Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes
Andrea J. Pain
CORRESPONDING AUTHOR
Department of Geological Sciences, University of Florida,
Gainesville, FL 32611, USA
now at: University of Maryland Center for Environmental Science,
Horn Point Lab, Cambridge, MD 21613, USA
Jonathan B. Martin
Department of Geological Sciences, University of Florida,
Gainesville, FL 32611, USA
Ellen E. Martin
Department of Geological Sciences, University of Florida,
Gainesville, FL 32611, USA
Åsa K. Rennermalm
Department of Geography, Rutgers, The State University of New Jersey,
Piscataway NJ 08854, USA
Shaily Rahman
Department of Geological Sciences, University of Florida,
Gainesville, FL 32611, USA
now at: Department of Marine
Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA
Related authors
No articles found.
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
Biogeosciences, 21, 3965–3984, https://doi.org/10.5194/bg-21-3965-2024, https://doi.org/10.5194/bg-21-3965-2024, 2024
Short summary
Short summary
This study examined springs in north central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface waterbodies.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Isatis M. Cintron-Rodriguez, Åsa K. Rennermalm, Susan Kaspari, and Sasha Leidman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-195, https://doi.org/10.5194/tc-2022-195, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow and ice melt driven by solar absorption is enhanced by the presence of light-absorbing particles (LAPs), such as black carbon (BC) and dust. Previous studies have ruled out LAP as an important Greenland's albedo reduction and accelerated mass loss rate factor. However, most simulations only take into consideration LAP direct effects. This study shows that taking into account LAP impact on snow metamorphism leads to albedo reductions 4 to 10 times larger than previously thought.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020, https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Short summary
Understanding of the role of ocean circulation on climate is contingent on the ability to reconstruct its modes and evolution. Here, we show that earth system model simulations of the Late Cretaceous predict major changes in ocean circulation as a result of paleogeographic and gateway evolution. Comparisons of model results with available data compilations demonstrate reasonable agreement but highlight that various plausible theories of ocean circulation change coexist during this period.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Julienne C. Stroeve, John R. Mioduszewski, Asa Rennermalm, Linette N. Boisvert, Marco Tedesco, and David Robinson
The Cryosphere, 11, 2363–2381, https://doi.org/10.5194/tc-11-2363-2017, https://doi.org/10.5194/tc-11-2363-2017, 2017
Short summary
Short summary
As the sea ice has declined strongly in recent years there has been a corresponding increase in Greenland melting. While both are likely a result of changes in atmospheric circulation patterns that favor summer melt, this study evaluates whether or not sea ice reductions around the Greenland ice sheet are having an influence on Greenland summer melt through enhanced sensible and latent heat transport from open water areas onto the ice sheet.
S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman
The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015, https://doi.org/10.5194/tc-9-905-2015, 2015
Related subject area
Discipline: Glaciers | Subject: Biogeochemistry/Biology
Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel
Variation in bacterial composition, diversity, and activity across different subglacial basal ice types
Microbial processes in the weathering crust aquifer of a temperate glacier
Ashley J. Dubnick, Rachel L. Spietz, Brad D. Danielson, Mark L. Skidmore, Eric S. Boyd, Dave Burgess, Charvanaa Dhoonmoon, and Martin Sharp
The Cryosphere, 17, 2993–3012, https://doi.org/10.5194/tc-17-2993-2023, https://doi.org/10.5194/tc-17-2993-2023, 2023
Short summary
Short summary
At the end of an Arctic winter, we found ponded water 500 m under a glacier. We explored the chemistry and microbiology of this unique, dark, and cold aquatic habitat to better understand ecology beneath glaciers. The water was occupied by cold-loving and cold-tolerant microbes with versatile metabolisms and broad habitat ranges and was depleted in compounds commonly used by microbes. These results show that microbes can become established beneath glaciers and deplete nutrients within months.
Shawn M. Doyle and Brent C. Christner
The Cryosphere, 16, 4033–4051, https://doi.org/10.5194/tc-16-4033-2022, https://doi.org/10.5194/tc-16-4033-2022, 2022
Short summary
Short summary
Here we examine the diversity and activity of microbes inhabiting different types of basal ice. We combine this with a meta-analysis to provide a broad overview of the specific microbial lineages enriched in a diverse range of frozen environments. Our results indicate debris-rich basal ice horizons harbor microbes that actively conduct biogeochemical cycling at subzero temperatures and reveal similarities between the microbiomes of basal ice and other permanently frozen environments.
Brent C. Christner, Heather F. Lavender, Christina L. Davis, Erin E. Oliver, Sarah U. Neuhaus, Krista F. Myers, Birgit Hagedorn, Slawek M. Tulaczyk, Peter T. Doran, and William C. Stone
The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018, https://doi.org/10.5194/tc-12-3653-2018, 2018
Short summary
Short summary
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing meltwater and provides light that fuels an ecosystem within the ice. Our analysis documents a near-surface photic zone in a glacier that functions as a liquid water oasis in the ice over half the annual cycle. Since microbial growth on glacier surfaces reduces the amount of solar radiation reflected, microbial processes at depths below the surface may also darken ice and accelerate meltwater production.
Cited articles
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M.
P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature,
514, 80–83, https://doi.org/10.1038/nature13796, 2015.
Anklin, M., Barnola, J. M., Schwander, J., Stauffer, B., and Raynaud, D.:
Processes affecting the CO2 concentrations measured in Greenland ice, Tellus B, 47, 461–470, https://doi.org/10.1034/j.1600-0889.47.issue4.6.x, 1995.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide over the past
100 million years, Am. J. Sci., 283, 641–683,
https://doi.org/10.2475/ajs.283.7.641, 1983.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P.
B., and Charette, M. A.: Greenland meltwater as a significant and potentially
bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278,
https://doi.org/10.1038/ngeo1746, 2013.
Boyd, E. S., Hamilton, T. L., Havig, J. R., Skidmore, M. L., and Shock, E.
L.: Chemolithotrophic primary production in a subglacial
ecosystem, Appl. Environ. Microb., 80, 6146–6153, https://doi.org/10.1128/AEM.01956-14, 2014.
Christiansen, J. R. and Jørgensen, C. J.: First observation of direct
methane emission to the atmosphere from the subglacial domain of the
Greenland Ice Sheet, Sci. Rep.-UK, 8, 2–7, https://doi.org/10.1038/s41598-018-35054-7,
2018.
Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I.,
Mair, D., and Chandler, D.: Evolution of drainage system morphology at a land
– terminating Greenlandic outlet glacier, J. Geophys. Res.-Earth, 118, 29–41, https://doi.org/10.1029/2012JF002540, 2013.
Da Prat, F. A. and Martin, E.: Weathering in the Glacial Foreland of
Southern and Western Greenland, UF Center for Undergraduate Research, University of Florida, Florida, USA, 20, https://doi.org/10.32473/ufjur.v20i2.106168, 2019.
de Visscher, A., de Pourcq, I., and Chanton, J.: Isotope fractionation
effects by diffusion and methane oxidation in landfill cover soils,
J. Geophys. Res.-Atmos., 109, D18111, https://doi.org/10.1029/2004JD004857, 2004.
Deuerling, K. M., Martin, J. B., Martin, E. E., and Scribner, C. A.:
Hydrologic exchange and chemical weathering in a proglacial watershed near
Kangerlussuaq, west Greenland, J. Hydrol., 556, 220–232,
https://doi.org/10.1016/j.jhydrol.2017.11.002, 2018.
Deuerling, K. M., Martin, J. B., Martin, E. E., Abermann, J., Myreng, S. M.,
Petersen, D., and Rennermalm, A. K.: Chemical weathering across the western
foreland of the Greenland Ice Sheet, Geochim. Cosmochim. Ac., 245,
426–440, https://doi.org/10.1016/j.gca.2018.11.025, 2019.
Dieser, M., Broemsen, E. L. J. E., Cameron, K. A., King, G. M., Achberger,
A., Choquette, K., Hagedorn, B., Sletten, R., Junge, K., and Christner, B.
C.: Molecular and biogeochemical evidence for methane cycling beneath the
western margin of the Greenland Ice Sheet, ISME J., 8, 2305–2316,
https://doi.org/10.1038/ismej.2014.59, 2014.
Graly, J. A., Humphrey, N. F., Landowski, C. M., and Harper, J. T.: Chemical
weathering under the Greenland Ice Sheet, Geology, 42, 551–554,
https://doi.org/10.1130/G35370.1, 2014.
Graly, J. A., Harrington, J., and Humphrey, N.: Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet, The Cryosphere, 11, 1131–1140, https://doi.org/10.5194/tc-11-1131-2017, 2017.
Harrold, Z. R., Skidmore, M. L., Hamilton, T. L., Desch, L., Amada, K., Van
Gelder, W., Glover, K., Roden, E. E. and Boyd, E. S.: Aerobic and anaerobic
thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph,
Appl. Environ. Microb., 82, 1486–1495, https://doi.org/10.1128/AEM.03398-15, 2016.
Hasholt, B., Van As, D., Mikkelsen, A. B., Mernild, S. H., and Yde, J. C.:
Observed sediment and solute transport from the Kangerlussuaq sector of the
Greenland Ice Sheet (2006–2016), Arct. Antarct. Alp. Res., 50, S100009,
https://doi.org/10.1080/15230430.2018.1433789, 2018.
Hawkings, J., Wadham, J., Tranter, M., Telling, J., and Bagshaw, E.: The
Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the
Arctic, Global Biogeochem. Cy., 30, 191–210,
https://doi.org/10.1002/2015GB005237, 2016.
Henriksen, N., Higgins, A. K., Kalsbeek, F., and Pulvertaft, T. C. R.:
Greenland from Archaean to Quaternary, Descriptive text to the 1995
Geological map of Greenland, 1:2 500 000, 2nd Edn., GEUS Bull.,
18(SE-MONOGRAPH), 1–126, https://doi.org/10.34194/geusb.v18.4993, 2009.
Herschy, R.: Hydrometry, edn. 2, John Wiley & Sons, Ltd.,
Chichester, New York, Winheim, Brisbane, Singapore, Toronto, 1999.
Hindshaw, R. S., Rickli, J., Leuthold, J., Wadham, J., and Bourdon, B.:
Identifying weathering sources and processes in an outlet glacier of the
Greenland Ice Sheet using Ca and Sr isotope ratios, Geochim. Cosmochim. Ac., 145, 50–71, https://doi.org/10.1016/j.gca.2014.09.016, 2014.
ISO GUIDE 98-3: Evaluation of measurement data–guide to the expression of uncertainty in measurement, International Organization for Standardization (ISO), Geneva, 120 pp., 2008.
Kalsbeek, F. and Taylor, P. N.: Isotopic and chemical variation in granites
across a Proterozoic continental margin – the Ketilidian mobile belt of South Greenland, Earth Planet. Sc. Lett., 73, 65–80, 1985.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric
carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Lamarche-Gagnon, G., Wadham, J., Sherwood Lollar, B., Arndt, S., Fietzek,
P., Beaton, A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkings,
J. R., Kohler, T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., and
Stibal, M.: Greenland melt drives continuous export of methane from the
ice-sheet bed, Nature, 565, 73–77,
https://doi.org/10.1038/s41586-018-0800-0, 2019.
Larsen, N. K., Find, J., Kristensen, A., Bjørk, A. A., Kjeldsen, K. K.,
Odgaard, B. V., Olsen, J., and Kjær, K. H.: Holocene ice marginal
fluctuations of the Qassimiut lobe in South Greenland, Sci. Rep.-UK, 6, 22362, https://doi.org/10.1038/srep22362, 2016.
Lawson, E. C., Wadham, J. L., Tranter, M., Stibal, M., Lis, G. P., Butler, C. E. H., Laybourn-Parry, J., Nienow, P., Chandler, D., and Dewsbury, P.: Greenland Ice Sheet exports labile organic carbon to the Arctic oceans, Biogeosciences, 11, 4015–4028, https://doi.org/10.5194/bg-11-4015-2014, 2014.
Lindbäck, K., Pettersson, R., Hubbard, A. L., Doyle, S. H., As, D.,
Mikkelsen, A. B., and Fitzpatrick, A. A.: Subglacial water drainage, storage,
and piracy beneath the Greenland ice sheet, Geophys. Res. Lett., 42, 7606–7614,
https://doi.org/10.1002/2015GL065393, 2015.
Lüders, V., Plessen, B., and di Primio, R.: Stable carbon isotopic ratios
of CH4-CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin (Germany) – A tool for tracing gas sources and maturity, Mar. Petrol. Geol., 30, 174–183,
https://doi.org/10.1016/j.marpetgeo.2011.10.006, 2012.
Ludwig, W., Amiotte Suchet, P., and Probst, J.-L.: Enhanced chemical
weathering of rocks during the last glacial maximum: a sink for atmospheric
CO2?, Chem. Geol., 159, 147–161, https://doi.org/10.1016/S0009-2541(99)00038-8, 1999.
Macdonald, M. L., Wadham, J. L., Telling, J., and Skidmore, M. L.: Glacial
Erosion Liberates Lithologic Energy Sources for Microbes and Acidity for
Chemical Weathering Beneath Glaciers and Ice Sheets, Front. Earth Sci.,
6, 212, https://doi.org/10.3389/feart.2018.00212, 2018.
Madsen, J. K.: A review of the composition and evolution of hydrocarbon
gases during solidification of the Ilímaussaq alkaline complex, South
Greenland, Geology of Greenland Survey Bulletin, 190, 159–166, https://doi.org/10.34194/ggub.v190.5187, 2001.
Mahieu, K., De Visscher, A., Vanrolleghem, P. A., and Van Cleemput, O.:
Modelling of stable isotope fractionation by methane oxidation and diffusion
in landfill cover soils, Waste Manage., 28, 1535–1542,
https://doi.org/10.1016/j.wasman.2007.06.003, 2008.
Mauritz, M., Celis, G., Ebert, C., Hutchings, J., Ledman, J., Natali, S. M.,
Pegoraro, E., Salmon, V. G., Schädel, C., Taylor, M., and Schuur, E. A.
G.: Using Stable Carbon Isotopes of Seasonal Ecosystem Respiration to
Determine Permafrost Carbon Loss, J. Geophys. Res.-Biogeo., 124,
46–60, https://doi.org/10.1029/2018JG004619, 2019.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA,
116, 201904242, https://doi.org/10.1073/pnas.1904242116, 2019.
Myrttinen, A., Becker, V., and Barth, J. A. C.: A review of methods used for
equilibrium isotope fractionation investigations between dissolved inorganic
carbon and CO2, Earth-Sci. Rev., 115, 192–199,
https://doi.org/10.1016/j.earscirev.2012.08.004, 2012.
Newton, R. C., Smith, J. V., and Windley, B. F.: Carbonic metamorphism,
granulites and crustal growth, Nature, 288, 45–50,
https://doi.org/10.1038/288045a0, 1980.
Pain, A., Martin, J., Martin, E., and Rahman, S.: Hydrogeochemistry of Greenlandic proglacial and nonglacial streams, 2017–2018, Arctic Data Center, https://doi.org/10.18739/A2PC2T94T, 2019a.
Pain, A. J., Martin, J. B., and Young, C. R.: Sources and sinks of CO2 and CH4 in siliciclastic subterranean estuaries, Limnol. Oceanogr., 64, 1500–1514, https://doi.org/10.1002/lno.11131, 2019b.
Parkhurst, L.: Geochemical mole-balance modeling with uncertain data,
Water Resour. Res., 33, 1957–1970, 1997.
Preuss, I., Knoblauch, C., Gebert, J., and Pfeiffer, E.-M.: Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation, Biogeosciences, 10, 2539–2552, https://doi.org/10.5194/bg-10-2539-2013, 2013.
Ravn, N. R., Elberling, B., and Michelsen, A.: Arctic soil carbon turnover
controlled by experimental snow addition, summer warming and shrub removal,
Soil Biol. Biochem., 142, 107698, https://doi.org/10.1016/j.soilbio.2019.107698, 2020.
Rennermalm, A. K., Smith, L. C., Chu, V. W., Forster, R. R., Box, J. E., and Hagedorn, B.: Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011, Earth Syst. Sci. Data, 4, 1–12, https://doi.org/10.5194/essd-4-1-2012, 2012.
Rennermalm, A. K., Smith, L. C., Chu, V. W., Box, J. E., Forster, R. R., Van den Broeke, M. R., van As, D., and Moustafa, S. E.: Evidence of meltwater retention within the Greenland ice sheet, The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, 2013.
Repo, M. E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E.
D., Bleuten, W., and Martikainen, P. J.: Release of CO2 and CH4 from small
wetland lakes in western Siberia, Tellus B, 59, 788–796, https://doi.org/10.1111/j.1600-0889.2007.00301.x, 2007.
Ruskeeniemi, T., Engström, J., Lehtimäki, J., Vanhala, H., Korhonen,
K., Kontula, A., Claesson Liljedahl, L., Näslund, J. O., and Pettersson,
R.: Subglacial permafrost evidencing re-advance of the Greenland Ice Sheet
over frozen ground, Quaternary Sci. Rev., 199, 174–187,
https://doi.org/10.1016/j.quascirev.2018.09.002, 2018.
Sharp, M., Parkes, J., Cragg, B., Fairchild, I. J., Lamb, H., and Tranter,
M.: Widespread bacterial populations at glacier beds and their relationship
to rock weathering and carbon cycling, Geology, 27, 107–110,
https://doi.org/10.1130/0091-7613(1999)027<0107:WBPAGB>2.3.CO;2, 1999.
Solinst: Solinst Technical Bulletin: Understanding Pressure Sensor Accuracy, Precision, Resolution & Drift, available at: https://www.solinst.com/products/dataloggers-and-telemetry/3001-levelogger-series/technical-bulletins/understanding-pressure-sensor-drift.pdf (last access: 30 March 2021), 2017.
St Pierre, K. A., St Louis, V. L., Schiff, S. L., Lehnherr, I., Dainard, P.
G., Gardner, A. S., Aukes, P. J. K., and Sharp, M. J.: Proglacial freshwaters
are significant and previously unrecognized sinks of atmospheric CO2, P. Natl. Acad. Sci. USA, 116, 17690–17695, https://doi.org/10.1073/pnas.1904241116, 2019.
Stibal, M., Wadham, J. L., Lis, G. P., Telling, J., Pancost, R. D., Dubnick,
A., Sharp, M. J., Lawson, E. C., Butler, C. E. H., Hasan, F., Tranter, M.,
and Anesio, A. M.: Methanogenic potential of Arctic and Antarctic subglacial
environments with contrasting organic carbon sources, Global Change Biol.,
18, 3332–3345, https://doi.org/10.1111/j.1365-2486.2012.02763.x, 2012.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope ratio of
Cenozoic CO2: A comparative evaluation of available geochemical proxies, Paleoceanography, 25, PA3202, https://doi.org/10.1029/2009pa001851, 2010.
Tranter, M.: Geochemical Weathering in Glacial and Proglacial Environments,
in: Surface and Ground Water, Weathering, and Soils: Treatise on
Geochemistry, edited by: Drever, J. I., Elsevier
Amsterdam, https://doi.org/10.1016/B0-08-043751-6/05078-7, 2005.
Upton, B. G. J., Emeleus, C. H., Heaman, L. M., Goodenough, K. M., and Finch,
A. A.: Magmatism of the mid-Proterozoic Gardar Province, South Greenland:
Chronology, petrogenesis and geological setting, Lithos, 68, 43–65,
https://doi.org/10.1016/S0024-4937(03)00030-6, 2003.
Urra, A., Wadham, J., Hawkings, J. R., Telling, J., Hatton, J. E., Yde, J.
C., Hasholt, B., van As, D., Bhatia, M. P., and Nienow, P.: Weathering
Dynamics Under Contrasting Greenland Ice Sheet Catchments,
Front. Earth Sci., 7, 299, https://doi.org/10.3389/feart.2019.00299, 2019.
van As, D., Bech Mikkelsen, A., Holtegaard Nielsen, M., Box, J. E., Claesson Liljedahl, L., Lindbäck, K., Pitcher, L., and Hasholt, B.: Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release, The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, 2017.
van As, D., Hasholt, B., Ahlstrøm, A. P., Box, J. E., Cappelen, J.,
Colgan, W., Fausto, R. S., Mernild, S. H., Bech, A., Noël, B. P. Y.,
Petersen, D., and van den Broeke, M. R.: Reconstructing Greenland Ice Sheet
meltwater discharge through the Watson River (1949–2017),
Arct. Antarct. Alp. Res., 50, e1433799-1–e1433799-10, https://doi.org/10.1080/15230430.2018.1433799, 2018.
van de Wal, R. S. W. and Russell, A. J.: A comparison of energy balance
calculations, measured ablation and meltwater runoff near Sondre Stromfjord,
West Greenland, Global Planet. Change, 9, 29–38, https://doi.org/10.1016/0921-8181(94)90005-1, 1994.
van Gool, J. A., Alsop, G. I., Arting, U. E., Garde, A. A., Knudsen, C.,
Krawiec, A. W., Mazur, S., Nygaard, J., Piazolo, S., and Thomas, C. W.:
Precambrian geology of the northern Nagssugtoqidian orogen, West Greenland:
mapping in the Kangaatsiaq area, Geology of Greenland Survey Bulletin, 191, 13–23, 2002.
Wadham, J. L., Tranter, M., Tulaczyk, S., and Sharp, M.: Subglacial
methanogenesis: A potential climatic amplifier?, Global Biogeochem. Cy., 22, GB2021, https://doi.org/10.1029/2007GB002951, 2008.
Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons,
W. B., Sharp, M., Wynn, P., and Jackson, M.: Biogeochemical weathering under
ice: Size matters, 24, GB3025, https://doi.org/10.1029/2009GB003688, 2010.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567, https://doi.org/10.1038/s41467-019-11394-4,
2019.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback
mechanism for the long-term stabilization of earth's surface temperature, J.
Geophys. Res., 86, 9776–9782, 1981.
Warren, C. R. and Glasser, N. F.: Contrasting response of south Greenland
glaciers to recent climatic change, Arctic Alpine Res., 24, 124–132,
https://doi.org/10.2307/1551532, 1992.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314, 1999.
Whiticar, M. J. and Schoell, M.: Biogenic methane formation in marine and
freshwater environments: CO2 reduction vs. acetate fermentation – Isotope evidence, Geochim. Cosmochim. Ac., 50, 693–709, 1986.
Wimpenny, J., James, R. H., Burton, K. W., Gannoun, A., Mokadem, F., and
Gíslason, S. R.: Glacial effects on weathering processes: New insights
from the elemental and lithium isotopic composition of West Greenland
rivers, Earth Planet. Sc. Lett., 290, 427–437,
https://doi.org/10.1016/j.epsl.2009.12.042, 2010.
Wimpenny, J., Burton, K. W., James, R. H., Gannoun, A., Mokadem, F., and
Gíslason, S. R.: The behaviour of magnesium and its isotopes during
glacial weathering in an ancient shield terrain in West Greenland, Earth Planet. Sc. Lett., 304, 260–269, https://doi.org/10.1016/j.epsl.2011.02.008,
2011.
Winsor, K., Carlson, A. E., and Rood, D. H.: 10Be dating of the Narsarsuaq
moraine in southernmost Greenland: Evidence for a late-Holocene ice advance
exceeding the Little Ice Age maximum, Quaternary Sci. Rev., 98, 135–143,
https://doi.org/10.1016/j.quascirev.2014.04.026, 2014.
World Meteorological Organization (WMO): Manual on Stream Gauging, Volume I: Fieldwork, 2010.
Yde, J. C., Knudsen, N. T., Hasholt, B., and Mikkelsen, A. B.: Meltwater
chemistry and solute export from a Greenland Ice Sheet catchment, Watson
River, West Greenland, J. Hydrol., 519, 2165–2179,
https://doi.org/10.1016/j.jhydrol.2014.10.018, 2014.
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by...