Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-2029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2029-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones
Takehiko Nose
CORRESPONDING AUTHOR
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
Takuji Waseda
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
Tsubasa Kodaira
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
Jun Inoue
National Institute of Polar Research, Tachikawa, Tokyo, Japan
Related authors
No articles found.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1834, https://doi.org/10.5194/egusphere-2024-1834, 2024
Short summary
Short summary
This article presents data on iron and manganese, which are essential micronutrients for primary producers, on the surface of the Arctic’s Laptev and East Siberian Seas (LESS). Observations were made in international cooperation with the NABOS expedition during the late summer of 2021 in the Arctic Ocean. The results from this study indicate that the major factors controlling these metal concentrations in LESS are river discharge and the input of shelf sediment.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021, https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Short summary
A cloud particle sensor (CPS) sonde is an observing system to obtain the signals of the phase, size, and the number of cloud particles. Based on the field experiments in the Arctic regions and numerical experiments, we proposed a method to correct the CPS sonde data and found that the CPS sonde system can appropriately observe the liquid cloud if our correction method is applied.
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019, https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary
Short summary
Ozone and carbon monoxide levels were uniquely observed (for > 10 000 h) over oceans from 67° S to 75° N. Tropospheric chemistry reanalysis v2 reproduced the observed evolution of pollution plumes from continents but underpredicted and overpredicted ozone levels in the Arctic and in the western Pacific equatorial region, respectively. Processes to explain the gaps are proposed, including halogen-mediated destruction in the low latitudes. Our open data set will complement the TOAR data collection.
Takuya Nakanowatari, Jun Inoue, Kazutoshi Sato, Laurent Bertino, Jiping Xie, Mio Matsueda, Akio Yamagami, Takeshi Sugimura, Hironori Yabuki, and Natsuhiko Otsuka
The Cryosphere, 12, 2005–2020, https://doi.org/10.5194/tc-12-2005-2018, https://doi.org/10.5194/tc-12-2005-2018, 2018
Short summary
Short summary
Medium-range predictability of early summer sea ice thickness in the East Siberian Sea was examined, based on TOPAZ4 forecast data. Statistical examination indicates that the estimate drops abruptly at 4 days, which is related to dynamical process controlled by synoptic-scale atmospheric fluctuations such as an Arctic cyclone. For longer lead times (> 4 days), the thermodynamic melting process takes over, which represents most of the remaining prediction.
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017, https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary
Short summary
The model RS92 radiosonde manufactured by Vaisala Ltd. is now being replaced with a successor model, the RS41, and we need to clarify accuracy differences between them for a variety of research. For this purpose, 36 twin-radiosonde flights were performed over the oceans from the Arctic to the tropics. Basically the differences between the RS41 and RS92 were smaller than the nominal combined uncertainties of the RS41; however, we found non-negligible biases in relative humidity and pressure.
Naoya Yokoi, Kohei Matsuno, Mutsuo Ichinomiya, Atsushi Yamaguchi, Shigeto Nishino, Jonaotaro Onodera, Jun Inoue, and Takashi Kikuchi
Biogeosciences, 13, 913–923, https://doi.org/10.5194/bg-13-913-2016, https://doi.org/10.5194/bg-13-913-2016, 2016
Short summary
Short summary
We studied short-term changes in the microplankton community in the Chukchi Sea with regards to responses to the strong wind event (SWE) during autumn (September 2013). It is assumed that atmospheric turbulences, such as SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.
K. Matsuno, A. Yamaguchi, S. Nishino, J. Inoue, and T. Kikuchi
Biogeosciences, 12, 4005–4015, https://doi.org/10.5194/bg-12-4005-2015, https://doi.org/10.5194/bg-12-4005-2015, 2015
Short summary
Short summary
We performed high-frequency samplings of zooplankton community and gut pigment of copepods in the Chukchi Sea. Zooplankton showed no changes with a strong wind event and dominant copepods prepared for diapause. Yet, feeding activity of the copepods increased as a result of temporal phytoplankton bloom, enhanced by the wind event. Because of the long generation length of copepods, a smaller effect was detected for their abundance, population, lipid accumulation and gonad maturation.
Related subject area
Discipline: Other | Subject: Numerical Modelling
Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Simulating lake ice phenology using a coupled atmosphere–lake model at Nam Co, a typical deep alpine lake on the Tibetan Plateau
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Xu Zhou, Binbin Wang, Xiaogang Ma, Zhu La, and Kun Yang
The Cryosphere, 18, 4589–4605, https://doi.org/10.5194/tc-18-4589-2024, https://doi.org/10.5194/tc-18-4589-2024, 2024
Short summary
Short summary
The simulation of the ice phenology of Nam Co by WRF is investigated. Compared with the default model, improving the key lake schemes, such as water surface roughness length for heat fluxes and the shortwave radiation transfer for lake ice, can better simulate the lake ice phenology. The still existing errors in the spatial patterns of lake ice phenology imply that challenges still exist in modelling key lake and non-lake physics such as grid-scale water circulation and snow-related processes.
Cited articles
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.:
Intercomparison of passive microwave sea ice concentration retrievals over
the high-concentration Arctic sea ice, J. Geophys. Res.-Oceans, 112, C08004, https://doi.org/10.1029/2006JC003543, 2007. a, b
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves.
Part I: Definition, Calibration, and Validation, J. Phys.
Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1,
2010. a
Ardhuin, F., Boutin, G., Stopa, J., Girard-Ardhuin, F., Melsheimer, C.,
Thomson, J., Kohout, A., Doble, M., and Wadhams, P.: Wave attenuation
through an Arctic marginal ice zone on October 12, 2015: Part 2. Numerical
modeling of waves and associated ice break-up, J. Geophys.
Res.-Oceans, 123, 5652–5668, https://doi.org/10.1002/2018JC013784, 2018. a, b, c, d, e, f
Bekkers, E., Francois, J. F., and Rojas-Romagosa, H.: Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route, Econ. J., 128, 1095–1127, https://doi.org/10.1111/ecoj.12460, 2018. a
Boutin, G., Ardhuin, F., Dumont, D., Sevigny, C., Girard-Ardhuin, F., and
Accensi, M.: Floe Size Effect on Wave-Ice Interactions: Possible Effects,
Implementation in Wave Model, and Evaluation, J. Geophys.
Res.-Oceans, 123, 4779–4805,
https://doi.org/10.1029/2017JC013622, 2018. a, b, c, d
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone, The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, 2020. a
Canadian Ice Service-Environment Canada: Manual of Ice (MANICE). Manual of Standard Procedures for Observing and Reporting Ice Conditions, Tech. rep., Canadian Ice Service-Environment Canada, Catalogue no. En56-175/2005, 2005. a
Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination of sea ice
parameters with the NIMBUS 7 SMMR, J. Geophys. Res.-Atmos., 89, 5355–5369, https://doi.org/10.1029/JD089iD04p05355, 1984. a
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS
Passive Microwave Data, Version 1. November 2018, updated
yearly, Arctic grid,
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996–2018. a, b
Cheng, S., Rogers, W. E., Thomson, J., Smith, M., Doble, M. J., Wadhams, P.,
Kohout, A. L., Lund, B., Persson, O. P., Collins III, C. O., Ackley, S. F.,
Montiel, F., and Shen, H. H.: Calibrating a Viscoelastic Sea Ice Model for
Wave Propagation in the Arctic Fall Marginal Ice Zone, J.
Geophys. Res.-Oceans, 122, 8770–8793,
https://doi.org/10.1002/2017JC013275, 2017. a, b, c, d, e
Chevallier, M., Smith, G. C., Dupont, F., Lemieux, J.-F., Forget, G., Fujii,
Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T.,
Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry,
N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina,
S., Tang, Y., Tsujino, H., and Wang, X.: Intercomparison of the Arctic sea
ice cover in global ocean–sea ice reanalyses from the ORA-IP project,
Clim. Dynam., 49, 1107–1136,
https://doi.org/10.1007/s00382-016-2985-y, 2017. a, b
Collins III, C. O., Rogers, W. E., Marchenko, A., and Babanin, A. V.: In situ measurements of an energetic wave event in the Arctic marginal ice zone, Geophys. Res. Lett., 42, 1863–1870,
https://doi.org/10.1002/2015gl063063, 2015. a
Comiso, J. C.: Characteristics of Arctic winter sea ice from satellite
multispectral microwave observations, J. Geophys. Res.-Oceans, 91, 975–994, https://doi.org/10.1029/JC091iC01p00975, 1986. a
Comiso, J. C.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS, Version 3, November 2018, Arctic grid,
https://doi.org/10.5067/7Q8HCCWS4I0R, 2017–2018. a, b
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive
microwave algorithms for sea ice concentration: A comparison of two
techniques, Remote Sens. Environ., 60, 357–384,
https://doi.org/10.1016/S0034-4257(96)00220-9, 1997. a, b
Comiso, J. C., Meier, W. N., and Gersten, R.: Variability and trends in the
Arctic Sea ice cover: Results from different techniques, J. Geophys. Res.-Oceans, 122, 6883–6900,
https://doi.org/10.1002/2017JC012768, 2017. a, b, c, d
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a, b
Dumont, D., Kohout, A., and Bertino, L.: A wave-based model for the marginal
ice zone including a floe breaking parameterization, J. Geophys. Res.-Oceans, 116, C04001, https://doi.org/10.1029/2010JC006682, 2011. a
Guest, P., Persson, P. O. G., Wang, S., Jordan, M., Jin, Y., Blomquist, B., and Fairall, C.: Low-Level Baroclinic Jets Over the New Arctic Ocean, J. Geophys. Res.-Oceans, 123, 4074–4091,
https://doi.org/10.1002/2018JC013778, 2018. a
Heygster, G., Huntemann, M., Ivanova, N., Saldo, R., and Pedersen,
L. T.: Response of passive microwave sea ice concentration algorithms to thin
ice, in: 2014 IEEE Geoscience and Remote Sensing Symposium, 3618–3621,
https://doi.org/10.1109/IGARSS.2014.6947266, 2014. a
Inoue, J., Hori, M. E., Enomoto, T., and Kikuchi, T.: Intercomparison of
Surface Heat Transfer Near the Arctic Marginal Ice Zone for Multiple
Reanalyses: A Case Study of September 2009, SOLA, 7, 57–60,
https://doi.org/10.2151/sola.2011-015, 2011. a
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015. a, b, c, d
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman,
B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W.,
Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell,
B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D.,
Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The
International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0,
Geophys. Res. Lett., 39, L12609,
https://doi.org/10.1029/2012GL052219, 2012. a
JAMSTEC: R/V Mirai Cruise Report MR18-05C Arctic Challenge and for
Sustainability (ArCS), Arctic Ocean, Bering Sea, and North Pacific, 24
October–7 December2018, Tech. rep., Japan Agency for Marine-Earth Science
and Technology (JAMSTEC),
available at: http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/MR18-05C_all.pdf (last access: 7 August 2019),
2018. a
JAMSTEC: Oceanographic Research Vessel MIRAI,
available at: https://www.jamstec.go.jp/e/about/equipment/ships/mirai.html, last access: 22 July 2019. a
Jung, T., Gordon, N. D., Bauer, P., Bromwich, D. H., Chevallier, M., Day,
J. J., Dawson, J., Doblas-Reyes, F., Fairall, C., Goessling, H. F., Holland,
M., Inoue, J., Iversen, T., Klebe, S., Lemke, P., Losch, M., Makshtas, A.,
Mills, B., Nurmi, P., Perovich, D., Reid, P., Renfrew, I. A., Smith, G.,
Svensson, G., Tolstykh, M., and Yang, Q.: Advancing Polar Prediction
Capabilities on Daily to Seasonal Time Scales, B. Am.
Meteorol. Soc., 97, 1631–1647,
https://doi.org/10.1175/BAMS-D-14-00246.1, 2016. a
Kodaira, T., Waseda, T., Nose, T., Sato, K., Inoue, J., Voermans, J., and
Babanin, A.: Observation of on-ice wind waves under grease ice in the western
Arctic Ocean, Polar Science, in review, 2020. a
Kohout, A. L., Williams, M. J. M., Dean, S. M., and Meylan, M. H.:
Storm-induced sea-ice breakup and the implications for ice extent, Nature,
509, 604–607, https://doi.org/10.1038/nature13262, 2014. a
Kohout, A. L., Penrose, B., Penrose, S., and Williams, M. J.: A device for
measuring wave-induced motion of ice floes in the Antarctic Marginal Ice
Zone, Ann. Glaciol., 56, 415–424,
https://doi.org/10.3189/2015aog69a600, 2015. a, b
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501,
https://doi.org/10.1029/2009GL039035, 2009. a
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019. a, b
Li, J., Kohout, A. L., Doble, M. J., Wadhams, P., Guan, C., and Shen, H. H.:
Rollover of Apparent Wave Attenuation in Ice Covered Seas, J. Geophys. Res.-Oceans, 122, 8557–8566,
https://doi.org/10.1002/2017JC012978, 2017. a
Liu, A. K. and Mollo-Christensen, E.: Wave Propagation in a Solid Ice Pack,
J. Phys. Oceanogr., 18, 1702–1712,
https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2, 1988. a, b, c
Liu, Q., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S.,
Qiao, F., and Guan, C.: Observation-Based Source Terms in the
Third-Generation Wave Model WAVEWATCH III: Updates and Verification,
J. Phys. Oceanogr., 49, 489–517,
https://doi.org/10.1175/JPO-D-18-0137.1, 2019. a
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid extensive sea-ice loss, Geophys. Res. Lett., 34, L24501,
https://doi.org/10.1029/2007GL032043, 2007. a
Meier, W. N.: Comparison of passive microwave ice concentration algorithm
retrievals with AVHRR imagery in Arctic peripheral seas, IEEE T. Geosci. Remote, 43, 1324–1337,
https://doi.org/10.1109/TGRS.2005.846151, 2005. a, b
Meier, W. N., Markus, T., and Comiso, J. C.: AMSR-E/AMSR2 Unified L3 Daily
12.5 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth
Polar Grids, Version 1, November 2018, Arctic grid,
https://doi.org/10.5067/RA1MIJOYPK3P, 2018. a, b
Meylan, M. H. and Masson, D.: A linear Boltzmann equation to model wave
scattering in the marginal ice zone, Ocean Model., 11, 417–427,
https://doi.org/10.1016/j.ocemod.2004.12.008, 2006. a
Montiel, F., Squire, V. A., Doble, M., Thomson, J., and Wadhams, P.:
Attenuation and Directional Spreading of Ocean Waves During a Storm Event in
the Autumn Beaufort Sea Marginal Ice Zone, J. Geophys. Res.-Oceans, 123, 5912–5932, https://doi.org/10.1029/2018JC013763, 2018. a
Mosig, J. E. M., Montiel, F., and Squire, V. A.: Comparison of
viscoelastic-type models for ocean wave attenuation in ice-covered seas,
J. Geophys. Res.-Oceans, 120, 6072–6090,
https://doi.org/10.1002/2015JC010881, 2015. a, b, c, d
Nose, T., Webb, A., Waseda, T., Inoue, J., and Sato, K.: Predictability of
storm wave heights in the ice-free Beaufort Sea, Ocean Dynam. 68,
1383–1402, https://doi.org/10.1007/s10236-018-1194-0, 2018. a, b, c
Notz, D.: Sea-ice extent and its trend provide limited metrics of model performance, The Cryosphere, 8, 229–243, https://doi.org/10.5194/tc-8-229-2014, 2014. a, b, c
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical
applications. Part 2: Model validation with improved source term
parameterization, Ocean Model., 70, 174 –188,
https://doi.org/10.1016/j.ocemod.2012.12.001, 2013. a
Roach, L. A., Dean, S. M., and Renwick, J. A.: Consistent biases in Antarctic sea ice concentration simulated by climate models, The Cryosphere, 12, 365–383, https://doi.org/10.5194/tc-12-365-2018, 2018. a, b
Roach, L. A., Bitz, C. M., Horvat, C., and Dean, S. M.: Advances in Modeling
Interactions Between Sea Ice and Ocean Surface Waves, J. Adv.
Model. Earth Sy., 11, 4167–4181,
https://doi.org/10.1029/2019MS001836, 2019. a
Rogers, W. E. and Campbell, T. J.: Implementation of curvilinear coordinate
system in the WAVEWATCH III model, Tech. Rep. NRL/MR/7320–09-9193, Naval
Research Laboratory, Stennis Space Center, 2009. a
Rogers, W. E., Babanin, A. V., and Wang, D. W.: Observation-Consistent Input
and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves:
Description and Simple Calculations, J. Atmos. Ocean.
Tech., 29, 1329–1346, https://doi.org/10.1175/JTECH-D-11-00092.1,
2012. a
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008. a, b, c, d
Squire, V. A.: Of ocean waves and sea-ice revisited, Cold Reg. Sci.
Technol., 49, 110–133,
https://doi.org/10.1016/j.coldregions.2007.04.007, 2007. a
Squire, V. A.: A fresh look at how ocean waves and sea ice interact,
Philos. T. R. Soc. A, 376, 20170342,
https://doi.org/10.1098/rsta.2017.0342, 2018. a, b
Stephenson, S. R., Smith, L. C., Brigham, L. W., and Agnew, J. A.: Projected
21st-century changes to Arctic marine access, Clim. Change, 118,
885–899, https://doi.org/10.1007/s10584-012-0685-0, 2013. a
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018. a
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Clim. Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012. a
Sutherland, G., Rabault, J., Christensen, K. H., and Jensen, A.: A two layer
model for wave dissipation in sea ice, Appl. Ocean Res., 88, 111–118, https://doi.org/10.1016/j.apor.2019.03.023, 2019. a, b
The WAVEWATCH III® Development Group
(WW3DG): User manual and system documentation of WAVEWATCH
III® version 6.07, Tech. Note 333,
NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp., 2019. a
Thomson, J., Ackley, S., Girard-Ardhuin, F., Ardhuin, F., Babanin, A., Boutin, G., Brozena, J., Cheng, S., Collins, C., Doble, M., Fairall, C., Guest, P., Gebhardt, C., Gemmrich, J., Graber, H. C., Holt, B., Lehner, S., Lund, B., Meylan, M. H., Maksym, T., Montiel, F., Perrie, W., Persson, O., Rainville, L., Erick Rogers, W., Shen, H., Shen, H., Squire, V., Stammerjohn, S., Stopa, J., Smith, M. M., Sutherland, P., and Wadhams, P.: Overview of the Arctic Sea State and Boundary Layer Physics Program, J. Geophys. Res.-Oceans, 123, 8674–8687, https://doi.org/10.1002/2018JC013766, 2018. a, b, c, d
Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,
S. J., Brett, M., Wilson, J.,
Millman, J. K., Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Larson, E.,
Carey, C. J., Polat, İ., Feng, Y., Moore,
E. W., Vand erPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy: SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, R. and Shen, H. H.: Gravity waves propagating into an ice-covered ocean: A viscoelastic model, J. Geophys. Res.-Oceans, 115, C06024,
https://doi.org/10.1029/2009JC005591, 2010. a, b, c
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996. a
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., and Bertino, L.:
Wave–ice interactions in the marginal ice zone. Part 1: Theoretical
foundations, Ocean Model., 71, 81–91,
https://doi.org/10.1016/j.ocemod.2013.05.010, 2013. a
Zhang, Y., Chen, C., Beardsley, R. C., Perrie, W., Gao, G., Zhang, Y., Qi, J., and Lin, H.: Applications of an unstructured grid surface wave model
(FVCOM-SWAVE) to the Arctic Ocean: The interaction between ocean waves and
sea ice, Ocean Model., 145, 101532,
https://doi.org/10.1016/j.ocemod.2019.101532, 2020. a
Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R.: Observation-based source terms in the third-generation wave model WAVEWATCH, Ocean Model., 96, 2–25, https://doi.org/10.1016/j.ocemod.2015.07.014, 2015. a
Short summary
Accurate wave modelling in and near ice-covered ocean requires true sea ice concentration mapping of the model region. The information derived from satellite instruments has considerable uncertainty depending on retrieval algorithms and sensors. This study shows that the accuracy of satellite-retrieved sea ice concentration estimates is a major error source in wave–ice models. A similar feedback effect of sea ice concentration uncertainty may also apply to modelling lower atmospheric conditions.
Accurate wave modelling in and near ice-covered ocean requires true sea ice concentration...