Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a diffuse reflectance probe for in situ measurement of inherent optical properties in sea ice
Christophe Perron
CORRESPONDING AUTHOR
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Christian Katlein
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, 27570, Germany
Simon Lambert-Girard
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Edouard Leymarie
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne
Université, Villefranche-sur-Mer, France
Louis-Philippe Guinard
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Pierre Marquet
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Centre d'optique, photonique et laser, Laval University, Québec
city, G1V 0A6, Canada
Marcel Babin
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Related authors
No articles found.
Ariadna Celina Nocera, Lars Stemmann, Marcel Babin, Tristan Biard, Julie Coustenoble, François Carlotti, Laurent Coppola, Lucas Courchet, Laetitia Drago, Amanda Elineau, Lionel Guidi, Helena Hauss, Laëtitia Jalabert, Lee Karp-Boss, Rainer Kiko, Manon Laget, Fabien Lombard, Andrew McDonnell, Camille Merland, Solène Motreuil, Thelma Panaïotis, Marc Picheral, Andreas Rogge, Anya Waite, and Jean-Olivier Irisson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-522, https://doi.org/10.5194/essd-2025-522, 2025
Preprint under review for ESSD
Short summary
Short summary
Plankton and detritus play a key role in ocean health and climate regulation. We present a large global dataset of images and information collected from 2008 to 2018 using specialized underwater camera (UVP). This publicly available dataset will support more accurate ecological models and help train artificial intelligence tools, improving how scientists track ocean biodiversity and monitor environmental changes.
Raphaël Larouche, Bastian Raulier, Christian Katlein, Simon Lambert-Girard, Simon Thibault, and Marcel Babin
EGUsphere, https://doi.org/10.31223/X5V955, https://doi.org/10.31223/X5V955, 2025
Short summary
Short summary
We developed a new method to study how light interacts with sea ice using a compact 360-degree camera. By lowering this camera into drilled holes in ice, we captured detailed light patterns inside different ice layers. Our research revealed how light is absorbed and scattered in both Arctic multi-year ice and thinner, seasonal ice in Quebec. These findings improve our understanding of sea ice structure and its role in the climate system, helping representation sea ice in models.
Christian Katlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3358, https://doi.org/10.5194/egusphere-2024-3358, 2024
Short summary
Short summary
In this paper we perform laboratory tests and investigate the feasibility to use existing subsea intervention technology, such as manipulator arms to retrieve solid ice samples during under-ice dives of robotic vehicles. This investigation shows, that with minor modifications existing coring technology can be combined with existing subsea technology to provide novel sampling opportunities for submarine ice.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Marc de Vos, Panagiotis Kountouris, Lasse Rabenstein, John Shears, Mira Suhrhoff, and Christian Katlein
Hist. Geo Space. Sci., 14, 1–13, https://doi.org/10.5194/hgss-14-1-2023, https://doi.org/10.5194/hgss-14-1-2023, 2023
Short summary
Short summary
Poor visibility on the 3 d prior to the sinking of Sir Ernest Shackleton’s vessel, Endurance, during November 1915, hampered navigator Frank Worsley’s attempts to record its position. Thus, whilst the wreck was located in the Weddell Sea in March 2022, the drift path of Endurance during its final 3 d at the surface remained unknown. We used data from a modern meteorological model to reconstruct possible trajectories for this unknown portion of Endurance’s journey.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Cited articles
Arndt, S. and Nicolaus, M.: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice, The Cryosphere, 8, 2219–2233, https://doi.org/10.5194/tc-8-2219-2014, 2014.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine
primary production, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035028,
2008.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., and Bahr, F.:
Massive phytoplankton blooms under Arctic sea ice, Science, 336, 1408–1408,
2012.
Babin, M., Stramski, D., Reynolds, R. A., Wright, V. M., and Leymarie, E.:
Determination of the volume scattering function of aqueous particle
suspensions with a laboratory multi-angle light scattering instrument,
Appl. Optics, 51, 3853–3873, https://doi.org/10.1364/AO.51.003853, 2012.
Bargo, P. R., Prahl, S. A., Goodell, T. T., Sleven, R., Koval, G., Blair,
G., and Jacques, S. L.: In vivo determination of optical properties of
normal and tumor tissue with white light reflectance and an empirical light
transport model during endoscopy, J. Biomed. Optics, 10, 034018, https://doi.org/10.1117/1.1921907,
2005.
Bevilacqua, F.: Local optical characterization of biological tissues in vitro and in vivo, PhD Thesis,
École polytechnique fédérale de Lausanne, Lausanne, Thesis#1781, 1998.
Bevilacqua, F. and Depeursinge, C.: Monte Carlo study of diffuse
reflectance at source–detector separations close to one transport mean free
path, JOSA A, 16, 2935–2945, 1999.
Bigio, I. J. and Mourant, J. R.: Ultraviolet and visible spectroscopies for
tissue diagnostics: fluorescence spectroscopy and elastic-scattering
spectroscopy, Phys. Med. Biol., 42, 803–814, 1997.
Bodenschatz, N., Krauter, P., Liemert, A., and Kienle, A.: Quantifying phase
function influence in subdiffusively backscattered light, J.
Biomed. Optics, 21, 035002, https://doi.org/10.1117/1.JBO.21.3.035002, 2016.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by a Sphere, in: Absorption and
Scattering of Light by Small Particles, Wiley, 82–129,
https://doi.org/10.1002/9783527618156, 1998.
Briegleb, P. and Light, B.: A Delta-Eddington mutiple scattering
parameterization for solar radiation in the sea ice component of the
community climate system model, Technical report, University Corporation for Atmospheric Research,
Boulder, Colorado, https://doi.org/10.5065/D6B27S71, 2007.
Brown, J. Q., Vishwanath, K., Palmer, G. M., and Ramanujam, N.: Advances in
quantitative UV-visible spectroscopy for clinical and pre-clinical
application in cancer, Curr. Opin. Biotech., 20, 119–131, 2009.
Comiso, J. C.: Large decadal decline of the Arctic multiyear ice cover,
J. Climate, 25, 1176–1193, 2012.
Ehn, J., Papakyriakou, T., and Barber, D.: Inference of optical properties
from radiation profiles within melting landfast sea ice, J.
Geophys. Res.-Oceans, 113, C09024, https://doi.org/10.1029/2007JC004656, 2008a.
Ehn, J. K., Mundy, C., and Barber, D. G.: Bio-optical and structural
properties inferred from irradiance measurements within the bottommost
layers in an Arctic landfast sea ice cover, J. Geophys. Res.-Oceans, 113, C03S03, https://doi.org/10.1029/2007JC004194, 2008b.
Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., and Boetius, A.: Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012, Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, 2015.
Grenfell, T. C.: A theoretical model of the optical properties of sea ice in
the visible and near infrared, J. Geophys. Res.-Oceans, 88,
9723–9735, 1983.
Grenfell, T. C.: A radiative transfer model for sea ice with vertical
structure variations, J. Geophys. Res.-Oceans, 96,
16991–17001, 1991.
Grenfell, T. C. and Hedrick, D.: Scattering of visible and near infrared
radiation by NaCl ice and glacier ice, Cold Reg. Sci. Technol.,
8, 119–127, 1983.
Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J. L., and
Rigor, I.: Reduced ice thickness in Arctic Transpolar Drift favors rapid ice
retreat, Geophys. Res. Lett., 35, L17501, https://doi.org/10.1029/2008GL034457, 2008.
Hamre, B., Winther, J. G., Gerland, S., Stamnes, J. J., and Stamnes, K.:
Modeled and measured optical transmittance of snow-covered first-year sea
ice in Kongsfjorden, Svalbard, J. Geophys. Res.-Oceans, 109, C10006, https://doi.org/10.1029/2003JC001926,
2004.
Hecht, E. and Zajac, A.: Optics, addison-wesley, Reading, Mass, 19872,
350–351, 1974.
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.:
Improved sea ice shortwave radiation physics in CCSM4: The impact of melt
ponds and aerosols on Arctic sea ice, J. Climate, 25, 1413–1430,
2012.
Kadhim, R. G.: Study of Some Optical Properties of Polystyrene-Copper
Nanocomposite Films, World Scientific News, Poland, 14–25, 2016.
Katlein, C., Nicolaus, M., and Petrich, C.: The anisotropic scattering
coefficient of sea ice, J. Geophys. Res.-Oceans, 119,
842–855, 2014.
Katlein, C., Valcic, L., Lambert-Girard, S., and Hoppmann, M.: New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements, The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, 2021.
Kienle, A., Forster, F. K., and Hibst, R.: Influence of the phase function
on determination of the optical properties of biological tissue by spatially
resolved reflectance, Optics Lett., 26, 1571–1573, 2001.
Kim, A., Roy, M., Dadani, F., and Wilson, B. C.: A fiberoptic reflectance
probe with multiple source-collector separations to increase the dynamic
range of derived tissue optical absorption and scattering coefficients,
Optics Express, 18, 5580–5594, 2010.
Kwok, R., Cunningham, G., Wensnahan, M., Rigor, I., Zwally, H., and Yi, D.:
Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,
J. Geophys. Res.-Oceans, 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Leymarie, E., Doxaran, D., and Babin, M.: Uncertainties associated to
measurements of inherent optical properties in natural waters, Appl.
Optics, 49, 5415–5436, 2010.
Light, B., Maykut, G., and Grenfell, T.: Effects of temperature on the
microstructure of first-year Arctic sea ice, J. Geophys.
Res.-Oceans, 108, 3051, https://doi.org/10.1029/2001JC000887, 2003a.
Light, B., Maykut, G., and Grenfell, T.: A two-dimensional Monte Carlo model
of radiative transfer in sea ice, J. Geophys. Res.-Oceans,
108, 3219, https://doi.org/10.1029/2002JC001513, 2003b.
Light, B., Maykut, G., and Grenfell, T.: A temperature-dependent,
structural-optical model of first-year sea ice, J. Geophys.
Res.-Oceans, 109, C06013, https://doi.org/10.1029/2003JC002164, 2004.
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and absorption
of solar radiation by Arctic sea ice during the melt season, J.
Geophys. Res.-Oceans, 113, C03023, https://doi.org/10.1029/2006JC003977, 2008.
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.:
Optical properties of melting first-year Arctic sea ice, J.
Geophys. Res.-Oceans, 120, 7657–7675, 2015.
Maffione, R. A., Voss, J. M., and Mobley, C. D.: Theory and measurements of
the complete beam spread function of sea ice, Limnol. Oceanogr.,
43, 34–43, 1998.
Marks, A. A., Lamare, M. L., and King, M. D.: Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison, The Cryosphere, 11, 2867–2881, https://doi.org/10.5194/tc-11-2867-2017, 2017.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys.
Res.-Oceans, 114, C12024, https://doi.org/10.1029/2009JC005436, 2009.
Maslanik, J., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501, https://doi.org/10.1029/2007GL032043, 2007.
Massicotte, P., Bécu, G., Lambert-Girard, S., Leymarie, E., and Babin,
M.: Estimating underwater light regime under spatially heterogeneous sea ice
in the Arctic, Appl. Sci., 8, 2693, https://doi.org/10.3390/app8122693, 2018.
Mobley, C., Boss, E., and Roesler, C.: Ocean optics web book, available at: http://www.oceanopticsbook.info (last access: 24 March 2021), 2010.
Mobley, C. D.: Modeling of Optical Beam Spread in Sea Ice, SEQUOIA
SCIENTIFIC INC MERCER ISLAND, WA, 1998.
Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G. W., Morel,
A., Reinersman, P., Stamnes, K., and Stavn, R. H.: Comparison of numerical
models for computing underwater light fields, Appl. Optics, 32, 7484–7504,
1993.
Mobley, C. D., Cota, G. F., Grenfell, T. C., Maffione, R. A., Pegau, W. S.,
and Perovich, D. K.: Modeling light propagation in sea ice, IEEE
T. Geosci. Remote, 36, 1743–1749, 1998.
Nghiem, S., Rigor, I., Perovich, D., Clemente-Colón, P., Weatherly, J.,
and Neumann, G.: Rapid reduction of Arctic perennial sea ice, Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138, 2007.
Nicolaus, M., Petrich, C., Hudson, S. R., and Granskog, M. A.: Variability of light transmission through Arctic land-fast sea ice during spring, The Cryosphere, 7, 977–986, https://doi.org/10.5194/tc-7-977-2013, 2013.
Perovich, D. K. and Gow, A. J.: A statistical description of the
microstructure of young sea ice, J. Geophys. Res.-Oceans,
96, 16943–16953, 1991.
Perovich, D. K. and Polashenski, C.: Albedo evolution of seasonal Arctic
sea ice, Geophys. Res. Lett., 39, L08501, https://doi.org/10.1029/2012GL051432, 2012.
Perron, C., Katlein, C., Lambert-Girard, S., Leymarie, E., Guinard, L.-P.,
Marquet, P., and Babin, M.: Dataset and code of Development of a diffuse
reflectance probe for in situ measurement of inherent optical properties in
sea ice, Zenodo [data set], https://doi.org/10.5281/zenodo.5277946, 2021.
Picard, G., Libois, Q., and Arnaud, L.: Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow, The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, 2016.
Price, P. and Bergström, L.: Enhanced Rayleigh scattering as a
signature of nanoscale defects in highly transparent solids, Philos.
Mag. A, 75, 1383–1390, 1997.
Rodriguez-Diaz, E., Bigio, I. J., and Singh, S. K.: Integrated optical tools
for minimally invasive diagnosis and treatment at gastrointestinal
endoscopy, Robot. Com.-Int. Manuf., 27, 249–256,
2011.
Rösel, A. and Kaleschke, L.: Exceptional melt pond occurrence in the
years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite
data, J. Geophys. Res.-Oceans, 117, C05018, https://doi.org/10.1029/2011JC007869, 2012.
Schwarz, R. A., Gao, W., Daye, D., Williams, M. D., Richards-Kortum, R., and
Gillenwater, A. M.: Autofluorescence and diffuse reflectance spectroscopy of
oral epithelial tissue using a depth-sensitive fiber-optic probe, Appl.
Optics, 47, 825–834, 2008.
Serreze, M. C., Holland, M. M., and Stroeve, J.: Perspectives on the Arctic's Shrinking Sea-Ice
Cover, Science, 315, 1533–1536, https://doi.org/10.1126/science.1139426, 2007.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509, 1988.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The
Arctic's rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012.
Thueler, P., Charvet, I., Bevilacqua, F., Ghislain, M. S., Ory, G., Marquet,
P., Meda, P., Vermeulen, B., and Depeursinge, C.: In vivo endoscopic tissue
diagnostics based on spectroscopic absorption, scattering, and phase
function properties, J. Biomed. Optics, 8, 495–503, 2003.
Trodahl, H., Buckley, R., and Brown, S.: Diffusive transport of light in sea
ice, Appl. Optics, 26, 3005–3011, 1987.
van de Hulst, H.: Chapter 14.1 in Multiple Light Scattering, vol. 1, Part
III, Academic Press Inc., London, 477–492, 1980.
van de Hulst, H. C. and Christoffel, H.: Multiple light scattering: tables,
formulas and applications, Academic Press, New York, 1980.
Wyman, D. R., Patterson, M. S., and Wilson, B. C.: Similarity relations for
anisotropic scattering in Monte Carlo simulations of deeply penetrating
neutral particles, J. Comput. Phys., 81, 137–150, 1989.
Xu, Z., Yang, Y., Wang, G., Cao, W., Li, Z., and Sun, Z.: Optical properties
of sea ice in Liaodong Bay, China, J. Geophys. Res.-Oceans,
117, C03007, https://doi.org/10.1029/2010JC006756, 2012.
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is...