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Abstract. We present a simple model to calculate the evo-
lution of an ice stupa (artificial ice reservoir). The model is
formulated for a cone geometry and driven by energy balance
measurements over a glacier surface for a 5-year period. An
“exposure factor” is introduced to deal with the fact that an
ice stupa has a very rough surface and is more exposed to
wind than a flat glacier surface. The exposure factor enhances
the turbulent fluxes.

For characteristic alpine conditions at 2100 m, an ice stupa
may reach a volume of 200 to 400 m3 in early April. We show
sensitivities of ice stupa size to temperature changes and ex-
posure factor. The model may also serve as an educational
tool, with which the effects of snow cover, switching off wa-
ter during daytime, different starting dates, switching off wa-
ter during high wind speeds, etc. can easily be evaluated.

1 Introduction

Ice stupas (Fig. 1), also referred to as artificial ice reservoirs
(AIRs), are used more and more as a means to store water in
the form of ice (Nüsser et al., 2018). In Ladakh, India, engi-
neer Sonam Wangchuk initiated and developed the use of ice
stupas to provide water for irrigation purposes in spring and
early summer. The ice stupas grow in winter by sprinkling
water on the growing ice structure, and they melt in spring
and summer to deliver water; a typical turnover volume is up

to 1× 106 L. Ice stupas also form interesting touristic attrac-
tions with a distinct and special artistic flavour. They come
in the same class as ice sculptures, which are popular in all
regions of the world that have a cold winter.

The possibility to grow ice stupas of appreciable size de-
pends on the meteorological conditions and the availability
of water. When a surface has a negative energy balance and
water is sprayed on it, ice will form (a well-known technique
to make skating rinks). The more effective the latent heat of
fusion can be removed by contact with cold air and effective
emittance of longwave radiation, the faster the ice layer may
grow. In spring and summer incoming solar radiation will
dominate and the ice stupa will lose mass.

In this note we present a model of ice stupa growth and
decay, based on a simple consideration of the total energy
budget, and driven by energy flux observations over a glacier
surface (half hourly observations over a 5-year period). We
believe that the energy balance of a glacier surface and of an
ice stupa have much in common and therefore consider this
data set as ideal for a first study. The focus is on alpine con-
ditions at a typical height of 2100 m a.s.l. The purpose of this
study is to obtain first-order estimates of how fast an ice stupa
may grow and melt and what processes are most important.
We emphasize that in this note the focus is on the energetics
of the ice stupa system, not on the technical aspects that have
to be dealt with in constructing an ice stupa.
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Figure 1. (a) Ice stupa in Ladakh, India (courtesy of Sonam Wangchuk). (b) Early growing stage of ice stupa with inner structure in Val
Roseg, Switzerland (courtesy of Conradin Clavuot). (c) Simple geometrical representation. The ice stupa can have an inner structure (brown).
The dashed lines illustrate the growth of an ice stupa from a base with a constant radius.

2 Geometry

Ice stupas have different and often complex shapes. The cone
is probably the most appropriate simple geometric shape to
represent an ice stupa (Fig. 1), but alternatively a dome (half
sphere) could also be considered.

The geometric characteristics of a cone with radius r and
height h are

Area of base: πr2, (1a)

Lateral area: πr
√
r2+h2, (1b)

Volume: πr2h/3. (1c)

It is useful to introduce a shape parameter s = h/r . The
volume can then also be written as

V = πh3/3s2. (2)

So for a given volume the height of the ice stupa can be cal-
culated from

h=

{
3
π
V s2

}1/3

. (3)

In this note we will consider two cases: (i) the shape factor
is constant during growth and decay, and (ii) the ice stupa
grows upward from a base with a fixed radius, implying that
the shape factor gradually increases. The first case may be
more appropriate when an inner structure is used or when
water supply is by varying sprinkler properties or even man-
ually. Case (ii) describes better the situation when a fixed
spray radius is maintained during the growth phase.

3 Energy exchange

Ice stupas exchange energy with the surroundings by ab-
sorbing and reflecting solar radiation, absorbing and emit-
ting longwave (terrestrial) radiation, and by turbulent fluxes

of sensible and latent heat. Because of the complex shape of
an ice stupa, as compared to a horizontal ice/snow surface, it
is hard to describe these processes in detail. However, some
simplifying assumptions may help to arrive at reasonable ap-
proximations.

We use 5 years of energy balance measurements with an
automatic weather station (AWS) on the Vadret da Morter-
atsch (Morteratsch Glacier) (e.g. Oerlemans et al., 2009),
which was located at an elevation of about 2280 m a.s.l. The
surface energy flux is written as

energy flux= Sin− Sout+Lin−Lout+H +G. (4)

Sin stands for solar radiation, Sout for reflected solar radia-
tion, Lin for incoming longwave radiation, Lout for emitted
longwave radiation,H for the total turbulent heat flux, andG
for the ground heat flux (conduction from or into the surface
layer – generally small compared to the other components).
These quantities are normally expressed in W m−2. So the
energy flux is positive when directed towards the surface. A
positive energy flux will be used for melting of ice or snow;
when the energy flux is negative freezing of water can take
place (when available).

We now discuss how these measurements over (almost)
flat terrain can be applied to an ice stupa. We first deal
with solar radiation and consider the direct part (fraction q)
and diffuse part (fraction 1− q) separately. Although the ra-
tio of direct to diffuse solar radiation depends strongly on
cloud conditions, outside subtropical climate zones where
low cloudiness prevails the components are typically of the
same order of magnitude (e.g. Li et al., 2015; Berrizbeitia et
al., 2020).

With respect to direct solar radiation, the solar beam can
be considered to have a vertical component, impinging on
the horizontal surface (base of the ice stupa), and a hori-
zontal component impinging on the vertical cross section (a
triangle). Measurements over a flat surface, like those from
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the glacier AWS, thus underestimate the solar radiation in-
tercepted by an ice stupa. A correction factor f is therefore
needed with which the direct radiation as measured by the
AWS has to be multiplied. This factor may be large for a low
sun, but in alpine conditions where there is always significant
shading by the surroundings this situation is rarely found. A
simple analysis shows that, for a shape factor of s = 2, f
varies from 2.5 for a solar elevation of 20◦ to about 1.2 for a
solar elevation of 60◦. To account for the fact that the correc-
tion factor should be 1 for a flat surface and increase with the
shape factor, we use (note that f and s are dimensionless)

f = 1+ s/4. (5)

For the diffuse part of the solar radiation, illumination is on
all sides and the relevant area therefore is the lateral area as
given in Eq. (1b). Therefore the total amount of absorbed
solar radiation per unit of time can be estimated as (in J s−1)

Fsol = f q (Sin− Sout)πr
2
+(1−q)(Sin− Sout)πr

√
r2+h2.

(6)

Alternatively, one may wish to prescribe the albedo α sepa-
rately, i.e.

Fsol = f qSin(1−α)πr2
+(1−q)Sin(1−α)πr

√
r2+h2. (7)

For the longwave radiation and turbulent exchange, the ex-
posed surface is also the lateral area. The longwave radiation
balance then becomes

Flw = (Lin−Lout)πr
√
r2+h2. (8)

The turbulent heat fluxes depend on the roughness and ex-
posure of the surface. Since we do not calculate the surface
(skin) temperature, we simply assume that it is close to the
melting point. The sensible and latent heat input are calcu-
lated using the well-known bulk transfer equations (e.g. Gar-
ratt, 1992):

FH = µρcpCU (T − Ts)πr
√
r2+h2 (9)

FL = 0.623µρLvCUp
−1 (es− e)πr

√
r2+h2. (10)

Here C is the bulk turbulent exchange coefficient over a flat
surface, T is the air temperature, Ts is the surface temperature
(set to the melting point), ρ is air density, Lv is the latent
heat of sublimation (2 830 000 J kg−1), cp is the specific heat
capacity of air (1004 J kg−1 K−1), e is the vapour pressure, es
is the saturation vapour pressure, p is atmospheric pressure,
and U is the wind speed. The total turbulent heat flux H is
just the sum of the fluxes of sensible and latent heat.

The dimensionless parameter µ is an “exposure/roughness
parameter” that deals with the fact that an ice stupa has a
rough appearance and forms an obstacle to the wind regime.
So µ is expected to be larger than 1 and could perhaps have a

value of 2 or more. For a larger shape parameter the exposure
will be larger; we therefore use

µ= 1+ s/2. (11)

Equation (9) is no more than an educated guess. It is hard
to base estimates of this parameter on information in the lit-
erature. Many studies have been carried out on the effect of
obstacles on atmospheric boundary layer flow (e.g. trees, but
also buildings), but always in an ensemble setting, looking at
the bulk effect of an ensemble of obstacles. We deal with a
case of a single obstacle in open terrain, and we are confident
that the roughness of the surface and the exposure will lead
to larger turbulent fluxes. Given the uncertainty in the expo-
sure parameter, later on we will present results for different
values.

When water availability is unlimited, the mass gain or loss
is given by

dM/dt = (Fsol+Flw+FL+FH )/Lm+FL/Lv. (12)

M is the mass of the ice stupa and Lm is the latent heat
of melting/fusion (334 000 J kg−1). For typical alpine condi-
tions the last term in Eq. (10) is normally quite small. Since
the volume of the ice stupa is simply related to the mass
(V =M/ρice), the height of the stupa can directly be calcu-
lated for a given shape factor (case i) or given radius (case ii).

4 Application to the Oberengadin region, Switzerland

Over the past few years, several ice stupas have been con-
structed in the Oberengadin, southeast Switzerland. In the
winter of 2017/2018 an ice stupa was constructed in the Val
Roseg at 2000 m a.s.l. (Fig. 1, maximum height about 12 m).
In the winter of 2018/2019 several smaller ice stupas (height
about 5 m) were built at a site in the Val Morteratsch at about
1900 m a.s.l. Since February 2021 a test site for ice stupa con-
struction has been in operation at the Diavolezza Talstation
at an altitude of 2080 m a.s.l.

To obtain first-order estimates of growth and decay rates
for typical climatic conditions in the Oberengadin, we
used the energy balance measurements from the automatic
weather station on the Vadret da Morteratsch as a proxy
for this high alpine region. During the period 1 July 2007–
30 September 2012, the AWS on the Vadret da Morteratsch
was located at an altitude of about 2280 m a.s.l. and has pro-
duced a unique data set without any gaps. The annual melt at
the AWS location was between 5 and 7 m of ice. With a focus
on the Diavolezza site, which is at an altitude of 2080 m a.s.l.,
a temperature correction of +1.3 K was applied to the input
data (based on a standard atmospheric temperature lapse rate
of 0.0065 K m−1). We note that all the locations mentioned
above are within a distance of 10 km from each other (inter-
active map to find locations: https://map.wanderland.ch, last
access: 25 June 2021).
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Figure 2. Energy balance components as measured by the AWS on the Vadret da Morteratsch for January 2008. Net solar radiation in red,
net longwave radiation flux in black, turbulent sensible heat flux in blue, turbulent latent heat flux in green.

Figure 2 shows an example of data from the AWS. The
data have been stored as 30 min averages. The turbulent heat
fluxes have been calculated from the wind speed, air tem-
perature, and humidity, where the turbulent exchange coeffi-
cient C was used as a tuning parameter (to obtain the correct
amount of observed ice melt over a 5-year period). The ex-
ample shown is just for one relatively sunny winter month
(January 2008). Note the large degree of compensation be-
tween net solar radiation and net longwave radiation – the
well-known effect in clear sky conditions on the radiation
balance. As a consequence, the turbulent heat fluxes are more
important than it appears at first sight.

Figure 3 summarizes model results in terms of ice stupa
height and volume for 5 years. In all calculations we used
q = 0.5 and α = 0.6. It has been assumed that water avail-
ability is unlimited. In the first example (Fig. 3a) we show
the evolution of an ice stupa on a 5 m high inner structure.
In the model this is simply achieved by setting h= 5 m at
the start of the integration and correct the total volume af-
terwards for the volume of the inner structure. The use of
an inner structure has the advantage that the freezing area is
larger from the beginning and that the typical ice stupa shape
is achieved relatively fast. The shape factor has been taken
constant and equal to 2. We see some differences among the
years: the maximum ice stupa height varies between 10 and
12 m and is normally reached in early April. For the last 2
years the simulated ice stupa volume is smaller mainly be-
cause of slightly higher temperatures and larger insolation.
The decay of the ice stupa is hardly faster than the growth.
A faster decay would occur if the albedo were not constant
but would be prescribed to decrease during the melt phase
(which is more realistic in most cases).

Figure 3b shows a comparison between the fixed-shape
simulation just described and a fixed-radius simulation with
r = 7 m. This value of the radius was chosen to obtain more
or less the same ice stupa volume. It can be seen that in the
first stage of growth the volume for the fixed-radius case in-

creases somewhat faster than for the fixed-shape case. Nev-
ertheless, the differences in the curves are not large and point
to the fact that in the end the energy constraints determine
how much ice can form (in the case of unlimited water avail-
ability).

Because the value of the exposure parameter µ is highly
uncertain, we show the sensitivity of the fixed-radius ice
stupa volume to different formulations (Fig. 3c). For µ= 1,
implying that the situation is equivalent to that of a flat sur-
face, the stupa volume is significantly smaller than in the ref-
erence case (µ= 1+s/2). A stronger dependence ofµ on the
shape factor (µ= 1+s) increases the stupa volume by about
25 %. For a larger shape factor, the mostly negative turbulent
fluxes in winter increase, and this is not compensated by a
larger interception of solar radiation.

In the simulations discussed so far the ice stupas disappear
in summer. One may ask the question under what conditions
an ice stupa may survive the summer and grow to a larger size
in the next winter. A possible way to study this question is to
decrease the air temperature uniformly (temperature change
1T ). This will imply a stronger negative sensible heat flux in
winter and a weaker positive heat flux in summer, thus accel-
erating stupa growth and slowing down its decay. We found
a break-even point for 1T ≈−2 K (Fig. 3d). For larger neg-
ative values of 1T the ice stupa does not disappear in sum-
mer and keeps growing from year to year. For 1T ≈−3 K,
the maximum volume in the fifth year (∼ 2400 m3) is about
4 times that in the first year (∼ 600 m3). We note that in this
calculation the effect of lower temperatures on the net long-
wave radiation balance has not been taken into account, be-
cause the radiation fluxes were prescribed according to the
AWS observations. It is likely that we therefore underesti-
mate the effect of lower air temperature.
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Figure 3. Calculated evolution of ice stupa for the case of unlimited water supply for five winters. (a) Height and volume for the case with
an inner structure (height 5 m) and fixed shape. (b) Volume for the case with an inner structure and the case with a fixed radius (7 m). (c) The
effect of the exposure parameter µ on the volume (fixed radius). (d) The effect of a negative temperature perturbation. For 1T =−3 K the
stupa does not disappear anymore but is growing from year to year (fixed shape).

5 Discussion

The data set used to simulate ice stupa growth and decay
for typical conditions in the Oberengadin is probably quite
appropriate. The setting of the location of the AWS (on the
lower tongue of the Vadret da Morteratsch when it still ex-
isted) and the Diavolezza Talstation are rather similar: the
altitude is about the same, and the valley is relatively wide.
However, differences in the wind statistics are likely to exist,
but they are difficult to assess. The Morteratsch AWS reveals
a steady katabatic (glacier) wind most of the time, whereas
the Diavolezza Talstation is more exposed to the larger-scale
wind regime. It seems likely that the average wind speed
at the Diavolezza Talstation is somewhat higher than at the
AWS site, where the 5-year average wind speed is 2.8 m s−1.
In contrast, the sites in the Val Roseg and Val Morteratsch
are more sheltered and wind speeds are probably lower.

The examples presented here are best-case scenarios with
respect to ice stupa growth. In practice it is not always pos-
sible to have unlimited water availability, and it may be diffi-
cult to sprinkle the water more or less evenly over the stupa,
especially at higher wind speeds. The choice of the shape of
the ice stupa depends on the sprinkling strategy. It may be
more realistic to describe an ice stupa with different shapes

for the growth phase (e.g. fixed radius) and decay phase (e.g.
constant shape factor). Such an approach can easily be ac-
commodated in the model.

We note that the ice stupa volume calculated here for
alpine conditions at ∼ 2100 m a.s.l. (typically 250 m3) is sig-
nificantly smaller than the volumes obtained in the big ice
stupas in Ladakh. Winter conditions in Ladakh are consider-
ably colder and therefore growth rates can be much larger.

In this exploratory study a solid comparison between ob-
served and simulated stupa sizes was not attempted. How-
ever, we note that the maximum height of the stupa in the
Val Roseg was 12 m, which is in good agreement with the
stupa height shown in Fig. 3a.

The model presented here is simple, basically because we
consider the ice stupa to be a single unit with a surface tem-
perature close to the melting point. As soon as this constraint
is relaxed and the surface temperature of the stupa is con-
sidered to be a dependent variable, the whole procedure be-
comes more complicated, and some processes can be studied
more explicitly. Nevertheless, we believe that the simple ap-
proach presented in this note, which requires no more than
one page of coding, is a useful tool to obtain first-order es-
timates of growth and decay rates under various conditions.
Effects of snow cover, switching off water during daytime,
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switching of water supply for high wind speeds, different
starting dates, differences between warm and cold winters,
etc. can be evaluated. We finally note that the model can eas-
ily be reformulated for another geometry, e.g. a dome.
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