Articles | Volume 13, issue 3
https://doi.org/10.5194/tc-13-981-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-981-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice-stream flow switching by up-ice propagation of instabilities along glacial marginal troughs
Etienne Brouard
CORRESPONDING AUTHOR
Centre d'études nordiques & Département de géographie,
Université Laval, Québec, Québec, Canada
Patrick Lajeunesse
Centre d'études nordiques & Département de géographie,
Université Laval, Québec, Québec, Canada
Related authors
No articles found.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Eleanor Georgiadis, Jacques Giraudeau, Philippe Martinez, Patrick Lajeunesse, Guillaume St-Onge, Sabine Schmidt, and Guillaume Massé
Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, https://doi.org/10.5194/cp-14-1991-2018, 2018
Short summary
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
Related subject area
Discipline: Ice sheets | Subject: Geomorphology
Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica
Formation of ribbed bedforms below shear margins and lobes of palaeo-ice streams
A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology
Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
How dynamic are ice-stream beds?
Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024, https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Short summary
Associated with climate change between the Last Glacial Maximum and the current interglacial period, we reconstruct the behaviour of the southwestern Laurentide Ice Sheet, which covered the Canadian Prairies, using detailed landform mapping. Our reconstruction depicts three shifts in the ice sheet’s dynamics. We suggest these changes resulted from ice sheet thinning triggered by abrupt climatic change. However, we show that regional lithology and topography also play an important role.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Josh Crozier, Leif Karlstrom, and Kang Yang
The Cryosphere, 12, 3383–3407, https://doi.org/10.5194/tc-12-3383-2018, https://doi.org/10.5194/tc-12-3383-2018, 2018
Short summary
Short summary
Understanding ice sheet surface meltwater routing is important for modeling and predicting ice sheet evolution. We determined that bed topography underlying the Greenland Ice Sheet is the primary influence on 1–10 km scale ice surface topography, and on drainage-basin-scale surface meltwater routing. We provide a simple means of predicting the response of surface meltwater routing to changing ice flow conditions and explore the implications of this for subglacial hydrology.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Cited articles
Alley, R. B., Anandakrishnan, S., Bentley, C. R., and Lord, N.: A
water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica, Ann.
Glaciol., 20, 187–194, https://doi.org/10.3189/172756494794587032, 1994.
Anandakrishnan, S., Alley, R., Jacobel, R. W., and Conway, H.: The flow
regime of Ice Stream C and hypotheses concerning its recent stagnation, The
West Antarctic Ice Sheet: Behavior and Environment, 77, 283–294,
https://doi.org/10.1029/AR077p0283, 2001.
Anandakrishnan, S. and Alley, R. B.: Stagnation of Ice Stream C, West
Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268,
https://doi.org/10.1029/96GL04016, 1997.
Anderson, J. B.: Antarctic marine geology, Cambridge University Press,
Cambridge, UK, 297 pp., 1999.
Batchelor, C. L. and Dowdeswell, J. A.: The physiography of High Arctic
cross-shelf troughs, Quaternary Sci. Rev., 92, 68–96,
https://doi.org/10.1016/j.quascirev.2013.05.025, 2014.
Batchelor, C. L. and Dowdeswell, J. A.: Lateral shear-moraines and lateral
marginal-moraines of palaeo-ice streams, Quaternary Sci. Rev., 151, 1–26,
https://doi.org/10.1016/j.quascirev.2016.08.020, 2016.
Bennett, R., Campbell, D. C., Furze, M. F. A., and Haggart, J. W.: The
shallow stratigraphy and geohazards of the Northeast Baffin Shelf and
Lancaster Sound, B. Can. Petrol. Geol., 62, 217–231, 2014.
Bishop, P.: Drainage rearrangement by river capture, beheading and diversion,
Prog. Phys. Geog., 19, 449–473, 1995.
bibitem1 Briner, J. P., Miller, G. H., Davis, P. T., and Finkel, R. C.:
Cosmogenic exposure dating in arctic glacial landscapes: implications for the
glacial history of northeastern Baffin Island, Arctic Canada, Can. J. Earth
Sci., 42, 67–84, https://doi.org/10.1139/e04-102, 2005.
Briner, J. P., Michelutti, N., Francis, D. R., Miller, G. H., Axford, Y.,
Wooller, M. J., and Wolfe, A. P.: A multi-proxy lacustrine record of Holocene
climate change on northeastern Baffin Island, Arctic Canada, Quaternary Res.,
65, 431–442, https://doi.org/10.1016/j.yqres.2005.10.005, 2006a.
Briner, J. P., Miller, G. H., Davis, P. T., and Finkel, R. C.: Cosmogenic
radionuclides from fiord landscapes support differential erosion by
overriding ice sheets, Bull. Geol. Soc. Am., 118, 406–420,
https://doi.org/10.1130/B25716.1, 2006b.
Briner, J. P., Miller, G. H., Finkel, R., and Hess, D. P.: Glacial erosion at
the fjord onset zone and implications for the organization of ice flow on
Baffin Island, Arctic Canada, Geomorphology, 97, 126–134,
https://doi.org/10.1016/j.geomorph.2007.02.039, 2008.
Briner, J. P., Bini, A. C., and Anderson, R.S.: Rapid early Holocene retreat
of a Laurentide outlet glacier through an Arctic fjord, Nat. Geosci., 2,
496–499, https://doi.org/10.1038/ngeo556, 2009.
Brouard, E. and Lajeunesse, P.: Maximum extent and decay of the Laurentide
Ice Sheet in Western Baffin Bay during the Last glacial episode, Scientific
Reports, 7, 10711, https://doi.org/10.1038/s41598-017-11010-9, 2017.
Brouard, E. and Lajeunesse, P.: Glacial to postglacial submarine landform
assemblages in fiords of northeastern Baffin Island, Geomorphology, 330,
40–56, https://doi.org/10.1016/j.geomorph.2019.01.007, 2019.
Brouard, E., Lajeunesse, P., Cousineau, P. A., Govare, É., and Locat, J.:
Late Wisconsinan deglaciation and proglacial lakes development in the
Charlevoix region, southeastern Québec, Canada, Boreas, 45, 754–772,
https://doi.org/10.1111/bor.12187, 2016.
Clark, C. D.: Mega-scale glacial lineations and cross-cutting ice-flow
landformds, Earth Surf. Proc. Land., 18, 1–29, 1993.
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Spagnolo, M., and Ng, F. S.
L.: Size and shape characteristics of drumlins, derived from a large sample,
and associated scaling laws, Quaternary Sci. Rev., 28, 677–692,
https://doi.org/10.1016/j.quascirev.2008.08.035, 2009.
Cofaigh, C. Ó., Evans, D. J. A., and Smith, I. R.: Large-scale
reorganization and sedimentation of terrestrial ice streams during late
Wisconsinan Laurentide Ice Sheet deglaciation, Bull. Geol. Soc. Am., 122,
743–756, https://doi.org/10.1130/B26476.1, 2010.
Conway, H., Catania, G., Raymond, C. F., Gades, A. M., Scambos, T. A., and
Engelhardt, H.: Switch of flow direction in an antarctic ice stream, Nature,
419, 465–467, https://doi.org/10.1038/nature01081, 2002.
Cook, S. J. and Swift, D. A.: Subglacial basins: Their origin and importance
in glacial systems and landscapes, Earth-Science Rev., 115, 332–372,
https://doi.org/10.1016/j.earscirev.2012.09.009, 2012.
De Angelis, H. and Kleman, J.: Palaeo-ice streams in the Foxe/Baffin sector
of the Laurentide Ice Sheet, Quaternary Sci. Rev., 26, 1313–1331,
https://doi.org/10.1016/j.quascirev.2007.02.010, 2007.
De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf collapse,
Science, 299, 1560–1562, https://doi.org/10.1126/science.1077987, 2003.
Dowdeswell, J. A. and Fugelli, E. M. G.: The seismic architecture and
geometry of grounding-zone wedges formed at the marine margins of past ice
sheets, Bull. Geol. Soc. Am., 124, 1750–1761, https://doi.org/10.1130/B30628.1, 2012.
Dowdeswell, J. A., Ottesen, D., and Rise, L.: Flow switching and large-scale
deposition by ice streams draining former ice sheets, Geology, 34, 313–316,
https://doi.org/10.1130/G22253.1, 2006.
Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C. Ó., and Anderson,
J. B.:, Submarine glacial landforms and rates of ice-stream collapse,
Geology, 36, 819–822, https://doi.org/10.1130/G24808A.1, 2008.
Dowdeswell, E. K., Todd, B. J., and Dowdeswell, J. A.: Submarine medial
moraines and convergent ice flow, Scott Inlet, Baffin Island, Arctic Canada,
Geological Society, London, Memoirs, 46, 193–194, 2016.
Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K.,
and Hogan, K.: Atlas of submarine glacial landforms: modern, Quaternary and
ancient, Geological Society of London, London, UK, 618 pp., 2016.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, Developments in Quaternary Sciences, 2,
373–424, https://doi.org/10.1016/S1571-0866(04)80209-4, 2004.
Ehlers, J. and Gibbard, P. L.: Extent and chronology of glaciations,
Quaternary Sci. Rev., 22, 1561–1568, 2003.
Engelhardt, H., Humphrey, N., Kamb, B., and Fahnestock, M.: Physical
conditions at the base of a fast moving Antarctic ice stream, Science, 248,
57–59, 1990.
Evans, D. J. A. and Hansom, J. D.: The edinburgh castle crag-and-tail, Scot.
Geogr. Mag., 112, 129–131, https://doi.org/10.1080/14702549608554461, 1996.
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J.,
Kjær, K. H., Morlighem, M., Noël, B., Van Den Broeke, M., Stearns, L.
A., Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on
the Greenland ice sheet controlled by outlet glacier geometry, Nat. Geosci.,
10, 366–369, https://doi.org/10.1038/ngeo2934, 2017.
Fortier, Y. O. and Morley, L. W.: Geological unity of the Arctic Islands,
T. Roy. Soc. Can., 50, 3–12, 1956.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial
cycle with a coupled climate ice-sheet model of intermediate complexity,
Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Graham, A. G. C. and Hogan, K. A.: Crescentic scours on palaeo-ice stream
beds, Geological Society, London, Memoirs, 46, 221–222, 2016.
Graham, A. G. C., Larter, R. D., Gohl, K., Hillenbrand, C. D., Smith, J. A.,
and Kuhn, G.: Bedform signature of a West Antarctic palaeo-ice stream reveals
a multi-temporal record of flow and substrate control, Quaternary Sci. Rev.,
28, 2774–2793, https://doi.org/10.1016/j.quascirev.2009.07.003, 2009.
Graham, A. G. C., Larter, R. D., Gohl, K., Dowdeswell, J. A., Hillenbrand,
C.D., Smith, J. A., Evans, J., Kuhn, G., and Deen, T.: Flow and retreat of
the Late Quaternary Pine Island-Thwaites palaeo-ice stream, West Antarctica,
J. Geophys. Res., 115, F03025, https://doi.org/10.1029/2009JF001482, 2010.
Greenwood, S. L. and Clark, C. D.: Reconstructing the last Irish Ice Sheet 2:
a geomorphologically-driven model of ice sheet growth, retreat and dynamics,
Quaternary Sci. Rev., 28, 3101–3123, 2009.
Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M., and Sternai, P.:
Glacial hydrology and erosion patterns: a mechanism for carving glacial
valleys, Earth Planet. Sci Lett., 310, 498–508, 2011.
Hogan, K. A., Dowdeswell, J. A., Noormets, R., Evans, J., and Ó Cofaigh,
C.: Evidence for full-glacial flow and retreat of the Late Weichselian Ice
Sheet from the waters around Kong Karls Land, eastern Svalbard, Quaternary
Sci. Rev., 29, 3563–3582, https://doi.org/10.1016/j.quascirev.2010.05.026, 2010.
Hosseinpour, M., Müller, R. D., Williams, S. E., and Whittaker, J. M.:
Full-fit reconstruction of the Labrador Sea and Baffin Bay, Solid Earth, 4,
461–479, https://doi.org/10.5194/se-4-461-2013, 2013.
Hughes, T.: On the pulling power of ice streams, J. Glaciol., 38, 125–151,
https://doi.org/10.1017/S0022143000009667, 1992.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke,
H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M.,
Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall,
J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R.,
Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall,
P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version
3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jamieson, S. S. R., Hulton, N. R. J., and Hagdorn, M.: Modelling landscape
evolution under ice sheets, Geomorphology, 97, 91–108, 2008.
Jansson, K. N., Stroeven, A. P., and Kleman, J.: Configuration and timing of
Ungava Bay ice streams, Labrador-Ungava, Canada, Boreas, 32, 256–262,
https://doi.org/10.1111/j.1502-3885.2003.tb01441.x, 2003.
Jenner, K. A., Campbell, D. C., and Piper, D. J. W.: Along-slope variations
in sediment lithofacies and depositional processes since the Last Glacial
Maximum on the northeast Baffin margin, Canada, Mar. Geol., 405, 92–107,
https://doi.org/10.1016/j.margeo.2018.07.012, 2018.
Jezek, K., Wu, X., Gogineni, P., Rodríguez, E., Freeman, A.,
Rodriguez-Morales, F., and Clark, C. D.: Radar images of the bed of the
Greenland Ice Sheet, Geophys. Res. Lett., 38, L01501,
https://doi.org/10.1029/2010GL045519, 2011.
Josehans, H. and Zevenhuizen, J.: The Late Pleistocene geology of the
Labrador Shelf, Polar Res., 5, 351–354, https://doi.org/10.3402/polar.v5i3.6912, 1987.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a
warming world, Nat. Geosci., 4, 506–513, https://doi.org/10.1038/ngeo1194, 2011.
Kessler, M. A., Anderson, R. S., and Briner, J. P.: Fjord insertion into
continental margins driven by topographic steering of ice, Nat. Geosci., 1,
365–369, https://doi.org/10.1038/ngeo201, 2008.
King, E. C., Woodward, J., and Smith, A. M.: Seismic and radar observations
of subglacial bed forms beneath the onset zone of Rutford Ice Stream,
Antarctica, J. Glaciol., 53, 665–672, https://doi.org/10.3189/002214307784409216,
2007.
King, E. C., Hindmarsh, R. C. A., and Stokes, C. R.: Formation of mega-scale
glacial lineations observed beneath a West Antarctic ice stream, Nat.
Geosci., 2, 585–588, https://doi.org/10.1038/ngeo581, 2009.
Kleman, J. and Applegate, P. J.: Durations and propagation patterns of ice
sheet instability events, Quaternary Sci. Rev., 92, 32–39,
https://doi.org/10.1016/j.quascirev.2013.07.030, 2014.
Kleman, J., Hättestrand, C., Stroeven, A. P., Jansson, K. N., De Angelis,
H., and Borgström, I.: Reconstruction of Palaeo-Ice Sheets – Inversion
of their Glacial Geomorphological Record, Glacier Science and Environmental
Change, chap. 38, 192–198, https://doi.org/10.1002/9780470750636.ch38, 2007.
Krabbendam, M., Eyles, N., Putkinen, N., Bradwell, T., and Arbelaez-Moreno,
L.: Streamlined hard beds formed by palaeo-ice streams: A review, Sediment.
Geol., 338, 24–50, https://doi.org/10.1016/j.sedgeo.2015.12.007, 2016.
Lajeunesse, P., Dietrich, P., and Ghienne, J.-F.: Late Wisconsinan grounding
zones of the Laurentide Ice Sheet margin off the Québec North Shore (NW
Gulf of St Lawrence), Geological Society, London, Special Publications, 475,
227–228, 2018.
Livingstone, S. J., Ó Cofaigh, C., Stokes, C. R., Hillenbrand, C. D.,
Vieli, A., and Jamieson, S. S. R.: Antarctic palaeo-ice streams, Earth-Sci.
Rev., 111, 90–128, https://doi.org/10.1016/j.earscirev.2011.10.003, 2012.
Løken, O. H. and Hodgson, D. A.: On the Submarine Geomorphology Along the
East Coast of Baffin Island, Can. J. Earth Sci., 8, 185–195,
https://doi.org/10.1139/e71-020, 1971.
Lowe, A. L. and Anderson, J. B.: Evidence for abundant subglacial meltwater
beneath the paleo-ice sheet in Pine Island Bay, Antarctica, J. Glaciol., 49,
125–138, https://doi.org/10.3189/172756503781830971, 2003.
MacLean, B., Williams, G., and Zhang, S.: New insights into the stratigraphy
and petroleum potential of the Baffin shelf's Cretaceous rocks, B. Can.
Petrol. Geol., 62, 289–310, https://doi.org/10.2113/gscpgbull.62.4.289, 2014.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide
Ice Sheet: Identification, characteristics and comparison to modern ice
sheets, Earth-Sci. Rev., 143, 117–146,
https://doi.org/10.1016/j.earscirev.2015.01.011, 2015a.
Margold, M., Stokes, C. R., Clark, C. D., and Kleman, J.: Ice streams in the
Laurentide Ice Sheet: a new mapping inventory, J. Maps, 11, 380–395,
https://doi.org/10.1080/17445647.2014.912036, 2015b.
Mercer, J. H.: West Antarctic ice sheet and CO2 greenhouse effect: A threat
of disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in
Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2,
110–114, https://doi.org/10.1038/ngeo394, 2009.
Nielsen, T., De Santis, L., Dahlgren, K. I. T., Kuijpers, A., Laberg, J. S.,
Nygård, A., Praeg, D., and Stoker, M. S.: A comparison of the NW European
glaciated margin with other glaciated margins, Mar. Petrol. Geol., 22,
1149–1183, https://doi.org/10.1016/j.marpetgeo.2004.12.007, 2005.
Nitsche, F. O., Gohl, K., Larter, R. D., Hillenbrand, C.-D., Kuhn, G., Smith,
J. A., Jacobs, S., Anderson, J. B., and Jakobsson, M.: Paleo ice flow and
subglacial meltwater dynamics in Pine Island Bay, West Antarctica, The
Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, 2013.
Ó Cofaigh, C., Dowdeswell, J. A., Allen, C. S., Hiemstra, J. F., Pudsey,
C. J., Evans, J., and Evans, D. J. A.: Flow dynamics and till genesis
associated with a marine-based Antarctic palaeo-ice stream, Quaternary Sci.
Rev., 24, 709–740, https://doi.org/10.1016/j.quascirev.2004.10.006, 2005.
Ó Cofaigh, C., Evans, D. J. A., and Smith, I. R.: Large-scale
reorganization and sedimentation of terrestrial ice streams during late
Wisconsinan Laurentide Ice Sheet deglaciation, Bull. Geol. Soc. Am., 122,
743–756, https://doi.org/10.1130/B26476.1, 2010.
Ó Cofaigh, C., Stokes, C. R., Lian, O. B., Clark, C. D., and Tulacyzk,
S.: Formation of mega-scale glacial lineations on the Dubawnt Lake Ice Stream
bed: 2. Sedimentology and stratigraphy, Quaternary Sci. Rev., 77, 210–227,
https://doi.org/10.1016/j.quascirev.2013.06.028, 2013.
Oakey, G. N. and Chalmers, J. A.: A new model for the Paleogene motion of
Greenland relative to North America: plate reconstructions of the Davis
Strait and Nares Strait regions between Canada and Greenland, J. Geophys.
Res., 117, B10401, https://doi.org/10.1029/2011JB008942, 2012.
Osterman, L. E. and Nelson, A. R.: Latest Quaternary and Holocene
paleoceanography of the eastern Baffin Island continental shelf, Canada:
benthic foraminiferal evidence, Can. J. Earth Sci., 26, 2236–2248,
https://doi.org/10.1139/e89-190, 1989.
Patton, H., Swift, D. A., Clark, C. D., Livingstone, S. J., and Cook, S. J.:
Distribution and characteristics of overdeepenings beneath the Greenland and
Antarctic ice sheets: Implications for overdeepening origin and evolution,
Quaternary. Sci. Rev., 148, 128–145, 2016.
Payne, A. J. and Dongelmans, P. W.: Self-organization in the thermomechanical
flow of ice, J. Geophys. Res., 102, 12219–12233, https://doi.org/10.1029/97JB00513,
1997.
Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., and Rignot, E.:
Recent dramatic thinning of largest West Antarctic ice stream triggered by
oceans, Geophys. Res. Lett., 31, L23401, https://doi.org/10.1029/2004GL021284, 2004.
Pelletier, B. R.: Development of submarine physiography in the Canadian
Arctic and its relation to crustal movements, Report B.I.O. 64-16, Bedford
Institute of Oceanography, 45 pp., 1964.
Praeg, D., Maclean, B., and Sonnichsen, G.: Quaternary Geology of the
Northeast Baffin Island Continental Shelf, Cape Aston to Buchan Gulf
(70∘ to 72∘ N), Geological Survey of Canada Open File
Report 5409, 98 pp., 2007.
Price, S. F., Payne, A. J., Howat, I. M., and Smith, B. E.: Committed
sea-level rise for the next century from Greenland ice sheet dynamics during
the past decade, P. Natl. Acad. Sci. USA, 108, 8978–8983,
https://doi.org/10.1073/pnas.1017313108, 2011.
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far
reach of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018.
Reinardy, B. T. I., Larter, R. D., Hillenbrand, C. D., Murray, T., Hiemstra,
J. F., and Booth, A. D.: Streaming flow of an Antarctic Peninsula palaeo-ice
stream, both by basal sliding and deformation of substrate, J. Glaciol., 57,
596–608, https://doi.org/10.3189/002214311797409758, 2011.
Retzlaff, R. and Bentley, C. R.: Timing of stagnation of ice stream C, West
Antarctica, from short- pulse radar studies of buried surface crevasses, J.
Glaciol., 39, 553–561, https://doi.org/10.1017/S0022143000016440, 1993.
Roberts, D. H. and Long, A. J.: Streamlined bedrock terrain and fast ice
flow, Jakobshavns Isbrae, West Greenland: Implications for ice stream and ice
sheet dynamics, Boreas, 34, 25–42, https://doi.org/10.1111/j.1502-3885.2005.tb01002.x,
2005.
Sarkar, S., Berndt, C., Chabert, A., Masson, D. G., and Minshull, T. A., and
Westbrook, G. K.: Switching of a paleo-ice stream in northwest Svalbard,
Quaternary Sci. Rev., 30, 1710–1725, https://doi.org/10.1016/j.quascirev.2011.03.013,
2011.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Simon, Q., Hillaire-Marcel, C., St-Onge, G., and Andrews, J. T.:
North-eastern Laurentide, western Greenland and southern Innuitian ice stream
dynamics during the last glacial cycle, J. Quaternary Sci., 29, 14–26,
https://doi.org/10.1002/jqs.2648, 2014.
Slabon, P., Dorschel, B., Jokat, W., and Freire, F.: Bedrock morphology
reveals drainage network in northeast Baffin Bay, Geomorphology, 303,
133–145, https://doi.org/10.1016/j.geomorph.2017.11.024, 2018.
Smith, J. A., Hillenbrand, C.-D., Larter, R. D., Graham, A. G. C., and Kuhn,
G.: The sediment infill of subglacial meltwater channels on the West
Antarctic continental shelf, Quaternary Res., 71, 190–200, 2009.
Stokes, C. R. and Clark, C.D.: Are long subglacial bedforms indicative of
fast ice flow?, Boreas 31, 239–249,
https://doi.org/10.1111/j.1502-3885.2002.tb01070.x, 2002a.
Stokes, C. R. and Clark, C. D.: Ice stream shear margin moraines, Earth Surf.
Proc. Land., 27, 547–558, https://doi.org/10.1002/esp.326, 2002b.
Stokes, C. R., Clark, C. D., and Storrar, R.: Major changes in ice stream
dynamics during deglaciation of the north-western margin of the Laurentide
Ice Sheet, Quaternary Sci. Rev., 28, 721–738,
https://doi.org/10.1016/j.quascirev.2008.07.019, 2009.
Stokes, C. R., Tarasov, L., and Dyke, A. S.: Dynamics of the North American
Ice Sheet Complex during its inception and build-up to the Last Glacial
Maximum, Quaternary Sci. Rev., 50, 86–104,
https://doi.org/10.1016/j.quascirev.2012.07.009, 2012.
Stokes, C. R., Margold, M., Clark, C. D., and Tarasov, L.: Ice stream
activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation,
Nature, 530, 322–326, https://doi.org/10.1038/nature16947, 2016.
Storrar, R. D., Jones, A. H., and Evans, D. J. A.: Small-scale
topographically-controlled glacier flow switching in an expanding proglacial
lake at Breiðamerkurjökull, SE Iceland, J. Glaciol., 63, 745–750,
https://doi.org/10.1017/jog.2017.22, 2017.
Ugelvig, S. V., Egholm, D. L., Anderson, R. S., and Iverson, N. R.: Glacial
Erosion Driven by Variations in Meltwater Drainage, J. Geophys. Res.-Earth,
123, 2863–2877, https://doi.org/10.1029/2018JF004680, 2018.
Vaughan, D. G., Corr, H. F. J., Smith, A. M., Pritchard, H. D., and Shepherd,
A.: Flow-switching and water piracy between Rutford ice stream and Carlson
inlet, West Antarctica, J. Glaciol., 54, 41–48,
https://doi.org/10.3189/002214308784409125, 2008.
Winsborrow, M. C. M., Stokes, C. R., and Andreassen, K.: Ice-stream flow
switching during deglaciation of the southwestern Barents Sea, Bull. Geol.
Soc. Am., 124, 275–290, https://doi.org/10.1130/B30416.1, 2012.
Short summary
Modifications in ice-stream networks have major impacts on ice sheet mass balance and global sea level. However, the mechanisms controlling ice-stream switching remain poorly understood. We report a flow switch in an ice-stream system that occurred on the Baffin Island shelf through the erosion of a marginal trough. Up-ice propagation of ice streams through marginal troughs can lead to the piracy of neighboring ice catchments, which induces an adjacent ice-stream switch and shutdown.
Modifications in ice-stream networks have major impacts on ice sheet mass balance and global sea...