Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1741-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1741-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Vincenzo Capozzi
CORRESPONDING AUTHOR
Department of Science and Technology, University of Naples “Parthenope”,
Centro Direzionale di Napoli – Isola C4, 80143 Naples, Italy
Carmela De Vivo
Department of Science and Technology, University of Naples “Parthenope”,
Centro Direzionale di Napoli – Isola C4, 80143 Naples, Italy
Giorgio Budillon
Department of Science and Technology, University of Naples “Parthenope”,
Centro Direzionale di Napoli – Isola C4, 80143 Naples, Italy
Related authors
No articles found.
Alexandra Gossart, Alena Malyarenko, Liv Cornelissen, Craig Stevens, Una Miller, Christopher J. Zappa, Nancy Luca, Pasquale Castagno, and Giorgio Budillon
EGUsphere, https://doi.org/10.5194/egusphere-2025-4332, https://doi.org/10.5194/egusphere-2025-4332, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Polynyas are areas of open water that form within the sea ice during the Antarctic winter. They occur along the coastline and act as hotspots for air–sea interactions and sea-ice formation. We use the P-SKRIPSv2 model to simulate air–sea–ice–ocean interactions in the Ross Sea. Model results are compared with observations, and we test how changes in air–sea–ice coupling affect the system. Our findings show that P-SKRIPSv2 provides a valuable tool to study polynyasa and understand their dynamics.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data, 17, 2625–2640, https://doi.org/10.5194/essd-17-2625-2025, https://doi.org/10.5194/essd-17-2625-2025, 2025
Short summary
Short summary
This study presents 30 years of water temperature data from expendable bathythermograph (XBT) probes collected between Aotearoa / New Zealand and the Ross Sea (Antarctica). Gathered during research cruises by the Italian National Antarctic Research Program, the data were rigorously verified and corrected for depth and temperature bias. This dataset provides a valuable insight into the Southern Ocean's climate and enhances satellite observations and ocean models.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025, https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Short summary
This “journey through time” discovers historical information about snow precipitation in the Italian Apennines. In this area, in the second half of the past century, a gradual decline in snow persistence on the ground, as well as in the frequency of occurrence of snowfall events, has been observed, especially in sites located above 1000 m above sea level. The old data rescued in this study strongly enhance our knowledge about past snowfall variability and climate in the Mediterranean area.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Cited articles
Allan, R., Brohan, P., Compo, G. P., Stone, R., Luterbacher, J., and Brönnimann, S.: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative, B. Am. Meteorol. Soc., 92, 1421–1425, 2011.
Armstrong, R. L. and Brun, E.: Snow and climate: physical processes, surface
energy exchange and modelling, Cambridge, Cambridge University Press,
256 pp., ISBN-10: 0-521854-54-7, ISBN-13: 978-0-52185-454-7, J.
Glaciol., 55, 384–384, https://doi.org/10.3189/002214309788608741,
2008.
Ashcroft, L., Coll, J. R., Gilabert, A., Domonkos, P., Brunet, M., Aguilar, E., Castella, M., Sigro, J., Harris, I., Unden, P., and Jones, P.: A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012, Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, 2018.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and
persistence of low-frequency atmospheric circulation patterns, Mon. Weather
Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Beniston, M.: Is snow in the Alps receding or disappearing?, WIREs Clim.
Change, 3, 349–358, https://doi.org/10.1002/wcc.179, 2012.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from
snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, https://doi.org/10.1038/nclimate2246, 2014.
Braca, G., Bussettini, M., Lastoria, B., and Mariani, S.: Anabasi – analisi
stastistica di base delle serie storiche di dati idrologici – macro a
supporto delle linee guida Ispra – manuale d'uso. Allegato in: Linee guida
per l'analisi statistica di base delle serie storiche di dati idrologici,
ISPRA, manuali e linee guida n. 84/13, Roma, 2013.
Brönnimann, S., Annis, J., Dann, W., Ewen, T., Grant, A. N., Griesser, T., Krähenmann, S., Mohr, C., Scherer, M., and Vogler, C.: A guide for digitising manuscript climate data, Clim. Past, 2, 137–144, https://doi.org/10.5194/cp-2-137-2006, 2006.
Capozzi, V. and Budillon, G.: Detection of heat and cold waves in Montevergine time series (1884–2015), Adv. Geosci., 44, 35–51, https://doi.org/10.5194/adgeo-44-35-2017, 2017.
Capozzi, V., Cotroneo, Y., Castagno, P., De Vivo, C., Komar, A., Guariglia,
R., and Budillon, G.: Sub-daily meteorological data collected at
Montevergine Observatory (Southern Apennines), Italy from 1884-01-01 to
1963-12-31 (NCEI Accession 0205785), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.25921/cx3g-rj98, 2019.
Capozzi, V., Cotroneo, Y., Castagno, P., De Vivo, C., and Budillon, G.: Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963, Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, 2020.
Changnon, S. A.: Catastrophic winter storms: An escalating problem, Climate
Change, 84, 131–139, https://doi.org/10.1007/s10584-007-9289-5, 2007.
Climate Prediction Center: Climate Prediction Center: Northern Hemisphere Teleconnections Patterns,
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml, last access:
29 October 2021.
Cohen, J. and Barlow M.: The NAO, the AO, and global warming: How closely
related?, J. Climate, 18, 4498–4513, https://doi.org/10.1175/JCLI3530.1, 2005.
Cohen, L., Dean, S., and Renwick, J.: Synoptic weather types for the Ross Sea
region, Antarctica, J. Climate, 26, 636–649,
https://doi.org/10.1175/JCLI-D-11-00690.1, 2013.
Diodato, N.: Nota climatica ispirata alla serie storica delle precipitazioni
osservate al Santuario di Montevergine, Rivista di Meteorologia Aeronautica,
LII-N.34, July–December, 179–182, 1992.
Diodato, N., Bertolin, C., Bellocchi, G., de Ferri, L., and Fantini, P.: New
insights into the world's longest series of monthly snowfall (Parma,
Northern Italy, 1777–2018), Int. J. Climatol., 41, E1270–E1286, https://doi.org/10.1002/joc.6766, 2021.
Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.:
Comprehensive automated quality assurance of daily surface observations,
J. Appl. Meteorol. Clim., 49, 1615–1633,
https://doi.org/10.1175/2010JAMC2375.1, 2010.
Esteban, P., Jones, P. D., Martin-Vide, J., and Mases, M.: Atmospheric
circulation patterns related to heavy snowfall days in Andorra, Pyrenees,
Int. J. Climatol., 25, 319329, https://doi.org/10.1002/joc.1103,
2005.
Gadedjisso-Tossou, A., Adjegan, K. I., and Kablan, A. K. M.: Rainfall and
Temperature Trend Analysis by Mann–Kendall Test and Significance for
Rainfed Cereal Yields in Northern Togo, Sci, 3, 1–20,
https://doi.org/10.3390/sci3010017, 2021.
Hänsel, S., Medeiros, D. M., Matschullat, J., Petta,
R. A., and de Mendonça, S. I.: Assessing Homogeneity and
Climate Variability of Temperature and Precipitation Series in the Capitals
of North-Eastern Brazil, Front. Earth Sci., 4, 1–21,
https://doi.org/10.3389/feart.2016.00029, 2016.
Hatzaki, M., Flocas, H. A., Asimakopoulos, D. N., and Maheras, P.: The eastern Mediterranean teleconnection pattern: identification and definition. Int. J. Climatol., 27, 727–737, https://doi.org/10.1002/joc.1429, 2007.
Hatzaki, M., Flocas, H. A., Giannakopoulos, C., and Maheras P.: The impact of
the eastern Mediterranean teleconnection pattern on the Mediterranean
climate, J. Climate, 22, 977–992,
https://doi.org/10.1175/2008JCLI2519.1, 2009.
Irannezhad, M., Ronkanen, A. K., Kiani, S. Chen, D., and Kløve, B.:
Long-term variability and trends in annual snowfall/total precipitation
ratio in Finland and the role of atmospheric circulation patterns, Cold
Reg. Sci. Technol., 143, 23–31,
https://doi.org/10.1016/j.coldregions.2017.08.008, 2017.
ISPRA, Fioravanti, G., Fraschetti, P., Perconti, W., Piervitali, E.,
and Desiato, F.: Controlli di qualità delle serie di temperatura e
precipitazione, http://www.scia.isprambiente.it/wwwrootscia/Documentazione/Rapporto_controlli_qualità_clima.pdf (last access: 15 October 2021), 2016.
Kendall, M. G.: Rank Correlation Methods, 3rd Edn., Hafner Publishing
Company, New York, 1962.
Kidson, J. W.: An automated procedure for the identification of synoptic
types applied to the New Zealand region, Int. J. Climatol., 14, 711–721,
https://doi.org/10.1002/joc.3370140702, 1994a.
Kidson, J. W.: The relation of New Zealand daily and monthly weather patterns
to synoptic weather types, Int. J. Climatol., 14, 723–737,
https://doi.org/10.1002/joc.3370140703, 1994b.
Kidson, J. W.: An analysis of New Zealand synoptic types and their use in defining weather regimes, Int. J. Climatol., 20, 299–316, https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B, 2000.
King, C. and Turner, J.: Antarctic Meteorology and Climatology, Cambridge, UK, Cambridge University Press, 425 pp., ISBN 0521465605, 1997.
Kreyling, J. and Henry, H. A. L.: Vanishing winters in Germany: soil frost
dynamics and snow cover trends, and ecological implications, Clim. Res., 46,
269–276, https://doi.org/10.3354/cr00996, 2011.
Laternser, M. and Schneebeli, M.: Long-Term Snow Climate Trends of the Swiss
Alps (1931–99), Int. J. Climatol., 23, 733–750,
https://doi.org/10.1002/joc.912, 2003.
Lejeune, Y., Dumont, M., Panel, J.-M., Lafaysse, M., Lapalus, P., Le Gac, E., Lesaffre, B., and Morin, S.: 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude), Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, 2019.
Leporati, E. and Mercalli, L: Snowfall series of Turin, 1784–1992:
climatological analysis and action on structures, Ann.
Glaciol., 19, 77–84,
https://doi.org/10.3189/S0260305500011010, 1993.
López-Moreno, J. I., Goyette, S., Vicente-Serrano, S. M., and Beniston, M.:
Effects of climate change on the intensity and frequency of heavy snowfall
events in the Pyrenees, Climatic Change, 105, 489–508,
https://doi.org/10.1007/s10584-010-9889-3, 2011.
MacQueen, J. B.: Some Methods for classification and Analysis of Multivariate
Observations, Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, University of California Press,
1, 281–297, 1967.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
1945.
Marcolini, G., Bellin, A., Disse, M., and Chiogna, G.: Variability in snow
depth time series in the Adige catchment, J. Hydrol., 13, 240–254, https://doi.org/10.1016/j.ejrh.2017.08.007,
2017.
Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth
and snowfall in Switzerland based on extreme value statistics, Climatic
Change, 111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin,
S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski,
S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P.,
Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C.,
Strasser, U., Winkler, M., Zebisch, M., Laternser, M., and Schneebeli, M.:
Long-term snow climate trends of the Swiss Alps (1931–99), Int. J.
Climatol., 23, 733–750, https://doi.org/10.1002/joc.912, 2003.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Maugeri, M., Bellumé, M, Buffoni, L., and Chlistovsky, F.:
Reconstruction of daily pressure maps over Italy during some extreme events
of the 19th century, Il Nuovo Cimento, 21, 135–147, 1998.
Merino, A., Fernández, S., Hermida, L., López, L., Sánchez, J.
L., García-Ortega, E., and Gascón, E.: Snowfall in the Northwest
Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow
Day Trends, Sci. World J., 14, 480275,
https://doi.org/10.1155/2014/480275, 2014.
Micheletti, S.: Cambiamenti Climatici in Friuli–Venezia–Giulia, Neve e
Valanghe, 63, 34–45, https://issuu.com/aineva7/docs/nv63
(last access: 21 February 2022), 2008.
Patakamuri, S. K., Muthiah, K., and Sridhar, V.: Long-Term Homogeneity, Trend,
and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu,
Andhra Pradesh State, India, Water, 12, 211,
https://doi.org/10.3390/w12010211, 2020.
Pettitt, A. N.: A non-parametric approach to the change point problem,
J. Roy. Stat. Soc. C-App., 28,
126–135, https://doi.org/10.2307/2346729, 1979.
Pons, M. R., San-Martín, D., Herrera, S., and Gutiérrez J. M.: Snow
Trends in Northern Spain. Analysis and simulation with statistical
downscaling methods, Int. J. Climatol., 30,
1795–1806, https://doi.org/10.1002/joc.2016, 2009.
Scherrer, S. C., Wüthrich, C., Croci-Maspoli, M., Weingartner, R., and
Appenzeller, C.: Snow variability in the Swiss Alps 1864–2009, Int. J.
Climatol., 33, 3162–3173, https://doi.org/10.1002/joc.3653, 2013.
Schöner, W., Auer, I., and Böhm, R.: Long term trend of snow depth
at Sonnblick (Austrian Alps) and its relation to climate change, Hydrol.
Process., 23, 1052–1063, https://doi.org/10.1002/hyp.7209, 2009.
Schöner, W., Koch, R., Matulla, C., Marty, C., and Tilg, A.-M.:
Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the
past half century (1961 to 2012) and linkages to climate change, Int. J.
Climatol., 39, 1589–1603, https://doi.org/10.1002/joc.5902, 2019.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese,
B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J.,
Spencer, L.J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D.,
Cornes, R., Cram, T.A., Crouthamel, R., Domínguez-Castro, F., Freeman,
J. E., Gergis, J., Hawkins, E., Jones, P.D., Jourdain, S., Kaplan, A.,
Kubota, H., Blancq, F. L., Lee, T., Lorrey, A., Luterbacher, J., Maugeri,
M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C.,
Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang,
X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more
reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019.
Smadi, M. M. and Zghoul, A.: A Sudden Change In Rainfall Characteristics In
Amman, Jordan During The Mid 1950s, American Journal of Environmental
Sciences, 2, 84–91, https://doi.org/10.3844/ajessp.2006.84.91, 2006.
Terzago, S., Cassardo, C., Cremonini, R., and Fratianni, S.: Snow
Precipitation and Snow Cover Climatic Variability for the Period 1971–2009
in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study,
Water, 2, 773–787, https://doi.org/10.3390/w2040773, 2010.
Terzago, S., Fratianni, S., and Cremonini, R.: Winter precipitation in
Western Italian Alps (1926–2010), Meteorol. Atmos. Phys., 119, 125–136,
https://doi.org/10.1007/s00703-012-0231-7, 2013.
Valt, M. and Cianfarra, P.: Recent snow cover variability in the Italian
Alps, Cold Reg. Sci. Technol., 64, 146–157,
https://doi.org/10.1016/j.coldregions.2010.08.008, 2010.
Wijngaard, J. B., Klein Tank, A. M. G., and Können, G. P: Homogeneity of 20th century European daily temperature and precipitation series, Int. J. Climatol., 23, 679–692, https://doi.org/10.1002/joc.906, 2003.
World Meteorological Organization (WMO): Guide to Meteorological Instruments and
Methods of Observation, 2008 Edition, WMO-no. 8 (Seventh edition), https://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-474-WMO-Guide.pdf (last
access: 1 October 2019), 2008.
World Meteorological Organization (WMO): Guide to Climatological Practices (WMO-No. 100) Geneva: World
Meteorological Organization, 2011.
Yeung, K. Y. and Ruzzo, W. L.: Principal Component Analysis for Clustering
Gene Expression Data, Bioinformatics, 17, 763–774,
https://doi.org/10.1093/bioinformatics/17.9.763, 2001.
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
This work documents the snowfall variability observed from late XIX century to recent years in...