Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1627-2021
https://doi.org/10.5194/tc-15-1627-2021
Research article
 | 
01 Apr 2021
Research article |  | 01 Apr 2021

Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes

Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman

Related authors

Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
EGUsphere, https://doi.org/10.5194/egusphere-2024-49,https://doi.org/10.5194/egusphere-2024-49, 2024
Short summary
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024,https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Light absorbing particles and snow aging feedback enhances albedo reduction on the Southwest Greenland ice sheet
Isatis M. Cintron-Rodriguez, Åsa K. Rennermalm, Susan Kaspari, and Sasha Leidman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-195,https://doi.org/10.5194/tc-2022-195, 2022
Revised manuscript not accepted
Short summary
Supraglacial streamflow and meteorological drivers from southwest Greenland
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022,https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021,https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Biogeochemistry/Biology
Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel
Ashley J. Dubnick, Rachel L. Spietz, Brad D. Danielson, Mark L. Skidmore, Eric S. Boyd, Dave Burgess, Charvanaa Dhoonmoon, and Martin Sharp
The Cryosphere, 17, 2993–3012, https://doi.org/10.5194/tc-17-2993-2023,https://doi.org/10.5194/tc-17-2993-2023, 2023
Short summary
Variation in bacterial composition, diversity, and activity across different subglacial basal ice types
Shawn M. Doyle and Brent C. Christner
The Cryosphere, 16, 4033–4051, https://doi.org/10.5194/tc-16-4033-2022,https://doi.org/10.5194/tc-16-4033-2022, 2022
Short summary
Microbial processes in the weathering crust aquifer of a temperate glacier
Brent C. Christner, Heather F. Lavender, Christina L. Davis, Erin E. Oliver, Sarah U. Neuhaus, Krista F. Myers, Birgit Hagedorn, Slawek M. Tulaczyk, Peter T. Doran, and William C. Stone
The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018,https://doi.org/10.5194/tc-12-3653-2018, 2018
Short summary

Cited articles

Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2015. 
Anklin, M., Barnola, J. M., Schwander, J., Stauffer, B., and Raynaud, D.: Processes affecting the CO2 concentrations measured in Greenland ice, Tellus B, 47, 461–470, https://doi.org/10.1034/j.1600-0889.47.issue4.6.x, 1995. 
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. 
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.: Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278, https://doi.org/10.1038/ngeo1746, 2013. 
Boyd, E. S., Hamilton, T. L., Havig, J. R., Skidmore, M. L., and Shock, E. L.: Chemolithotrophic primary production in a subglacial ecosystem, Appl. Environ. Microb., 80, 6146–6153, https://doi.org/10.1128/AEM.01956-14, 2014. 
Download
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.