Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4483-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a diffuse reflectance probe for in situ measurement of inherent optical properties in sea ice
Christophe Perron
CORRESPONDING AUTHOR
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Christian Katlein
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, 27570, Germany
Simon Lambert-Girard
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Edouard Leymarie
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne
Université, Villefranche-sur-Mer, France
Louis-Philippe Guinard
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Pierre Marquet
CERVO Brain Research Centre, Laval University, Québec city, G1J
2G3, Canada
Centre d'optique, photonique et laser, Laval University, Québec
city, G1V 0A6, Canada
Marcel Babin
Takuvik Joint International Laboratory, Laval University (Canada)–CNRS
(France), Québec city, G1V 0A6, Canada
Related authors
No articles found.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Marc de Vos, Panagiotis Kountouris, Lasse Rabenstein, John Shears, Mira Suhrhoff, and Christian Katlein
Hist. Geo Space. Sci., 14, 1–13, https://doi.org/10.5194/hgss-14-1-2023, https://doi.org/10.5194/hgss-14-1-2023, 2023
Short summary
Short summary
Poor visibility on the 3 d prior to the sinking of Sir Ernest Shackleton’s vessel, Endurance, during November 1915, hampered navigator Frank Worsley’s attempts to record its position. Thus, whilst the wreck was located in the Weddell Sea in March 2022, the drift path of Endurance during its final 3 d at the surface remained unknown. We used data from a modern meteorological model to reconstruct possible trajectories for this unknown portion of Endurance’s journey.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Anna J. Crawford, Derek Mueller, Gregory Crocker, Laurent Mingo, Luc Desjardins, Dany Dumont, and Marcel Babin
The Cryosphere, 14, 1067–1081, https://doi.org/10.5194/tc-14-1067-2020, https://doi.org/10.5194/tc-14-1067-2020, 2020
Short summary
Short summary
Large tabular icebergs (
ice islands) are symbols of climate change as well as marine hazards. We measured thickness along radar transects over two visits to a 14 km2 Arctic ice island and left automated equipment to monitor surface ablation and thickness over 1 year. We assess variation in thinning rates and calibrate an ice–ocean melt model with field data. Our work contributes to understanding ice island deterioration via logistically complex fieldwork in a remote environment.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Gauthier Verin, Florent Dominé, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-113, https://doi.org/10.5194/tc-2019-113, 2019
Publication in TC not foreseen
Short summary
Short summary
The results of two sampling campaigns conducted on landfast sea ice in Baffin Bay show that the melt season can be divided into four main phases during which surface albedo and snow properties show distinct signatures. A radiative transfer model was used to successfully reconstruct the albedo from snow properties. This modeling work highlights that only little changes on the very surface of the snowpack are able to dramatically change the albedo, a key element for the energy budget of sea ice.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Martí Galí, Maurice Levasseur, Emmanuel Devred, Rafel Simó, and Marcel Babin
Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, https://doi.org/10.5194/bg-15-3497-2018, 2018
Short summary
Short summary
We developed a new algorithm to estimate the sea-surface concentration of dimethylsulfide (DMS) using satellite data. DMS is a gas produced by marine plankton that, once emitted to the atmosphere, plays a key climatic role by seeding cloud formation. We used the algorithm to produce global DMS maps and also regional DMS time series. The latter suggest that DMS can vary largely from one year to another, which should be taken into account in atmospheric studies.
Vincent Taillandier, Thibaut Wagener, Fabrizio D'Ortenzio, Nicolas Mayot, Hervé Legoff, Joséphine Ras, Laurent Coppola, Orens Pasqueron de Fommervault, Catherine Schmechtig, Emilie Diamond, Henry Bittig, Dominique Lefevre, Edouard Leymarie, Antoine Poteau, and Louis Prieur
Earth Syst. Sci. Data, 10, 627–641, https://doi.org/10.5194/essd-10-627-2018, https://doi.org/10.5194/essd-10-627-2018, 2018
Short summary
Short summary
We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats.
Vincent Le Fouest, Atsushi Matsuoka, Manfredi Manizza, Mona Shernetsky, Bruno Tremblay, and Marcel Babin
Biogeosciences, 15, 1335–1346, https://doi.org/10.5194/bg-15-1335-2018, https://doi.org/10.5194/bg-15-1335-2018, 2018
Short summary
Short summary
Climate warming could enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers. We show that tDOC concentrations simulated by an ocean–biogeochemical model in the Canadian Beaufort Sea compare favorably with their satellite counterparts. Over spring–summer, riverine tDOC contributes to 35 % of primary production and an equivalent of ~ 10 % of tDOC is exported westwards with the potential for fueling the biological production of the eastern Alaskan nearshore waters.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017, https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Short summary
In the public debate, increasing sea ice extent in the Antarctic is often highlighted as counter-indicative of global warming. Here we show that the slight increases in Antarctic sea ice extent are not able to counter Arctic losses. Using bipolar satellite observations, we demonstrate that even in the Antarctic polar ocean solar shortwave energy absorption is increasing in accordance with strongly increasing shortwave energy absorption in the Arctic Ocean rather than compensating Arctic losses.
J.-C. Miquel, B. Gasser, J. Martín, C. Marec, M. Babin, L. Fortier, and A. Forest
Biogeosciences, 12, 5103–5117, https://doi.org/10.5194/bg-12-5103-2015, https://doi.org/10.5194/bg-12-5103-2015, 2015
Short summary
Short summary
POC fluxes obtained in the Eastern Beaufort Sea in August 2009 from drifting sediment traps were low (1-15 mg C m-2d-1), compared to long-term data which show higher but variable fluxes (10-40 mg C m-2d-1).
Composition of sinking particles, especially faecal pellets, highlighted the role of the zooplankton community and its trophic structure in the transition of carbon from the productive surface zone to the deep ocean. Carbon flux at this season results from a heterotrophic driven ecosystem.
D. Doxaran, E. Devred, and M. Babin
Biogeosciences, 12, 3551–3565, https://doi.org/10.5194/bg-12-3551-2015, https://doi.org/10.5194/bg-12-3551-2015, 2015
Short summary
Short summary
Eleven years (2003-2013) of satellite data were processed to observe the variations in suspended particulate matter concentrations at the mouth of the Mackenzie River and estimate the fluxes exported into the Canadian Arctic Ocean.
Results show that these concentrations at the river mouth, in the delta zone and in the river plume have increased by 46%, 71% and 33%, respectively, since 2003. This corresponds to a more than 50% increase in particulate export from the river into the Beaufort Sea.
M. Fernández-Méndez, C. Katlein, B. Rabe, M. Nicolaus, I. Peeken, K. Bakker, H. Flores, and A. Boetius
Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, https://doi.org/10.5194/bg-12-3525-2015, 2015
Short summary
Short summary
Photosynthetic production in the central Arctic Ocean is controlled by light availability below the ice, nitrate and silicate concentrations in the upper ocean, and the role of sub-ice algae that contributed up to 60% to primary production in summer 2012 during the record sea-ice minimum. As sea ice decreases, an overall change in Arctic PP would be foremost related to a change in the role of the ice algal production and nutrient availability.
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015, https://doi.org/10.5194/bg-12-3385-2015, 2015
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin
Biogeosciences, 11, 2827–2856, https://doi.org/10.5194/bg-11-2827-2014, https://doi.org/10.5194/bg-11-2827-2014, 2014
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
V. Le Fouest, B. Zakardjian, H. Xie, P. Raimbault, F. Joux, and M. Babin
Biogeosciences, 10, 4785–4800, https://doi.org/10.5194/bg-10-4785-2013, https://doi.org/10.5194/bg-10-4785-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
M. Ardyna, M. Babin, M. Gosselin, E. Devred, S. Bélanger, A. Matsuoka, and J.-É. Tremblay
Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, https://doi.org/10.5194/bg-10-4383-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
G. Song, H. Xie, S. Bélanger, E. Leymarie, and M. Babin
Biogeosciences, 10, 3731–3748, https://doi.org/10.5194/bg-10-3731-2013, https://doi.org/10.5194/bg-10-3731-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
Y. Huot, M. Babin, and F. Bruyant
Biogeosciences, 10, 3445–3454, https://doi.org/10.5194/bg-10-3445-2013, https://doi.org/10.5194/bg-10-3445-2013, 2013
A. Forest, M. Babin, L. Stemmann, M. Picheral, M. Sampei, L. Fortier, Y. Gratton, S. Bélanger, E. Devred, J. Sahlin, D. Doxaran, F. Joux, E. Ortega-Retuerta, J. Martín, W. H. Jeffrey, B. Gasser, and J. Carlos Miquel
Biogeosciences, 10, 2833–2866, https://doi.org/10.5194/bg-10-2833-2013, https://doi.org/10.5194/bg-10-2833-2013, 2013
M. Nicolaus and C. Katlein
The Cryosphere, 7, 763–777, https://doi.org/10.5194/tc-7-763-2013, https://doi.org/10.5194/tc-7-763-2013, 2013
A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin
Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, https://doi.org/10.5194/bg-10-917-2013, 2013
Cited articles
Arndt, S. and Nicolaus, M.: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice, The Cryosphere, 8, 2219–2233, https://doi.org/10.5194/tc-8-2219-2014, 2014.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine
primary production, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035028,
2008.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., and Bahr, F.:
Massive phytoplankton blooms under Arctic sea ice, Science, 336, 1408–1408,
2012.
Babin, M., Stramski, D., Reynolds, R. A., Wright, V. M., and Leymarie, E.:
Determination of the volume scattering function of aqueous particle
suspensions with a laboratory multi-angle light scattering instrument,
Appl. Optics, 51, 3853–3873, https://doi.org/10.1364/AO.51.003853, 2012.
Bargo, P. R., Prahl, S. A., Goodell, T. T., Sleven, R., Koval, G., Blair,
G., and Jacques, S. L.: In vivo determination of optical properties of
normal and tumor tissue with white light reflectance and an empirical light
transport model during endoscopy, J. Biomed. Optics, 10, 034018, https://doi.org/10.1117/1.1921907,
2005.
Bevilacqua, F.: Local optical characterization of biological tissues in vitro and in vivo, PhD Thesis,
École polytechnique fédérale de Lausanne, Lausanne, Thesis#1781, 1998.
Bevilacqua, F. and Depeursinge, C.: Monte Carlo study of diffuse
reflectance at source–detector separations close to one transport mean free
path, JOSA A, 16, 2935–2945, 1999.
Bigio, I. J. and Mourant, J. R.: Ultraviolet and visible spectroscopies for
tissue diagnostics: fluorescence spectroscopy and elastic-scattering
spectroscopy, Phys. Med. Biol., 42, 803–814, 1997.
Bodenschatz, N., Krauter, P., Liemert, A., and Kienle, A.: Quantifying phase
function influence in subdiffusively backscattered light, J.
Biomed. Optics, 21, 035002, https://doi.org/10.1117/1.JBO.21.3.035002, 2016.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by a Sphere, in: Absorption and
Scattering of Light by Small Particles, Wiley, 82–129,
https://doi.org/10.1002/9783527618156, 1998.
Briegleb, P. and Light, B.: A Delta-Eddington mutiple scattering
parameterization for solar radiation in the sea ice component of the
community climate system model, Technical report, University Corporation for Atmospheric Research,
Boulder, Colorado, https://doi.org/10.5065/D6B27S71, 2007.
Brown, J. Q., Vishwanath, K., Palmer, G. M., and Ramanujam, N.: Advances in
quantitative UV-visible spectroscopy for clinical and pre-clinical
application in cancer, Curr. Opin. Biotech., 20, 119–131, 2009.
Comiso, J. C.: Large decadal decline of the Arctic multiyear ice cover,
J. Climate, 25, 1176–1193, 2012.
Ehn, J., Papakyriakou, T., and Barber, D.: Inference of optical properties
from radiation profiles within melting landfast sea ice, J.
Geophys. Res.-Oceans, 113, C09024, https://doi.org/10.1029/2007JC004656, 2008a.
Ehn, J. K., Mundy, C., and Barber, D. G.: Bio-optical and structural
properties inferred from irradiance measurements within the bottommost
layers in an Arctic landfast sea ice cover, J. Geophys. Res.-Oceans, 113, C03S03, https://doi.org/10.1029/2007JC004194, 2008b.
Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., and Boetius, A.: Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012, Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, 2015.
Grenfell, T. C.: A theoretical model of the optical properties of sea ice in
the visible and near infrared, J. Geophys. Res.-Oceans, 88,
9723–9735, 1983.
Grenfell, T. C.: A radiative transfer model for sea ice with vertical
structure variations, J. Geophys. Res.-Oceans, 96,
16991–17001, 1991.
Grenfell, T. C. and Hedrick, D.: Scattering of visible and near infrared
radiation by NaCl ice and glacier ice, Cold Reg. Sci. Technol.,
8, 119–127, 1983.
Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J. L., and
Rigor, I.: Reduced ice thickness in Arctic Transpolar Drift favors rapid ice
retreat, Geophys. Res. Lett., 35, L17501, https://doi.org/10.1029/2008GL034457, 2008.
Hamre, B., Winther, J. G., Gerland, S., Stamnes, J. J., and Stamnes, K.:
Modeled and measured optical transmittance of snow-covered first-year sea
ice in Kongsfjorden, Svalbard, J. Geophys. Res.-Oceans, 109, C10006, https://doi.org/10.1029/2003JC001926,
2004.
Hecht, E. and Zajac, A.: Optics, addison-wesley, Reading, Mass, 19872,
350–351, 1974.
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.:
Improved sea ice shortwave radiation physics in CCSM4: The impact of melt
ponds and aerosols on Arctic sea ice, J. Climate, 25, 1413–1430,
2012.
Kadhim, R. G.: Study of Some Optical Properties of Polystyrene-Copper
Nanocomposite Films, World Scientific News, Poland, 14–25, 2016.
Katlein, C., Nicolaus, M., and Petrich, C.: The anisotropic scattering
coefficient of sea ice, J. Geophys. Res.-Oceans, 119,
842–855, 2014.
Katlein, C., Valcic, L., Lambert-Girard, S., and Hoppmann, M.: New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements, The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, 2021.
Kienle, A., Forster, F. K., and Hibst, R.: Influence of the phase function
on determination of the optical properties of biological tissue by spatially
resolved reflectance, Optics Lett., 26, 1571–1573, 2001.
Kim, A., Roy, M., Dadani, F., and Wilson, B. C.: A fiberoptic reflectance
probe with multiple source-collector separations to increase the dynamic
range of derived tissue optical absorption and scattering coefficients,
Optics Express, 18, 5580–5594, 2010.
Kwok, R., Cunningham, G., Wensnahan, M., Rigor, I., Zwally, H., and Yi, D.:
Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,
J. Geophys. Res.-Oceans, 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
Leymarie, E., Doxaran, D., and Babin, M.: Uncertainties associated to
measurements of inherent optical properties in natural waters, Appl.
Optics, 49, 5415–5436, 2010.
Light, B., Maykut, G., and Grenfell, T.: Effects of temperature on the
microstructure of first-year Arctic sea ice, J. Geophys.
Res.-Oceans, 108, 3051, https://doi.org/10.1029/2001JC000887, 2003a.
Light, B., Maykut, G., and Grenfell, T.: A two-dimensional Monte Carlo model
of radiative transfer in sea ice, J. Geophys. Res.-Oceans,
108, 3219, https://doi.org/10.1029/2002JC001513, 2003b.
Light, B., Maykut, G., and Grenfell, T.: A temperature-dependent,
structural-optical model of first-year sea ice, J. Geophys.
Res.-Oceans, 109, C06013, https://doi.org/10.1029/2003JC002164, 2004.
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and absorption
of solar radiation by Arctic sea ice during the melt season, J.
Geophys. Res.-Oceans, 113, C03023, https://doi.org/10.1029/2006JC003977, 2008.
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.:
Optical properties of melting first-year Arctic sea ice, J.
Geophys. Res.-Oceans, 120, 7657–7675, 2015.
Maffione, R. A., Voss, J. M., and Mobley, C. D.: Theory and measurements of
the complete beam spread function of sea ice, Limnol. Oceanogr.,
43, 34–43, 1998.
Marks, A. A., Lamare, M. L., and King, M. D.: Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison, The Cryosphere, 11, 2867–2881, https://doi.org/10.5194/tc-11-2867-2017, 2017.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys.
Res.-Oceans, 114, C12024, https://doi.org/10.1029/2009JC005436, 2009.
Maslanik, J., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501, https://doi.org/10.1029/2007GL032043, 2007.
Massicotte, P., Bécu, G., Lambert-Girard, S., Leymarie, E., and Babin,
M.: Estimating underwater light regime under spatially heterogeneous sea ice
in the Arctic, Appl. Sci., 8, 2693, https://doi.org/10.3390/app8122693, 2018.
Mobley, C., Boss, E., and Roesler, C.: Ocean optics web book, available at: http://www.oceanopticsbook.info (last access: 24 March 2021), 2010.
Mobley, C. D.: Modeling of Optical Beam Spread in Sea Ice, SEQUOIA
SCIENTIFIC INC MERCER ISLAND, WA, 1998.
Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G. W., Morel,
A., Reinersman, P., Stamnes, K., and Stavn, R. H.: Comparison of numerical
models for computing underwater light fields, Appl. Optics, 32, 7484–7504,
1993.
Mobley, C. D., Cota, G. F., Grenfell, T. C., Maffione, R. A., Pegau, W. S.,
and Perovich, D. K.: Modeling light propagation in sea ice, IEEE
T. Geosci. Remote, 36, 1743–1749, 1998.
Nghiem, S., Rigor, I., Perovich, D., Clemente-Colón, P., Weatherly, J.,
and Neumann, G.: Rapid reduction of Arctic perennial sea ice, Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138, 2007.
Nicolaus, M., Petrich, C., Hudson, S. R., and Granskog, M. A.: Variability of light transmission through Arctic land-fast sea ice during spring, The Cryosphere, 7, 977–986, https://doi.org/10.5194/tc-7-977-2013, 2013.
Perovich, D. K. and Gow, A. J.: A statistical description of the
microstructure of young sea ice, J. Geophys. Res.-Oceans,
96, 16943–16953, 1991.
Perovich, D. K. and Polashenski, C.: Albedo evolution of seasonal Arctic
sea ice, Geophys. Res. Lett., 39, L08501, https://doi.org/10.1029/2012GL051432, 2012.
Perron, C., Katlein, C., Lambert-Girard, S., Leymarie, E., Guinard, L.-P.,
Marquet, P., and Babin, M.: Dataset and code of Development of a diffuse
reflectance probe for in situ measurement of inherent optical properties in
sea ice, Zenodo [data set], https://doi.org/10.5281/zenodo.5277946, 2021.
Picard, G., Libois, Q., and Arnaud, L.: Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow, The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, 2016.
Price, P. and Bergström, L.: Enhanced Rayleigh scattering as a
signature of nanoscale defects in highly transparent solids, Philos.
Mag. A, 75, 1383–1390, 1997.
Rodriguez-Diaz, E., Bigio, I. J., and Singh, S. K.: Integrated optical tools
for minimally invasive diagnosis and treatment at gastrointestinal
endoscopy, Robot. Com.-Int. Manuf., 27, 249–256,
2011.
Rösel, A. and Kaleschke, L.: Exceptional melt pond occurrence in the
years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite
data, J. Geophys. Res.-Oceans, 117, C05018, https://doi.org/10.1029/2011JC007869, 2012.
Schwarz, R. A., Gao, W., Daye, D., Williams, M. D., Richards-Kortum, R., and
Gillenwater, A. M.: Autofluorescence and diffuse reflectance spectroscopy of
oral epithelial tissue using a depth-sensitive fiber-optic probe, Appl.
Optics, 47, 825–834, 2008.
Serreze, M. C., Holland, M. M., and Stroeve, J.: Perspectives on the Arctic's Shrinking Sea-Ice
Cover, Science, 315, 1533–1536, https://doi.org/10.1126/science.1139426, 2007.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509, 1988.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The
Arctic's rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012.
Thueler, P., Charvet, I., Bevilacqua, F., Ghislain, M. S., Ory, G., Marquet,
P., Meda, P., Vermeulen, B., and Depeursinge, C.: In vivo endoscopic tissue
diagnostics based on spectroscopic absorption, scattering, and phase
function properties, J. Biomed. Optics, 8, 495–503, 2003.
Trodahl, H., Buckley, R., and Brown, S.: Diffusive transport of light in sea
ice, Appl. Optics, 26, 3005–3011, 1987.
van de Hulst, H.: Chapter 14.1 in Multiple Light Scattering, vol. 1, Part
III, Academic Press Inc., London, 477–492, 1980.
van de Hulst, H. C. and Christoffel, H.: Multiple light scattering: tables,
formulas and applications, Academic Press, New York, 1980.
Wyman, D. R., Patterson, M. S., and Wilson, B. C.: Similarity relations for
anisotropic scattering in Monte Carlo simulations of deeply penetrating
neutral particles, J. Comput. Phys., 81, 137–150, 1989.
Xu, Z., Yang, Y., Wang, G., Cao, W., Li, Z., and Sun, Z.: Optical properties
of sea ice in Liaodong Bay, China, J. Geophys. Res.-Oceans,
117, C03007, https://doi.org/10.1029/2010JC006756, 2012.
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is...