, M., Myers-Smith, I., and
Herzschuh, U.: Vegetation composition and shrub extent on the Yukon coast,
Canada, are strongly linked to ice-wedge polygon degradation, Polar Res.,
35, https://doi.org/10.3402/polar.v35.27489, 2016.
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Changes in the state of the snowpack in the context of observed global warming must be...