Articles | Volume 14, issue 12
https://doi.org/10.5194/tc-14-4581-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4581-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness
Julián Gelman Constantin
CORRESPONDING AUTHOR
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Lucas Ruiz
IANIGLA, Gobierno de Mendoza, Universidad Nacional de Cuyo, CONICET, CCT-Mendoza, Mendoza, Argentina
Gustavo Villarosa
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-UNCo, Bariloche, Argentina
Departamento de Geología y Petróleo, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
Valeria Outes
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-UNCo, Bariloche, Argentina
Facundo N. Bajano
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Cenlin He
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Hector Bajano
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Laura Dawidowski
División de Química Atmosférica, Gerencia de Química, Comisión Nacional de Energía Atómica, Av General Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Viewed
Total article views: 2,846 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Apr 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,777 | 960 | 109 | 2,846 | 245 | 99 | 92 |
- HTML: 1,777
- PDF: 960
- XML: 109
- Total: 2,846
- Supplement: 245
- BibTeX: 99
- EndNote: 92
Total article views: 1,928 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Dec 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,314 | 555 | 59 | 1,928 | 127 | 59 | 55 |
- HTML: 1,314
- PDF: 555
- XML: 59
- Total: 1,928
- Supplement: 127
- BibTeX: 59
- EndNote: 55
Total article views: 918 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Apr 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
463 | 405 | 50 | 918 | 118 | 40 | 37 |
- HTML: 463
- PDF: 405
- XML: 50
- Total: 918
- Supplement: 118
- BibTeX: 40
- EndNote: 37
Viewed (geographical distribution)
Total article views: 2,846 (including HTML, PDF, and XML)
Thereof 2,641 with geography defined
and 205 with unknown origin.
Total article views: 1,928 (including HTML, PDF, and XML)
Thereof 1,845 with geography defined
and 83 with unknown origin.
Total article views: 918 (including HTML, PDF, and XML)
Thereof 796 with geography defined
and 122 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
14 citations as recorded by crossref.
- Reflection of Solar Light from Surface Snow Loaded with Light-Absorbing Impurities: A Case Study of Black Carbon, Mineral Dust, and Ash W. Ji et al. 10.1021/acs.est.3c01280
- Diurnal Cycle Model of Lake Ice Surface Albedo: A Case Study of Wuliangsuhai Lake Z. Li et al. 10.3390/rs13163334
- SNICAR-ADv3: a community tool for modeling spectral snow albedo M. Flanner et al. 10.5194/gmd-14-7673-2021
- Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3 C. van Dalum et al. 10.5194/tc-16-1071-2022
- Physics‐Based Narrowband Optical Parameters for Snow Albedo Simulation in Climate Models W. Wang et al. 10.1029/2020MS002431
- Changes in snow and ice surface albedo and its impact on snow and ice area in the Wind River Range, Wyoming, USA N. Owusu-Amponsah et al. 10.1080/02723646.2022.2136594
- Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan L. Van Tricht et al. 10.3389/feart.2021.734802
- Structural and functional responses of lotic biofilm to abrasive sediments and P enrichment: an indoor experimental approach V. Diaz-Villanueva et al. 10.1007/s00027-024-01150-2
- Refinement of the tephrostratigraphy straddling the northern Patagonian Andes (40–41°S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation B. Alloway et al. 10.1002/jqs.3389
- Dark brown carbon from wildfires: a potent snow radiative forcing agent? G. Chelluboyina et al. 10.1038/s41612-024-00738-7
- Remote Sensing-Based Simulation of Snow Grain Size and Spatial–Temporal Variation Characteristics of Northeast China from 2001 to 2019 F. Zhang et al. 10.3390/rs15204970
- Modelling light-absorbing particle–snow–radiation interactions and impacts on snow albedo: fundamentals, recent advances and future directions C. He & J. Ming 10.1071/EN22013
- Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain S. González-Correa et al. 10.3390/atmos13111903
- ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia T. Bolaño-Ortiz et al. 10.3390/geosciences10110437
13 citations as recorded by crossref.
- Reflection of Solar Light from Surface Snow Loaded with Light-Absorbing Impurities: A Case Study of Black Carbon, Mineral Dust, and Ash W. Ji et al. 10.1021/acs.est.3c01280
- Diurnal Cycle Model of Lake Ice Surface Albedo: A Case Study of Wuliangsuhai Lake Z. Li et al. 10.3390/rs13163334
- SNICAR-ADv3: a community tool for modeling spectral snow albedo M. Flanner et al. 10.5194/gmd-14-7673-2021
- Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3 C. van Dalum et al. 10.5194/tc-16-1071-2022
- Physics‐Based Narrowband Optical Parameters for Snow Albedo Simulation in Climate Models W. Wang et al. 10.1029/2020MS002431
- Changes in snow and ice surface albedo and its impact on snow and ice area in the Wind River Range, Wyoming, USA N. Owusu-Amponsah et al. 10.1080/02723646.2022.2136594
- Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan L. Van Tricht et al. 10.3389/feart.2021.734802
- Structural and functional responses of lotic biofilm to abrasive sediments and P enrichment: an indoor experimental approach V. Diaz-Villanueva et al. 10.1007/s00027-024-01150-2
- Refinement of the tephrostratigraphy straddling the northern Patagonian Andes (40–41°S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation B. Alloway et al. 10.1002/jqs.3389
- Dark brown carbon from wildfires: a potent snow radiative forcing agent? G. Chelluboyina et al. 10.1038/s41612-024-00738-7
- Remote Sensing-Based Simulation of Snow Grain Size and Spatial–Temporal Variation Characteristics of Northeast China from 2001 to 2019 F. Zhang et al. 10.3390/rs15204970
- Modelling light-absorbing particle–snow–radiation interactions and impacts on snow albedo: fundamentals, recent advances and future directions C. He & J. Ming 10.1071/EN22013
- Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain S. González-Correa et al. 10.3390/atmos13111903
Latest update: 06 Jan 2025
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
We present the results of two field campaigns and modeling activities on the impact of...