Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Joëlle Voglimacci-Stephanopoli
CORRESPONDING AUTHOR
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Anna Wendleder
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Hugues Lantuit
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 14473 Potsdam, Germany
Alexandre Langlois
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Samuel Stettner
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
German Space Agency, German Aerospace Center, Bonn, Germany
Andreas Schmitt
Institute for Applications of Machine Learning and Intelligent
Systems, Munich University of Applied Sciences, Munich, Germany
Jean-Pierre Dedieu
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Institute of Environmental Geosciences, Université
Grenoble-Alpes/CNRS/IRD, 38058 Grenoble, France
Achim Roth
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Alain Royer
Département de géomatique appliquée, Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke, J1K
2R1, Canada
Centre d'Études Nordiques, Université Laval, Québec,
Québec, G1V 0A6, Canada
Related authors
No articles found.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024, https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Short summary
Snow covers a vast part of the globe, making snow water equivalent (SWE) crucial for climate science and hydrology. SWE can be inversed from satellite data, but the snow's complex structure highly affects the signal, and thus an educated first guess is mandatory. In this study, a subgridding framework was developed to model snow at the local scale from model weather data. The framework enhanced snow parameter modeling, paving the way for SWE inversion algorithms from satellite data.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024, https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Birgit Wessel, Martin Huber, Christian Wohlfart, Adina Bertram, Nicole Osterkamp, Ursula Marschalk, Astrid Gruber, Felix Reuß, Sahra Abdullahi, Isabel Georg, and Achim Roth
The Cryosphere, 15, 5241–5260, https://doi.org/10.5194/tc-15-5241-2021, https://doi.org/10.5194/tc-15-5241-2021, 2021
Short summary
Short summary
We present a new digital elevation model (DEM) of Antarctica derived from the TanDEM-X DEM, with new interferometric radar acquisitions incorporated and edited elevations, especially at the coast. A strength of this DEM is its homogeneity and completeness. Extensive validation work shows a vertical accuracy of just -0.3 m ± 2.5 m standard deviation on blue ice surfaces compared to ICESat laser altimeter heights. The new TanDEM-X PolarDEM 90 m of Antarctica is freely available.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Alex Mavrovic, Renato Pardo Lara, Aaron Berg, François Demontoux, Alain Royer, and Alexandre Roy
Hydrol. Earth Syst. Sci., 25, 1117–1131, https://doi.org/10.5194/hess-25-1117-2021, https://doi.org/10.5194/hess-25-1117-2021, 2021
Short summary
Short summary
This paper presents a new probe that measures soil microwave permittivity in the frequency range of satellite L-band sensors. The probe capacities will allow for validation and calibration of the models used to estimate landscape physical properties from raw microwave satellite datasets. Our results show important discrepancies between model estimates and instrument measurements that will need to be addressed.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020, https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
Short summary
Inuit have reported greater variability in seasonal sea ice conditions. For Deception Bay (Nunavik), an area prized for seal and caribou hunting, an increase in snow precipitation and a shorter snow cover period is expected in the near future. In this context, and considering ice-breaking transport in the fjord by mining companies, we combined satellite images and time-lapse photography to monitor sea ice in the area between 2015 and 2018.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019, https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Michael Prince, Alexandre Roy, Ludovic Brucker, Alain Royer, Youngwook Kim, and Tianjie Zhao
Earth Syst. Sci. Data, 10, 2055–2067, https://doi.org/10.5194/essd-10-2055-2018, https://doi.org/10.5194/essd-10-2055-2018, 2018
Short summary
Short summary
This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the EASE-Grid 2.0 with a resolution of 36 km. To evaluate the product, we compared it with the resampled 37 GHz FT Earth Science Data Record during the overlapping period between 2011 and 2014. The FT-AP ensures, with the SMAP mission that is still in operation, an L-band passive FT monitoring continuum with NASA’s space-borne radiometers, for a period beginning in August 2011.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
A. Schmitt and A. Wendleder
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 133–140, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, 2018
Alex Mavrovic, Alexandre Roy, Alain Royer, Bilal Filali, François Boone, Christoforos Pappas, and Oliver Sonnentag
Geosci. Instrum. Method. Data Syst., 7, 195–208, https://doi.org/10.5194/gi-7-195-2018, https://doi.org/10.5194/gi-7-195-2018, 2018
Short summary
Short summary
To improve microwave satellite and airborne observation products in forest environments, a precise and reliable estimation of the permittivity of trees is required. We developed a probe suitable to measure the permittivity of tree trunks at L band in the field. The system is easily transportable in the field, low energy consuming, operational at low temperatures and weatherproof. The permittivity of seven tree species in both frozen and thawed states was measured, showing important contrast.
Justine L. Ramage, Anna M. Irrgang, Anne Morgenstern, and Hugues Lantuit
Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, https://doi.org/10.5194/bg-15-1483-2018, 2018
Short summary
Short summary
We describe the evolution of thaw slumps between 1952 and 2011 along the Yukon Coast, Canada, and calculate the contribution of the slumps to the carbon budget in this area. The number of slumps has increased by 73 % over the period. These slumps displaced more than 16 billion m3 of material and mobilized 146 t of carbon. This represents 0.6 % of the annual carbon flux released from shoreline retreat, which shows that the contribution of slumps to the nearshore carbon budget is non-negligible.
Yann Blanchard, Alain Royer, Norman T. O'Neill, David D. Turner, and Edwin W. Eloranta
Atmos. Meas. Tech., 10, 2129–2147, https://doi.org/10.5194/amt-10-2129-2017, https://doi.org/10.5194/amt-10-2129-2017, 2017
Short summary
Short summary
Multiband thermal measurements of zenith sky radiance were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. The retrieval technique was validated using a synergy lidar and radar data. Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of thin ice clouds.
Peter Toose, Alexandre Roy, Frederick Solheim, Chris Derksen, Tom Watts, Alain Royer, and Anne Walker
Geosci. Instrum. Method. Data Syst., 6, 39–51, https://doi.org/10.5194/gi-6-39-2017, https://doi.org/10.5194/gi-6-39-2017, 2017
Short summary
Short summary
Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers used for monitoring essential climate variables. A 385-channel hyperspectral L-band radiometer system was designed with the means to quantify the strength and type of RFI. The compact design makes it ideal for mounting on both surface and airborne platforms to be used for calibrating and validating measurement from spaceborne sensors.
A. Bertram, A. Wendleder, A. Schmitt, and M. Huber
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 313–320, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, 2016
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
A. Rabatel, A. Letréguilly, J.-P. Dedieu, and N. Eckert
The Cryosphere, 7, 1455–1471, https://doi.org/10.5194/tc-7-1455-2013, https://doi.org/10.5194/tc-7-1455-2013, 2013
G. Picard, L. Brucker, A. Roy, F. Dupont, M. Fily, A. Royer, and C. Harlow
Geosci. Model Dev., 6, 1061–1078, https://doi.org/10.5194/gmd-6-1061-2013, https://doi.org/10.5194/gmd-6-1061-2013, 2013
A. Roy, A. Royer, B. Montpetit, P. A. Bartlett, and A. Langlois
The Cryosphere, 7, 961–975, https://doi.org/10.5194/tc-7-961-2013, https://doi.org/10.5194/tc-7-961-2013, 2013
Related subject area
Discipline: Snow | Subject: Remote Sensing
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Tower-based C-band radar measurements of an alpine snowpack
Mapping surface hoar from near-infrared texture in a laboratory
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Temporal stability of a new 40-year daily AVHRR Land Surface Temperature dataset for the Pan-Arctic region
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Retrieval of snow water equivalent from dual-frequency radar measurements: using time series to overcome the need for accurate a priori information
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 2: Snow processes and snow–canopy interactions
Evaluating Snow Microwave Radiative Transfer (SMRT) model emissivities with 89 to 243 GHz observations of Arctic tundra snow
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Snowmelt characterization from optical and synthetic-aperture radar observations in the La Joie Basin, British Columbia
Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar
Temporal stability of long-term satellite and reanalysis products to monitor snow cover trends
Towards long-term records of rain-on-snow events across the Arctic from satellite data
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Evaluation of E3SM land model snow simulations over the western United States
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar
Brief communication: A continuous formulation of microwave scattering from fresh snow to bubbly ice from first principles
Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing
Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States
Mapping avalanches with satellites – evaluation of performance and completeness
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
James Dillon, Christopher Donahue, Evan Schehrer, Karl Birkeland, and Kevin Hammonds
The Cryosphere, 18, 2557–2582, https://doi.org/10.5194/tc-18-2557-2024, https://doi.org/10.5194/tc-18-2557-2024, 2024
Short summary
Short summary
Surface hoar crystals are snow grains that form when vapor deposits on a snow surface. They create a weak layer in the snowpack that can cause large avalanches to occur. Thus, determining when and where surface hoar forms is a lifesaving matter. Here, we developed a means of mapping surface hoar using remote-sensing technologies. We found that surface hoar displayed heightened texture, hence the variability of brightness. Using this, we created surface hoar maps with an accuracy upwards of 95 %.
Steven J. Pestana, C. Chris Chickadel, and Jessica D. Lundquist
The Cryosphere, 18, 2257–2276, https://doi.org/10.5194/tc-18-2257-2024, https://doi.org/10.5194/tc-18-2257-2024, 2024
Short summary
Short summary
We compared infrared images taken by GOES-R satellites of an area with snow and forests against surface temperature measurements taken on the ground, from an aircraft, and by another satellite. We found that GOES-R measured warmer temperatures than the other measurements, especially in areas with more forest and when the Sun was behind the satellite. From this work, we learned that the position of the Sun and surface features such as trees that can cast shadows impact GOES-R infrared images.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
EGUsphere, https://doi.org/10.5194/egusphere-2024-857, https://doi.org/10.5194/egusphere-2024-857, 2024
Short summary
Short summary
The Arctic experienced pronounced warming throughout the last decades. This warming threatens ecosystems, vegetation dynamics, snow cover duration, and permafrost. Traditional monitoring methods like stations and climate models lack the detail needed. Land surface temperature (LST) data derived from satellites offers high spatial and temporal coverage, perfect for studying changes in the Arctic. In particular, LST information from AVHRR provides a 40-year record, valuable for analyzing trends.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024, https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary
Short summary
In situ techniques for snow depth (SD) measurement are not adequate to represent the spatiotemporal variability in SD in the Western Himalayan region. Therefore, this study focuses on the high-resolution mapping of daily snow depth in the Indian Western Himalayan region using passive microwave remote-sensing-based algorithms. Overall, the proposed multifactor SD models demonstrated substantial improvement compared to the operational products. However, there is a scope for further improvement.
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152, https://doi.org/10.5194/tc-18-139-2024, https://doi.org/10.5194/tc-18-139-2024, 2024
Short summary
Short summary
Seasonal snow accumulates each winter, storing water to release later in the year and modulating both water and energy cycles, but the amount of seasonal snow is one of the most poorly measured components of the global water cycle. Satellite concepts to monitor snow accumulation have been proposed but not selected. This paper shows that snow accumulation can be measured using radar, and that (contrary to previous studies) does not require highly accurate information about snow microstructure.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
The Cryosphere, 17, 4325–4341, https://doi.org/10.5194/tc-17-4325-2023, https://doi.org/10.5194/tc-17-4325-2023, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide snow profile input to emissivity simulations.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023, https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary
Short summary
The large amount of information regularly acquired by satellites can provide important information about SWE. We explore the use of multi-source satellite data, in situ observations, and a degree-day model to reconstruct daily SWE at 25 m. The results show spatial patterns that are consistent with the topographical features as well as with a reference product. Being able to also reproduce interannual variability, the method has great potential for hydrological and ecological applications.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023, https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
Ruben Urraca and Nadine Gobron
The Cryosphere, 17, 1023–1052, https://doi.org/10.5194/tc-17-1023-2023, https://doi.org/10.5194/tc-17-1023-2023, 2023
Short summary
Short summary
We evaluate the fitness of some of the longest satellite (NOAA CDR, 1966–2020) and reanalysis (ERA5, 1950–2020; ERA5-Land, 1950–2020) products currently available to monitor the Northern Hemisphere snow cover trends using 527 stations as the reference. We found different artificial trends and stepwise discontinuities in all the products that hinder the accurate monitoring of snow trends, at least without bias correction. The study also provides updates on the snow cover trends during 1950–2020.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023, https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary
Short summary
Snow water equivalent (SWE) is a valuable characteristic of snow cover. In this research, we improve the radiometer-based GlobSnow SWE retrieval methodology by implementing spatially and temporally varying snow densities into the retrieval procedure. In addition to improving the accuracy of SWE retrieval, varying snow densities were found to improve the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, https://doi.org/10.5194/tc-15-1485-2021, 2021
Short summary
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Cited articles
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, ISBN 978-82-7971-101-8,
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (last access: 27 May 2022), 2017.
Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F.,
Lévesque, E., and Yoccoz, N.: Effects of changing permafrost and snow
conditions on tundra wildlife: critical places and times, Arct. Sci., 3,
65–90, https://doi.org/10.1139/as-2016-0023, 2017.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Bokhorst, S., Pedersen, S. H., Brucker, L., Anisimov, O., Bjerke, J. W.,
Brown, R. D., Ehrich, D., Essery, R. L. H., Heilig, A., Ingvander, S.,
Johansson, C., Johansson, M., Jónsdóttir, I. S., Inga, N., Luojus,
K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G. N., Sato, A.,
Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S. A., Terzago, S.,
Vikhamar-Schuler, D., Williamson, S., Qiu, Y., and Callaghan, T. V: Changing
Arctic snow cover: A review of recent developments and assessment of future
needs for observations, modelling, and impacts, Ambio, 45, 516–537,
https://doi.org/10.1007/s13280-016-0770-0, 2016.
Burn, C. R. and Zhang, Y.: Permafrost and climate change at Herschel Island
(Qikiqtaruq), Yukon Territory, Canada, J. Geophys. Res.-Earth, 114,
1–16, https://doi.org/10.1029/2008JF001087, 2009.
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014.
Chang, P. S., Mead, J. B., Knapp, E. J., Sadowy, G. A., Davis, R. E. and
Mcintosh, R. E.: Polarimetric Backscatter from fresh and metamorphic
snowcover at millimeter wavelengths, IEEE T. Antenn. Propag., 44,
58–73, https://doi.org/10.1109/8.477529, 1996.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.:
Representing spatial variability of snow water equivalent in hydrologic and
land-surface models: A review, Water Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Colbeck, S. C.: Theory of metamorphism of wet snow, United States
Army Corps of Engineers, Hanover, NH, USACRREL Report
73, 1–11, 1973.
Colbeck, S. C.: An overview of seasonal snow metamorphism, Rev. Geophys.,
20, 45–61, https://doi.org/10.1029/RG020i001p00045, 1982.
Cray, H. A. and Pollard, W. H.: Vegetation recovery patterns following
permafrost disturbance in a Low Arctic setting: Case study of Herschel
Island, Yukon, Canada, Arctic, Antarct. Alp. Res., 47, 99–113,
https://doi.org/10.1657/AAAR0013-076, 2015.
Dedieu, J., Negrello, C., Jacobi, H., Duguay, Y., Boike, J., Bernard, E.,
Westermann, S., Gallet, J., and Wendleder, A.: Improvement of snow physical
parameters retrieval using SAR data in the Arctic (Svalbard), in
International Snow Science Workshop, Innsbruck, Austria, 303–307,
https://hal.archives-ouvertes.fr/hal-01963077/file/Bernard_20ISSW2018.pdf (last access: 27 May 2022), 2018.
Dolant, C., Montpetit, B., Langlois, A., Brucker, L., Zolina, O., Johnson,
C. A., Royer, A., and Smith, P.: Assessment of the Barren Ground Caribou
Die-off During Winter 2015–2016 Using Passive Microwave Observations,
Geophys. Res. Lett., 45, 4908–4916, https://doi.org/10.1029/2017GL076752, 2018.
Domine, F., Barrere, M., and Morin, S.: The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime, Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, 2016.
Domine, F., Picard, G., Morin, S., and Barrere, M.: Major Issues in
Simulating some Arctic Snowpack Properties Using Current Detailed Snow
Physics Models, Consequences for the Thermal Regime and Water Budget of
Permafrost, J. Adv. Model. Earth Sys., 11, 34–44, https://doi.org/10.1029/2018MS001445, 2018a.
Domine, F., Belke-Brea, M., Sarrazin, D., Arnaud, L., Barrere, M., and
Poirier, M.: Soil moisture, wind speed and depth hoar formation in the
Arctic snowpack, J. Glaciol., 64, 990–1002, https://doi.org/10.1017/jog.2018.89,
2018b.
Duguay, Y., Bernier, M., Lévesque, E., and Tremblay, B.: Potential of C
and X band SAR for shrub growth monitoring in sub-arctic environments,
Remote Sens., 7, 9410–9430, https://doi.org/10.3390/rs70709410, 2015.
Eischeid, I.: Mapping of soil organic carbon and nitrogen in two small
adjacent Arctic watersheds on Herschel Island, Yukon Territory, University
of Hohenheim, https://doi.org/10.013/epic.47347.d001, 2015.
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The International Classification for Seasonal Snow on the Ground (ICSSG), Tech. Rep., IHP-VII Technical Documents in Hydrology, No. 83, IACS Contribution No. 1, UNESCO-IHP, https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 27 May 2022), 2009.
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and
Robinson, D. A.: A review of global satellite-derived snow products, Adv.
Sp. Res., 50, 1007–1029, https://doi.org/10.1016/j.asr.2011.12.021, 2012.
Games, P. A. and Howell, J. F.: Statistics Key words: Multiple Comparisons;
iances; Unequal Sample Sizes Means; Heterogeneous Games and Howell, J.
Educ. Stat., 1, 113–125, 1976.
Goodrich, L. E.: The influence of snow cover on the ground thermal regime,
Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982.
Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais,
P., Tarnocai, C., and Boike, J.: How the insulating properties of snow affect
soil carbon distribution in the continental pan-Arctic area, J. Geophys.
Res.-Biogeo., 117, 1–11, https://doi.org/10.1029/2011JG001916, 2012.
Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., and Schneebeli, M.: Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications, The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, 2018.
IPCC: The Ocean and Cryosphere in a Changing Climate, A Special Report of
the Intergovernmental Panel on Climate Change, Intergov. Panel Clim. Chang., https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/ (last access: 27 May 2022), 2019.
Kankaanpää, T., Skov, K., Abrego, N., Lund, M., Schmidt, N. M., and
Roslin, T.: Spatiotemporal snowmelt patterns within a high Arctic landscape,
with implications for flora and fauna, Arctic, Antarct. Alp. Res., 50,
1–17, https://doi.org/10.1080/15230430.2017.1415624, 2018.
King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J.,
Marsh, P., Montpetit, B., Roy, A., Rutter, N., and Sturm, M.: The influence
of snow microstructure on dual-frequency radar measurements in a tundra
environment, Remote Sens. Environ., 215, 242–254,
https://doi.org/10.1016/j.rse.2018.05.028, 2018.
Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and
retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea,
Yukon Territory, Canada, Geomorphology, 95, 84–102,
https://doi.org/10.1016/j.geomorph.2006.07.040, 2008.
Leinss, S., Parrella, G., and Hajnsek, I.: Snow height determination by
polarimetric phase differences in X-band SAR data, IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens., 7, 3794–3810, 2014.
Leinss, S., Löwe, H., Proksch, M., Lemmetyinen, J., Wiesmann, A., and Hajnsek, I.: Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series, The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016, 2016.
Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional
and Global Models, J. Climate, 17, 1381–1397, https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2, 2004.
Mätzler, C.: Applications of the interaction of microwaves with the
natural snow cover, Remote Sens. Rev., 2, 259–387,
https://doi.org/10.1080/02757258709532086, 1987.
Meloche, J., Langlois, A., Rutter, N., Royer, A., King, J., Walker, B., Marsh, P., and Wilcox, E. J.: Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals, The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, 2022.
Myers-Smith, I., Grabowski, M. M., Thomas, H. J. D., Bjorkman, A. D.,
Cunliffe, A. M., Assmann, J. J., Boyle, J., Mcleod, E., Mcleod, S., Joe, R.,
Lennie, P., Arey, D., and Gordon, R.: Eighteen years of ecological monitoring
reveals multiple lines of evidence for tundra vegetation change, Ecol.
Monogr., 89, e01351, https://doi.org/10.1002/ecm.1351, 2019.
Myers-Smith, I. H. and Hik, D. S.: Shrub canopies influence soil
temperatures but not nutrient dynamics: An experimental test of tundra
snow560 shrub interactions, Ecol. Evol., 3, 3683–3700,
https://doi.org/10.1002/ece3.710, 2013.
Myers-Smith, I. H., Hik, D. S., Kennedy, C., Cooley, D., Johnstone, J. F.,
Kenney, A. J., and Krebs, C. J.: Expansion of canopy-forming willows over the
twentieth century on Herschel Island, Yukon Territory, Canada, Ambio, 40,
610–623, https://doi.org/10.1007/s13280-011-0168-y, 2011a.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., MacIas-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub,
G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
Dynamics, impacts and research priorities, Environ. Res. Lett., 6, 045509,
https://doi.org/10.1088/1748-9326/6/4/045509, 2011b.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from
digital elevation data, Comput. Vision, Graph. Image Process., 28,
323–344, https://doi.org/10.1016/0734-189X(89)90053-4, 1984.
Patil, A., Singh, G. and Rüdiger, C.: Retrieval of snow depth and snow
water equivalent using dual polarization SAR data, Remote Sens., 12,
1–11, https://doi.org/10.3390/rs12071183, 2020.
Poirier, M., Gauthier, G., and Domine, F.: What guides lemmings movements
through the snowpack?, J. Mammal., 100, 1416–1426,
https://doi.org/10.1093/jmammal/gyz129, 2019.
Pollard, W.: The nature and origin of ground ice in the herschel island
area, Yukon Territory, Nordicana, 54, 23–30, 1990.
Pomeroy, J. W., Bewley, D. S., Essery, R. L. H., Hedstrom, N. R., Link, T.,
Granger, R. J., Sicart, J. E., Ellis, C. R., and Janowicz, J. R.: Shrub
tundra snowmelt, Hydrol. Process., 20, 923–941, https://doi.org/10.1002/hyp.6124,
2006.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington
Michael, J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen,
M.: ArcticDEM [dataset], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Rott, H. and Matzler, C.: Possibilities and limits of synthetic aperture
radar for snow and glacier surveying, Ann. Glaciol., 9, 195–199,
https://doi.org/10.1071/SRB04Abs021, 1987.
Royer, A., Domine, F., Roy, A., Langlois, A., Davesne, G., Royer, A.,
Domine, F., Roy, A. and Langlois, A.: New northern snowpack classification
linked to vegetation cover on a latitudinal mega-transect across
northeastern Canada, Écoscience, 28, 1–18,
https://doi.org/10.1080/11956860.2021.1898775, 2021.
Rutter, N., Sandells, M., Derksen, C., Toose, P., Royer, A., Montpetit, B.,
Langlois, A., Lemmetyinen, J., and Pulliainen, J.: Snow stratigraphic
heterogeneity within ground-based passive microwave radiometer footprints:
Implications for emission modeling, J. Geophys. Res.-Earth, 119,
550–565, https://doi.org/10.1002/2013JF003017, 2014.
Schmitt, A.: Multiscale and Multidirectional Multilooking for SAR Image
Enhancement, IEEE T. Geosci. Remote, 54, 5117–5134,
https://doi.org/10.1109/TGRS.2016.2555624, 2016.
Schmitt, A., Wendleder, A., and Hinz, S.: The Kennaugh element framework for
multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image
preparation, ISPRS J. Photogramm. Remote Sens., 102, 122–139,
https://doi.org/10.1016/j.isprsjprs.2015.01.007, 2015.
Schneebeli, M. and Sokratov, S. A.: Tomography of temperature gradient
metamorphism of snow and associated changes in heat conductivity, Hydrol.
Process., 18, 3655–3665, https://doi.org/10.1002/hyp.5800, 2004.
Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., and
Budkewitsch, P.: A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR
interferometry for monitoring permafrost environments, case study from
Herschel Island, Canada, Remote Sens. Environ., 115, 3491–3506,
https://doi.org/10.1016/j.rse.2011.08.012, 2011.
Smith, C. A. S., Kennedy, C. E., Hargrave, A. E., and McKenna, K. M.: Soil
and vegetation of Herschel Island, Yukon territory, Yukon Soil Surv. Rep., 111 pp., 1989.
Solomon, S. M.: Spatial and temporal variability of shoreline change in the
Beaufort-Mackenzie region, northwest territories, Canada, Geo-Mar. Lett.,
25, 127–137, https://doi.org/10.1007/s00367-004-0194-x, 2005.
Stettner, S., Lantuit, H., Heim, B., Eppler, J., Roth, A., Bartsch, A., and
Rabus, B.: TerraSAR-X time series fill a gap in spaceborne Snowmelt
Monitoring of small Arctic Catchments-A case study on Qikiqtaruk (Herschel
Island), Canada, Remote Sens., 10, 1155, https://doi.org/10.3390/rs10071155, 2018.
Stieglitz, M., Déry, S. J., Romanovsky, V. E., and Osterkamp, T. E.: The
role of snow cover in the warming of arctic permafrost, Geophys. Res. Lett.,
30, 1721, https://doi.org/10.1029/2003GL017337, 2003.
Sturm, M. and Holmgren, J.: Effects of microtopography on texture,
temperature and heat flow in Arctic and sub-Arctic snow, Ann. Glaciol., 19,
63–68, https://doi.org/10.1017/s0260305500010995, 1994.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover
classification system for local to global applications, J. Climate, 8,
1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Sturm, M., McFadden, J. P., Liston, G. E., Stuart Chapin, F., Racine, C. H.,
and Holmgren, J.: Snow-shrub interactions in Arctic Tundra: A hypothesis
with climatic implications, J. Climate, 14, 336–344,
https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2,
2001.
Sturm, M., Derksen, C., Liston, G., Silis, A., Solie, D., Holmgren, J.,
Huntington, H., and Liston, G.: A Reconnaissance Snow Survey across Northwest
Territories and Nunavut, Canada, April 2007, Erdc/Crrel, (April 2007), http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA476959 (last access: 27 May 2022), 2008.
Thompson, A., Kelly, R., and Marsh, P.: Spatial variability of snow at Trail
Valley Creek, NWT, in 73rd Eastern Snow Conference, Columbus,
Ohio, USA, 101–108, 2016.
Wilcox, E. J., Keim, D., de Jong, T., Walker, B., Sonnentag, O., Sniderhan,
A. E., Mann, P., and Marsh, P.: Tundra shrub expansion may amplify permafrost
thaw by advancing snowmelt timing, Arct. Sci., 5, 202–217,
https://doi.org/10.1139/as-2018-0028, 2019.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50,
293–305, https://doi.org/10.1002/2012WR013038, 2014.
Wolter, J., Lantuit, H., Fritz, M., Macias-Fauria, M., Myers-Smith, I., and
Herzschuh, U.: Vegetation composition and shrub extent on the Yukon coast,
Canada, are strongly linked to ice-wedge polygon degradation, Polar Res.,
35, https://doi.org/10.3402/polar.v35.27489, 2016.
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Changes in the state of the snowpack in the context of observed global warming must be...