Articles | Volume 15, issue 6
The Cryosphere, 15, 3007–3012, 2021
https://doi.org/10.5194/tc-15-3007-2021
The Cryosphere, 15, 3007–3012, 2021
https://doi.org/10.5194/tc-15-3007-2021

Brief communication 29 Jun 2021

Brief communication | 29 Jun 2021

Brief communication: Growth and decay of an ice stupa in alpine conditions – a simple model driven by energy-flux observations over a glacier surface

Johannes Oerlemans et al.

Related authors

Modelling the mass budget and future evolution of Tunabreen, central Spitsbergen
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-155,https://doi.org/10.5194/tc-2021-155, 2021
Preprint under review for TC
Short summary
Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
Johannes Oerlemans
The Cryosphere, 12, 3001–3015, https://doi.org/10.5194/tc-12-3001-2018,https://doi.org/10.5194/tc-12-3001-2018, 2018
Short summary
Numerical simulations of glacier evolution performed using flow-line models of varying complexity
Antonija Rimac, Sharon van Geffen, and Johannes Oerlemans
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-67,https://doi.org/10.5194/gmd-2017-67, 2017
Revised manuscript not accepted
Short summary
A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
J. Oerlemans and W. J. J. van Pelt
The Cryosphere, 9, 767–779, https://doi.org/10.5194/tc-9-767-2015,https://doi.org/10.5194/tc-9-767-2015, 2015
Short summary
Self-regulation of ice flow varies across the ablation area in south-west Greenland
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015,https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary

Cited articles

Berrizbeitia, S. E., Cago, E. J., and Muneer, T.: Empirical models of the estimation of solar sky-diffusive radiation. A review and experimental analysis, Energies, 13, 701, https://doi.org/10.3390/en13030701, 2020. 
Garratt, J.: The Atmospheric Boundary Layer, Cambridge University Press, 316 pp., ISBN 0521380529, 1992. 
Li, D. H. W., Lou, S. W., and Lam, J. C.: An analysis of global, direct and diffuse solar radiation, Energy Procedia, 75, 388–393, 2015. 
Nüsser, M., Dame, J., Kraus, B., Baghel, R., and Schmidt, S.: Socio-hydrology of artificial glaciers in Ladakh, India: assessing adaptive strategies in a changing cryosphere, Reg. Environ. Change, 19, 1327–1337, https://doi.org/10.1007/s10113-018-1372-0, 2018. 
Oerlemans, J., Giesen, R. H., and Van den Broeke, M. R.: Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J. Glaciol., 55, 729–736, 2009. 
Download
Short summary
An ice stupa is a cone-like ice mass storing water in the form of ice. By sprinkling water on the cone during cold conditions an ice stupa can grow to achieve an appreciable mass (typically 1 × 106 kg) and release this in spring and summer in the form of meltwater. In Ladakh ice stupas are currently used more and more for irrigation purposes. We present a simple model with which the rate of growth and decay of a stupa can be calculated for given climatic conditions.