Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2909-2020
https://doi.org/10.5194/tc-14-2909-2020
Research article
 | 
04 Sep 2020
Research article |  | 04 Sep 2020

Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps

Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig

Related authors

Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864,https://doi.org/10.5194/egusphere-2024-2864, 2024
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
SnowQM 1.0: A fast R Package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298,https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021,https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Climate Interactions
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023,https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023,https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022,https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022,https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary

Cited articles

Addor, N. and Seibert, J.: Bias correction for hydrological impact studies – beyond the daily perspective, Hydrol. Process., 28, 4823–4828, https://doi.org/10.1002/hyp.10238, 2014. 
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2010gl046270, 2011. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Brown, R. D. and Mote, P. W.: The Response of Northern Hemisphere Snow Cover to a Changing Climate, J. Clim., 22, 2124–2145, https://doi.org/10.1175/2008jcli2665.1, 2009. 
Download
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.