Articles | Volume 14, issue 12
https://doi.org/10.5194/tc-14-4581-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4581-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness
Julián Gelman Constantin
CORRESPONDING AUTHOR
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Lucas Ruiz
IANIGLA, Gobierno de Mendoza, Universidad Nacional de Cuyo, CONICET, CCT-Mendoza, Mendoza, Argentina
Gustavo Villarosa
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-UNCo, Bariloche, Argentina
Departamento de Geología y Petróleo, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
Valeria Outes
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-UNCo, Bariloche, Argentina
Facundo N. Bajano
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Cenlin He
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Hector Bajano
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Laura Dawidowski
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Related authors
Julián Gelman Constantin, Melisa M. Gianetti, María P. Longinotti, and Horacio R. Corti
Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, https://doi.org/10.5194/acp-18-14965-2018, 2018
Short summary
Short summary
Numerous studies have shown that ice surface is actually coated by a thin layer of water even for temperatures below melting temperature. This quasi-liquid layer is relevant in the atmospheric chemistry of clouds, polar regions, glaciers, and other cold regions. We present new results of atomic force microscopy on pure ice, which suggests a thickness for this layer below 1 nm between -7 ºC and -2 ºC. We propose that in many cases previous authors have overestimated this thickness.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-2298, https://doi.org/10.5194/egusphere-2024-2298, 2024
Short summary
Short summary
We aim to understand the complexity of Earth's climate by proposing a novel, cost-effective approach to understand the web of interactions driving climate change. We focus on how pollution and weather processes interact and drive snowmelt in Asian glaciers. Our findings reveal significant yet overlooked processes across different climate models. Our approach can help in refining the development of these models for more reliable predictions in climate-vulnerable regions.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264, https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-MP land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modeling to better prepare for climate-related challenges.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-56, https://doi.org/10.5194/gmd-2024-56, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper presents ML-AMPSIT, a new tool that exploits different machine learning algorithms to perform sensitivity analysis for atmospheric models, providing a computationally efficient way to identify key parameters that affect model output. The tool is tested by taking as a case study the simulation of a sea breeze circulation over flat terrain with the WRF/Noah-MP model, investigating the sensitivity of model results to different vegetation-related parameters.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023, https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Julián Gelman Constantin, Melisa M. Gianetti, María P. Longinotti, and Horacio R. Corti
Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, https://doi.org/10.5194/acp-18-14965-2018, 2018
Short summary
Short summary
Numerous studies have shown that ice surface is actually coated by a thin layer of water even for temperatures below melting temperature. This quasi-liquid layer is relevant in the atmospheric chemistry of clouds, polar regions, glaciers, and other cold regions. We present new results of atomic force microscopy on pure ice, which suggests a thickness for this layer below 1 nm between -7 ºC and -2 ºC. We propose that in many cases previous authors have overestimated this thickness.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Yingying Yan, Jintai Lin, and Cenlin He
Atmos. Chem. Phys., 18, 1185–1202, https://doi.org/10.5194/acp-18-1185-2018, https://doi.org/10.5194/acp-18-1185-2018, 2018
Short summary
Short summary
Examining observed and simulated ozone at about 1000 sites during 1990–2014, we find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes, which has policy implications to mitigate ozone at night and other non-peak hours.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Short summary
We find that Asian anthropogenic sources are the largest contributors (~ 40 %) to surface BC in spring in the Arctic, inconsistent with previous studies which repeatedly identified sources of surface BC as anthropogenic emissions from Europe and Russia. It takes 12–17 days for Asian anthropogenic emissions to be transported to the Arctic surface. Additionally, a large fraction (40–65 %) of Asian contribution is in the form of chronic pollution on 1- to 2-month timescales.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Short summary
Our paper assesses the glacier mass change in the northern Patagonian Andes of Argentina and Chile, which is crucial to understanding how climate change is affecting them. We have found that between 2000 and 2012, glaciers in this region were slightly out of balance, with larger valley glaciers losing more mass than smaller mountain glaciers. The slightly negative mass balance of the northern Patagonian Andes contrasts with the highly negative mass balance of the Patagonian ice fields.
Ling Qi, Qinbin Li, Yinrui Li, and Cenlin He
Atmos. Chem. Phys., 17, 1037–1059, https://doi.org/10.5194/acp-17-1037-2017, https://doi.org/10.5194/acp-17-1037-2017, 2017
Short summary
Short summary
The Arctic is the most vulnerable region for climate change. Black carbon (BC) in air and deposited on snow and ice warms the Arctic substantially, but simulations of BC climate effects are associated with large uncertainties. To reduce this uncertainty, it is imperative to improve the simulation of BC distribution in the Arctic. We evaluate the effects of controlling factors (emissions, dry and wet deposition) on BC distribution and call for more observations to constrain these processes.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
Mariano H. Masiokas, Duncan A. Christie, Carlos Le Quesne, Pierre Pitte, Lucas Ruiz, Ricardo Villalba, Brian H. Luckman, Etienne Berthier, Samuel U. Nussbaumer, Álvaro González-Reyes, James McPhee, and Gonzalo Barcaza
The Cryosphere, 10, 927–940, https://doi.org/10.5194/tc-10-927-2016, https://doi.org/10.5194/tc-10-927-2016, 2016
Short summary
Short summary
Glacier Echaurren Norte (ECH, 34° S) has the longest (> 35 yrs) mass-balance record in South America. A minimal model that explains 78 % of the variance in the ECH annual record identifies precipitation as the most important forcing. A regional streamflow series allows for extending the ECH annual record back to 1909 and shows a clear cumulative ice-mass loss. Similarities with documented glacier advances and other shorter mass-balance series suggest the ECH reconstruction is regionally representative.
Cenlin He, Qinbin Li, Kuo-Nan Liou, Ling Qi, Shu Tao, and Joshua P. Schwarz
Atmos. Chem. Phys., 16, 3077–3098, https://doi.org/10.5194/acp-16-3077-2016, https://doi.org/10.5194/acp-16-3077-2016, 2016
Short summary
Short summary
Blarck carbon aging significantly affects its global distribution and thus climatic effects. This study develops a microphysics-based BC aging scheme in a global model, which substantially improves model simulations of BC over the remote Pacific. The microphysical scheme shows fast aging over source regions and much slower aging in remote regions. The microphysical aging significantly reduces global BC burden and lifetime, showing important implications for the estimate of BC radiative effects.
C. He, K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung
Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, https://doi.org/10.5194/acp-15-11967-2015, 2015
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon
The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, https://doi.org/10.5194/tc-8-2275-2014, 2014
Short summary
Short summary
We evaluate the potential of Pléiades sub-meter satellite stereo imagery to derive digital elevation models (DEMs) of glaciers and their elevation changes. The vertical precision of the DEMs is ±1 m, even ±0.5m on the flat glacier tongues. Similar precision levels are obtained in accumulation areas. Comparison of a Pléiades DEM with a SPOT5 DEM reveals the strongly negative region-wide mass balances of glaciers in the Mont Blanc area (-1.04±0.23m at 1 water equivalent) during 2003-2012.
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
Related subject area
Discipline: Glaciers | Subject: Atmospheric Interactions
Foehn winds at Pine Island Glacier and their role in ice changes
The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse
The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls
Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf
Spatio-temporal flow variations driving heat exchange processes at a mountain glacier
Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling
A multi-season investigation of glacier surface roughness lengths through in situ and remote observation
Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau
Diana Francis, Ricardo Fonseca, Kyle S. Mattingly, Stef Lhermitte, and Catherine Walker
The Cryosphere, 17, 3041–3062, https://doi.org/10.5194/tc-17-3041-2023, https://doi.org/10.5194/tc-17-3041-2023, 2023
Short summary
Short summary
Role of Foehn Winds in ice and snow conditions at the Pine Island Glacier, West Antarctica.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Jenny V. Turton, Philipp Hochreuther, Nathalie Reimann, and Manuel T. Blau
The Cryosphere, 15, 3877–3896, https://doi.org/10.5194/tc-15-3877-2021, https://doi.org/10.5194/tc-15-3877-2021, 2021
Short summary
Short summary
We assess the climatic controls of melt lake development, melt duration, melt extent, and the spatial distribution of lakes of 79°N Glacier. There is a large interannual variability in the areal extent of the lakes and the maximum elevation of lake development, which is largely controlled by the summertime air temperatures and the snowpack thickness. Late-summer lake development can be prompted by spikes in surface mass balance. There is some evidence of inland expansion of lakes over time.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020, https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Short summary
The Hintereisferner Experiment (HEFEX) investigated spatial and temporal dynamics of the near-surface boundary layer and associated heat exchange processes close to the glacier surface during the melting season. Turbulence data suggest that strong changes in the local thermodynamic characteristics occur when westerly flows disturbed prevailing katabatic flow, forming across-glacier flows and facilitating warm-air advection from the surrounding ice-free areas, which potentially promote ice melt.
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
Noel Fitzpatrick, Valentina Radić, and Brian Menounos
The Cryosphere, 13, 1051–1071, https://doi.org/10.5194/tc-13-1051-2019, https://doi.org/10.5194/tc-13-1051-2019, 2019
Short summary
Short summary
Measurements of surface roughness are rare on glaciers, despite being an important control for heat exchange with the atmosphere and surface melt. In this study, roughness values were determined through measurements at multiple locations and seasons and found to vary across glacier surfaces and to differ from commonly assumed values in melt models. Two new methods that remotely determine roughness from digital elevation models returned good performance and may facilitate improved melt modelling.
Zhiwen Dong, Shichang Kang, Dahe Qin, Yaping Shao, Sven Ulbrich, and Xiang Qin
The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018, https://doi.org/10.5194/tc-12-3877-2018, 2018
Short summary
Short summary
This study aimed to provide a first and unique record of physicochemical properties and mixing states of LAPs at the glacier and atmosphere interface over the northeastern Tibetan Plateau to determine the individual LAPs' structure aging and mixing state changes through the atmospheric deposition process from atmosphere to glacier–snowpack surface, thereby helping to characterize the LAPs' radiative forcing and climate effects in the cryosphere region.
Cited articles
Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016. a
Alloway, B. V., Pearce, N. J. G., Villarosa, G., Outes, V., and Moreno, P. I.:
Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón
Caulle, Chile, Scientific Reports, 5, 17589, https://doi.org/10.1038/srep17589,
2015. a, b, c
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D. M.,
Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz,
M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D. T., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171,
2013. a, b, c, d
Brandt, R. E., Warren, S. G., and Clarke, A. D.: A controlled snowmaking
experiment testing the relation between black carbon content and reduction of
snow albedo, J. Geophys. Res., 116, D08109,
https://doi.org/10.1029/2010JD015330,
2011. a
Brock, B., Rivera, A., Casassa, G., Bown, F., and Acuña, C.: The surface
energy balance of an active ice-covered volcano: Villarrica Volcano, southern
Chile, Ann. Glaciol., 45, 104–114, https://doi.org/10.3189/172756407782282372,
2007. a, b
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and
parameterisation of albedo variations at Haut Glacier d ’Arolla,
Switzerland, J. Glaciol., 46, 675–688,
https://doi.org/10.3189/172756506781828746, 2000. a, b, c
Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., Libois, Q., Arnaud, L., and Morin, S.: Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack, The Cryosphere, 7, 1139–1160, https://doi.org/10.5194/tc-7-1139-2013, 2013. a, b, c, d
Cereceda-Balic, F., Vidal, V., Moosmüller, H., and Lapuerta, M.:
Reduction of snow albedo from vehicle emissions at Portillo, Chile, Cold
Reg. Sci. Technol., 146, 43–52,
https://doi.org/10.1016/j.coldregions.2017.11.008,
2018. a, b
Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., and Bush, A. B. G.: High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram, The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, 2013. a
Conway, H., Gades, A., and Raymond, C. F.: Albedo of dirty snow during
conditions of melt, Water Resour. Res., 32, 1713–1718,
https://doi.org/10.1029/96WR00712, 1996. a, b
Córdoba, G., Villarosa, G., Sheridan, M. F., Viramonte, J. G., Beigt, D., and Salmuni, G.: Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption, Nat. Hazards Earth Syst. Sci., 15, 757–766, https://doi.org/10.5194/nhess-15-757-2015, 2015. a
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic
Press, 4th editio edn., ISBN
9780123694614, 2010. a
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt,
R. E., and Warren, S. G.: Observed vertical redistribution of black carbon
and other insoluble light-absorbing particles in melting snow, J.
Geophys. Res.-Atmos., 118, 5553–5569, https://doi.org/10.1002/jgrd.50235,
2013. a
Doherty, S. J., Hegg, D. A., Johnson, J. E., Quinn, P. K., Schwarz, J. P.,
Dang, C., and Warren, S. G.: Causes of variability in light absorption by
particles in snow at sites in Idaho and Utah, J. Geophys.
Res., 121, 4751–4768, https://doi.org/10.1002/2015jd024375, 2016. a
Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier,
V., Rabatel, A., Pitte, P., and Ruiz, L.: Two decades of glacier mass loss
along the Andes, Nature Geosci., 12, 802–808,
https://doi.org/10.1038/s41561-019-0432-5,
2019. a
Ernst, M., Holst, H., Winter, M., and Altermatt, P. P.: SunCalculator: A
program to calculate the angular and spectral distribution of direct and
diffuse solar radiation, Solar Energy Materials and Solar Cells, 157,
913–922, https://doi.org/10.1016/J.SOLMAT.2016.08.008,
2016. a, b
Flanner, M. G.: Arctic climate sensitivity to local black carbon, J.
Geophys. Res.-Atmos., 118, 1840–1851, https://doi.org/10.1002/jgrd.50176, 2013. a
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo
evolution, J. Geophys. Res., 111, D12208,
https://doi.org/10.1029/2005JD006834,
2006. a
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day
South American climate, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009. a
Ginot, P., Dumont, M., Lim, S., Patris, N., Taupin, J.-D., Wagnon, P., Gilbert, A., Arnaud, Y., Marinoni, A., Bonasoni, P., and Laj, P.: A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers, The Cryosphere, 8, 1479–1496, https://doi.org/10.5194/tc-8-1479-2014, 2014. a, b, c, d, e, f
Gueymard, C.: Une paramétrisation de la luminance
énergétique du ciel clair en fonction de la turbidité,
Atmosphere-Ocean, 24, 1–15, https://doi.org/10.1080/07055900.1986.9649237,
1986. a
Gueymard, C.: An anisotropic solar irradiance model for tilted surfaces and
its comparison with selected engineering algorithms, Sol. Energ., 38,
367–386, https://doi.org/10.1016/0038-092X(87)90009-0,
1987. a
Gueymard, C. A.: Parameterized transmittance model for direct beam and
circumsolar spectral irradiance, Sol. Energ., 71, 325–346,
https://doi.org/10.1016/S0038-092X(01)00054-8, 2001. a
Hadley, O. L. and Kirchstetter, T. W.: Black-carbon reduction of snow albedo,
Nature Climate Change, 2, 437–440, https://doi.org/10.1038/nclimate1433, 2012. a, b, c
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto,
V., Chandler, M., Cheng, Y., Genio, A. D., Faluvegi, G., Fleming, E., Friend,
A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner,
J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V.,
Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P.,
Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and
Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.,
110, D18104, https://doi.org/10.1029/2005JD005776,
2005. a
He, C.: EarthSciCode/SNICARv2: Release of SNICARv2.1 (Version v2.1), Zenodo, https://doi.org/10.5281/zenodo.4319016, 2020. a
He, C. and Flanner, M.: Snow Albedo and Radiative Transfer: Theory, Modeling,
and Parameterization, in: Springer Series in Light Scattering (Volume 5),
edited by: Kokhanovsky, A. A., pp. 67–133, Springer, Cham,
https://doi.org/10.1007/978-3-030-38696-2_3,
2020. a
He, C., Takano, Y., Liou, K.-N., Yang, P., Li, Q., and Chen, F.: Impact of
Snow Grain Shape and Black Carbon–Snow Internal Mixing on Snow Optical
Properties: Parameterizations for Climate Models, J. Climate, 30,
10019–10036, https://doi.org/10.1175/JCLI-D-17-0300.1,
2017. a, b, c, d
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming, J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, 2018. a, b, c, d
Hock, R.: A distributed temperature-index ice- and snowmelt model including
potential direct solar radiation, J. Glaciol., 45, 101–111,
https://doi.org/10.3189/s0022143000003087, 1999. a, b
Huss, M.: Mass balance of Pizolgletscher, Geogr. Helv., 65, 80–91,
https://doi.org/10.5194/gh-65-80-2010,
2010. a
Huss, M., Bauder, A., Funk, M., and Hock, R.: Determination of the seasonal
mass balance of four Alpine glaciers since 1865, J. Geophys.
Res., 113, F01015, https://doi.org/10.1029/2007JF000803,
2008. a, b, c
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, available at: https://www.ipcc.ch/report/srocc/ (last access: 15 September 2020), 2019. a
Kasten, F. and Czeplak, G.: Solar and terrestrial radiation dependent on the
amount and type of cloud, Sol. Energ., 24, 177–189,
https://doi.org/10.1016/0038-092X(80)90391-6, 1980. a
Koch, D. M., Menon, S., Del Genio, A., Ruedy, R., Alienov, I., and Schmidt,
G. A.: Distinguishing Aerosol Impacts on Climate over the Past Century, J.
Climate, 22, 2659–2677, https://doi.org/10.1175/2008JCLI2573.1,
2009. a
Krinner, G., Boucher, O., and Balkanski, Y.: Ice-free glacial northern Asia
due to dust deposition on snow, Climate Dyn., 27, 613–625,
https://doi.org/10.1007/s00382-006-0159-z,
2006. a, b, c
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B.: A chemical
classification of volcanic rocks based on the total alkali-silica diagram,
J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986. a
Li, X., Kang, S., He, X., Qu, B., Tripathee, L., Jing, Z., Paudyal, R., Li, Y.,
Zhang, Y., Yan, F., Li, G., and Li, C.: Light-absorbing impurities
accelerate glacier melt in the Central Tibetan Plateau, Sci. Total
Environ., 587–588, 482–490, https://doi.org/10.1016/j.scitotenv.2017.02.169, 2017. a
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a, b
Malmros, J. K., Mernild, S. H., Wilson, R., Tagesson, T., and Fensholt, R.:
Snow cover and snow albedo changes in the central Andes of Chile and
Argentina from daily MODIS observations (2000–2016), Remote Sens.
Environ., 209, 240–252, https://doi.org/10.1016/J.RSE.2018.02.072, 2018. a
Ménégoz, M., Krinner, G., Balkanski, Y., Boucher, O., Cozic, A., Lim, S., Ginot, P., Laj, P., Gallée, H., Wagnon, P., Marinoni, A., and Jacobi, H. W.: Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations, Atmos. Chem. Phys., 14, 4237–4249, https://doi.org/10.5194/acp-14-4237-2014, 2014. a, b, c, d, e
Molina, L. T., Gallardo, L., Andrade, M., Baumgardner, D.,
Borbor-Córdova, M., Bórquez, R., Casassa, G., Cereceda-Balic, F.,
Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J., Mc Phee,
J., Mena-Carrasco, M., Raga, G. B., Schmitt, C. G., and Schwarz, J. P.:
Pollution and its impacts on the South American Cryosphere (PISAC), Earth's
Future, 3, 345–369, https://doi.org/10.1002/2015EF000311, 2015. a
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and albedo
in the ablation zone of Morteratschgletscher, Switzerland, J.
Glaciol., 44, 231–238, https://doi.org/10.3189/s0022143000002574, 1998. a, b
Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.:
Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6
year record of energy balance, radiation, and dust concentrations, Water
Resour. Res., 48, W07521, https://doi.org/10.1029/2012WR011985,
2012. a, b, c
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and
Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, P. Natl. Acad. Sci., 110,
15216–15221, https://doi.org/10.1073/pnas.1302570110,
2013. a, b
Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Jing,
M., Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing
Particles in Snow and Ice: Measurement and Modeling of Climatic and
Hydrological impact, Adv. Atmos. Sci., 32, 64–91,
https://doi.org/10.1007/s00376-014-0010-0, 2015. a, b, c
Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch,
A., Collini, E., Viramonte, J., Romero, J., and Osores, S.: Forecasting
volcanic ash dispersal and coeval resuspension during the April–May 2015
Calbuco eruption, J. Volcanol. Geoth. Res., 321,
44–57, https://doi.org/10.1016/j.jvolgeores.2016.04.033,
2016. a, b, c
Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F.,
Viramonte, J., Díaz-Alvarado, J., Polacci, M., Burton, M., and
Perugini, D.: Eruption dynamics of the 22–23 April 2015 Calbuco Volcano
(Southern Chile): Analyses of tephra fall deposits, J. Volcanol. Geoth. Res., 317, 15–29, https://doi.org/10.1016/j.jvolgeores.2016.02.027,
2016. a
Rowe, P. M., Cordero, R. R., Warren, S. G., Stewart, E., Doherty, S. J.,
Pankow, A., Schrempf, M., Casassa, G., Carrasco, J., Pizarro, J., MacDonell,
S., Damiani, A., Lambert, F., Rondanelli, R., Huneeus, N., Fernandoy, F., and
Neshyba, S.: Black carbon and other light-absorbing impurities in snow in
the Chilean Andes, Scientific Reports, 9, 4008,
https://doi.org/10.1038/s41598-019-39312-0,
2019. a, b, c
Ruiz, L., Berthier, E., Masiokas, M., Pitte, P., and Villalba, R.: First
surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes,
derived from sequential Pléiades satellite images, J.
Glaciol., 61, 908–922, https://doi.org/10.3189/2015JoG14J134, 2015. a, b
Ruiz, L., Berthier, E., Viale, M., Pitte, P., and Masiokas, M. H.: Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes, The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, 2017. a
Schaefer, M., Fonseca-Gallardo, D., Farías-Barahona, D., and Casassa, G.: Surface energy fluxes on Chilean glaciers: measurements and models, The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020, 2020. a
Schmitt, C. G., All, J. D., Schwarz, J. P., Arnott, W. P., Cole, R. J., Lapham, E., and Celestian, A.: Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru, The Cryosphere, 9, 331–340, https://doi.org/10.5194/tc-9-331-2015, 2015. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25
years of image analysis, Nature Methods, 9, 671–675 , https://doi.org/10.1038/nmeth.2089, 2012. a
Sicart, J. E., Ribstein, P., Wagnon, P., and Brunstein, D.: Clear-sky albedo
measurements on a sloping glacier surface: A case study in the Bolivian
Andes, J. Geophys. Res., 106, 31729–31737,
https://doi.org/10.1029/2000JD000153, 2001. a
Skiles, S. M. and Painter, T. H.: Daily evolution in dust and black carbon
content, snow grain size, and snow albedo during snowmelt, Rocky Mountains,
Colorado, J. Glaciol., 63, 118–132, https://doi.org/10.1017/jog.2016.125,
2017. a, b
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., and Painter, T. H.:
Radiative forcing by light-absorbing particles in snow, Nat. Clim. Change, 8, 964–971,
https://doi.org/10.1038/s41558-018-0296-5, 2018. a
Sold, L., Huss, M., Machguth, H., Joerg, P. C., Leysinger Vieli, G., Linsbauer,
A., Salzmann, N., Zemp, M., and Hoelzle, M.: Mass Balance Re-analysis of
Findelengletscher, Switzerland; Benefits of Extensive Snow Accumulation
Measurements, Front. Earth Sci., 4, 18, https://doi.org/10.3389/feart.2016.00018,
2016. a
Toyos, G., Mingari, L., Pujol, G., and Villarosa, G.: Investigating the nature
of an ash cloud event in Southern Chile using remote sensing: volcanic
eruption or resuspension?, Remote Sens. Lett., 8, 146–155,
https://doi.org/10.1080/2150704X.2016.1239281,
2017. a
Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., Lejeune, Y., Charrois, L., Nabat, P., and Morin, S.: A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, 2017. a
Villarosa, G., Outes, V., Delménico, A., Beigt, D., Cottet, J., Toyos,
G., Horwell, C. J., Damby, D. E., Najorka, J., Arretche, M., Wilson, T., and
Stewart, C.: Impacts after the 2015 Calbuco eruption in Argentina and their
relation to tephra deposit characteristics and climatic variables, in:
Cities on Volcanoes 9, Puerto Varas, Chile, 2016. a, b
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b, c
Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow.
II: Snow Containing Atmospheric Aerosols, J. Atmos. Sci., 37, 2734–2745,
https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2,
1980. a
Williamson, C. J., Cameron, K. A., Cook, J. M., Zarsky, J. D., Stibal, M., and
Edwards, A.: Glacier Algae: A Dark Past and a Darker Future, Front.
Microbiol., 10, 524, https://doi.org/10.3389/fmicb.2019.00524,
2019. a
Wiscombe, W. J. and Warren, S. G.: A Model for the Spectral Albedo of Snow. I:
Pure Snow, J. Atmos. Sci., 37, 2712–2733,
https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2,
1980. a
Wittmann, M., Groot Zwaaftink, C. D., Steffensen Schmidt, L., Guðmundsson, S., Pálsson, F., Arnalds, O., Björnsson, H., Thorsteinsson, T., and Stohl, A.: Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland, The Cryosphere, 11, 741–754, https://doi.org/10.5194/tc-11-741-2017, 2017. a, b, c
Wright, P., Bergin, M., Dibb, J., Lefer, B., Domine, F., Carman, T.,
Carmagnola, C., Dumont, M., Courville, Z., Schaaf, C., and Wang, Z.:
Comparing MODIS daily snow albedo to spectral albedo field measurements in
Central Greenland, Remote Sens. Environ., 140, 118–129,
https://doi.org/10.1016/j.rse.2013.08.044,
2014. a, b
Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., and He, J.:
Post-depositional enrichment of black soot in snow-pack and accelerated
melting of Tibetan glaciers, Environ. Res. Lett., 7, 014022,
https://doi.org/10.1088/1748-9326/7/1/014022, 2012. a
Young, C. L., Sokolik, I. N., Flanner, M. G., and Dufek, J.: Surface radiative
impacts of ash deposits from the 2009 eruption of Redoubt volcano, J. Geophys. Res.-Atmos., 119, 11387–11397,
https://doi.org/10.1002/2014JD021949,
2014. a, b, c
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G.,
Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua,
L. E., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O.,
Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,
Portocarrero, C. a., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurðsson,
O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented
global glacier decline in the early 21st century, J. Glaciol., 61,
745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
a
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018. a, b, c, d, e, f
Zhuravleva, T. B. and Kokhanovsky, A. A.: Influence of surface roughness on
the reflective properties of snow, J. Quant. Spectrosc.
Ra., 112, 1353–1368, https://doi.org/10.1016/J.JQSRT.2011.01.004,
2011. a
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
We present the results of two field campaigns and modeling activities on the impact of...