Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-1845-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1845-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Earthwave Ltd, Edinburgh, EH9 3HJ, UK
Noel Gourmelen
Earthwave Ltd, Edinburgh, EH9 3HJ, UK
School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP,
UK
IPGS UMR 7516, Université de Strasbourg, CNRS, Strasbourg,
67000, France
Martin Ewart
Earthwave Ltd, Edinburgh, EH9 3HJ, UK
Stephen Plummer
European Space Agency, ESA-ESTEC, Noordwijk, 2201 AZ, the Netherlands
Viewed
Total article views: 4,965 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jul 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,302 | 1,605 | 58 | 4,965 | 301 | 68 | 71 |
- HTML: 3,302
- PDF: 1,605
- XML: 58
- Total: 4,965
- Supplement: 301
- BibTeX: 68
- EndNote: 71
Total article views: 3,408 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Apr 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,551 | 813 | 44 | 3,408 | 241 | 61 | 63 |
- HTML: 2,551
- PDF: 813
- XML: 44
- Total: 3,408
- Supplement: 241
- BibTeX: 61
- EndNote: 63
Total article views: 1,557 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jul 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
751 | 792 | 14 | 1,557 | 60 | 7 | 8 |
- HTML: 751
- PDF: 792
- XML: 14
- Total: 1,557
- Supplement: 60
- BibTeX: 7
- EndNote: 8
Viewed (geographical distribution)
Total article views: 4,965 (including HTML, PDF, and XML)
Thereof 4,741 with geography defined
and 224 with unknown origin.
Total article views: 3,408 (including HTML, PDF, and XML)
Thereof 3,309 with geography defined
and 99 with unknown origin.
Total article views: 1,557 (including HTML, PDF, and XML)
Thereof 1,432 with geography defined
and 125 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
29 citations as recorded by crossref.
- Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM Y. Fan et al. 10.1017/jog.2022.78
- Glacier Changes in India’s Dhauliganga Catchment over the Past Two Decades N. Ali et al. 10.3390/rs14225692
- A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research A. Yu et al. 10.3390/rs15051425
- Reconstructing GRACE-like time series of high mountain glacier mass anomalies B. Liu et al. 10.1016/j.rse.2022.113177
- Challenges in Understanding the Variability of the Cryosphere in the Himalaya and Its Impact on Regional Water Resources B. Vishwakarma et al. 10.3389/frwa.2022.909246
- Measuring glacier mass changes from space—a review E. Berthier et al. 10.1088/1361-6633/acaf8e
- Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types I. Wieczorek et al. 10.1017/jog.2023.34
- Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations F. Zhao et al. 10.1016/j.rse.2021.112853
- Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay M. Kronenberg et al. 10.5194/tc-16-5001-2022
- Glacier projections sensitivity to temperature-index model choices and calibration strategies L. Schuster et al. 10.1017/aog.2023.57
- Revising supraglacial rock avalanche magnitudes and frequencies in Glacier Bay National Park, Alaska W. Smith et al. 10.1016/j.geomorph.2023.108591
- Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya M. Van Wyk de Vries et al. 10.5194/nhess-22-3309-2022
- Large-Scale Monitoring of Glacier Surges by Integrating High-Temporal- and -Spatial-Resolution Satellite Observations: A Case Study in the Karakoram L. Ke et al. 10.3390/rs14184668
- Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019 B. Rick et al. 10.5194/tc-16-297-2022
- Accelerated glacier mass loss in the southeastern Tibetan Plateau since the 1970s L. Luo et al. 10.1016/j.accre.2023.04.007
- Seasonal Cycles of High Mountain Asia Glacier Surface Elevation Detected by ICESat‐2 Q. Wang & W. Sun 10.1029/2022JD037501
- Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau Q. He et al. 10.3389/feart.2023.1165390
- Glacier Surface Heatwaves Over the Tibetan Plateau W. Chen et al. 10.1029/2022GL101115
- Temporal downscaling of glaciological mass balance using seasonal observations M. Zemp & E. Welty 10.1017/jog.2023.66
- Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia) B. Davies et al. 10.1002/esp.5383
- Glacier Mass Loss Between 2010 and 2020 Dominated by Atmospheric Forcing L. Jakob & N. Gourmelen 10.1029/2023GL102954
- Biogeochemical Dynamics of a Glaciated High‐Latitude Wetland J. Buser‐Young et al. 10.1029/2021JG006584
- CryoSat-2 interferometric mode calibration and validation: A case study from the Austfonna ice cap, Svalbard A. Morris et al. 10.1016/j.rse.2021.112805
- Documenting 20th and 21st century glacier change and landscape evolution with maps and land, aerial, and space-based geospatial imagery in Alaska’s Kenai Mountains B. MOLNIA et al. 10.55779/ng2118
- Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020 I. Otosaka et al. 10.5194/essd-15-1597-2023
- Systematic Errors Observed in CryoSat-2 Elevation Swaths on Mountain Glaciers and Their Implications J. Haacker et al. 10.1109/TGRS.2023.3277277
- Roll Calibration for CryoSat-2: A Comprehensive Approach A. Garcia-Mondéjar et al. 10.3390/rs13020302
- Unchanged frequency and decreasing magnitude of outbursts from ice-dammed lakes in Alaska B. Rick et al. 10.1038/s41467-023-41794-6
- Review article: Earth's ice imbalance T. Slater et al. 10.5194/tc-15-233-2021
26 citations as recorded by crossref.
- Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM Y. Fan et al. 10.1017/jog.2022.78
- Glacier Changes in India’s Dhauliganga Catchment over the Past Two Decades N. Ali et al. 10.3390/rs14225692
- A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research A. Yu et al. 10.3390/rs15051425
- Reconstructing GRACE-like time series of high mountain glacier mass anomalies B. Liu et al. 10.1016/j.rse.2022.113177
- Challenges in Understanding the Variability of the Cryosphere in the Himalaya and Its Impact on Regional Water Resources B. Vishwakarma et al. 10.3389/frwa.2022.909246
- Measuring glacier mass changes from space—a review E. Berthier et al. 10.1088/1361-6633/acaf8e
- Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types I. Wieczorek et al. 10.1017/jog.2023.34
- Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations F. Zhao et al. 10.1016/j.rse.2021.112853
- Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay M. Kronenberg et al. 10.5194/tc-16-5001-2022
- Glacier projections sensitivity to temperature-index model choices and calibration strategies L. Schuster et al. 10.1017/aog.2023.57
- Revising supraglacial rock avalanche magnitudes and frequencies in Glacier Bay National Park, Alaska W. Smith et al. 10.1016/j.geomorph.2023.108591
- Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya M. Van Wyk de Vries et al. 10.5194/nhess-22-3309-2022
- Large-Scale Monitoring of Glacier Surges by Integrating High-Temporal- and -Spatial-Resolution Satellite Observations: A Case Study in the Karakoram L. Ke et al. 10.3390/rs14184668
- Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019 B. Rick et al. 10.5194/tc-16-297-2022
- Accelerated glacier mass loss in the southeastern Tibetan Plateau since the 1970s L. Luo et al. 10.1016/j.accre.2023.04.007
- Seasonal Cycles of High Mountain Asia Glacier Surface Elevation Detected by ICESat‐2 Q. Wang & W. Sun 10.1029/2022JD037501
- Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau Q. He et al. 10.3389/feart.2023.1165390
- Glacier Surface Heatwaves Over the Tibetan Plateau W. Chen et al. 10.1029/2022GL101115
- Temporal downscaling of glaciological mass balance using seasonal observations M. Zemp & E. Welty 10.1017/jog.2023.66
- Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia) B. Davies et al. 10.1002/esp.5383
- Glacier Mass Loss Between 2010 and 2020 Dominated by Atmospheric Forcing L. Jakob & N. Gourmelen 10.1029/2023GL102954
- Biogeochemical Dynamics of a Glaciated High‐Latitude Wetland J. Buser‐Young et al. 10.1029/2021JG006584
- CryoSat-2 interferometric mode calibration and validation: A case study from the Austfonna ice cap, Svalbard A. Morris et al. 10.1016/j.rse.2021.112805
- Documenting 20th and 21st century glacier change and landscape evolution with maps and land, aerial, and space-based geospatial imagery in Alaska’s Kenai Mountains B. MOLNIA et al. 10.55779/ng2118
- Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020 I. Otosaka et al. 10.5194/essd-15-1597-2023
- Systematic Errors Observed in CryoSat-2 Elevation Swaths on Mountain Glaciers and Their Implications J. Haacker et al. 10.1109/TGRS.2023.3277277
3 citations as recorded by crossref.
- Roll Calibration for CryoSat-2: A Comprehensive Approach A. Garcia-Mondéjar et al. 10.3390/rs13020302
- Unchanged frequency and decreasing magnitude of outbursts from ice-dammed lakes in Alaska B. Rick et al. 10.1038/s41467-023-41794-6
- Review article: Earth's ice imbalance T. Slater et al. 10.5194/tc-15-233-2021
Latest update: 07 Dec 2023
Short summary
Glaciers and ice caps are currently the largest contributor to sea level rise. Global monitoring of these regions is a challenging task, and significant differences remain between current estimates. This study looks at glacier changes in High Mountain Asia and the Gulf of Alaska using a new technique, which for the first time makes the use of satellite radar altimetry for mapping ice mass loss over mountain glacier regions possible.
Glaciers and ice caps are currently the largest contributor to sea level rise. Global monitoring...