Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-3007-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-3007-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer
Nakbin Choi
School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
Kyu-Myong Kim
Climate and Radiation Laboratory, NASA, Goddard Space Flight Center, MD, USA
Young-Kwon Lim
Global Modeling and Assimilation Office, NASA Goddard Space Flight
Center, MD, USA
School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
Related authors
No articles found.
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025, https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Short summary
Global Navigation Satellite System radio occultation data help monitor climate and weather prediction but are affected by residual ionospheric errors (RIEs). A new excess-phase-gradient method detects and corrects RIEs, showing both positive and negative values, varying by latitude, time, and solar activity. Tests show that RIE impacts polar stratosphere temperatures in models, with differences up to 3–4 K. This highlights the need for RIE correction to improve the accuracy of data assimilation.
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024, https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Sanggyun Lee, Hyangsun Han, Jungho Im, Eunna Jang, and Myong-In Lee
Atmos. Meas. Tech., 10, 1859–1874, https://doi.org/10.5194/amt-10-1859-2017, https://doi.org/10.5194/amt-10-1859-2017, 2017
Short summary
Short summary
Deterministic and probabilistic CI detection models based on decision trees (DT), random forest (RF), and logistic regression (LR) were developed using Himawari-8 AHI data obtained over the Korean Peninsula. We used a total of 12 interest fields including time trends to develop the models. We identified contributing variables for CI detection. DT showed a higher hit rate, while RF produced a higher critical success index. The mean lead times by the four models were in the range of 20–40 min.
Dongmin Kim, Myong-In Lee, and Eunkyo Seo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-549, https://doi.org/10.5194/bg-2016-549, 2017
Preprint retracted
Short summary
Short summary
This study investigates the impacts of temperature sensitivity of soil respiration (Q10) on the terrestrial carbon cycle using CLM4 off-line simulation. This study develops a new parameterization for determining Q10 by considering the soil respiration dependence on soil temperature and moisture obtained by multiple regression. The results show that distribution of heterogenous Q10 induces to overcome the soil respiration and GPP distribution comparing with original Q10 parameterization.
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536, https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary
Short summary
This study compares historical simulations of the terrestrial carbon cycle produced by 10 ESMs that participated in the CMIP5. The models show noticeable deficiencies compared to the MODIS data and large differences among the simulations, although the MME mean provides a realistic global mean value and spatial distributions. MME is reflected by the systematic biases of simulated biogeochemical processes which depends on temperature conditions strongly in every plant functional types.
J.-M. Yoo, M.-J. Jeong, D. Kim, W. R. Stockwell, J.-H. Yang, H.-W. Shin, M.-I. Lee, C.-K. Song, and S.-D. Lee
Atmos. Chem. Phys., 15, 10857–10885, https://doi.org/10.5194/acp-15-10857-2015, https://doi.org/10.5194/acp-15-10857-2015, 2015
Short summary
Short summary
Major air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with long-term records from a dense observation network over Korea were extensively analyzed with land-use types, classified by Korean government, consistent with satellite-observed land covers. The weekly cycles of the pollutant showed different behaviors with the types. Regardless of land-use types, ozone has an increasing trend, while the other pollutants have decreasing trends. Most areas in Korea were VOCs-limited for ozone chemistry.
D. Lee, Y. C. Sud, L. Oreopoulos, K.-M. Kim, W. K. Lau, and I.-S. Kang
Atmos. Chem. Phys., 14, 6853–6866, https://doi.org/10.5194/acp-14-6853-2014, https://doi.org/10.5194/acp-14-6853-2014, 2014
Related subject area
Discipline: Sea ice | Subject: Atmospheric Interactions
Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea
Effects of Arctic sea-ice concentration on turbulent surface fluxes in four atmospheric reanalyses
Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Estimating a mean transport velocity in the marginal ice zone using ice–ocean prediction systems
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Atmospheric influences on the anomalous 2016 Antarctic sea ice decay
Hongjie Liang and Wen Zhou
The Cryosphere, 18, 3559–3569, https://doi.org/10.5194/tc-18-3559-2024, https://doi.org/10.5194/tc-18-3559-2024, 2024
Short summary
Short summary
This study identifies the metric of springtime sea-ice surface melt advance in the Laptev Sea and East Siberian Sea, which can be defined on the same date each year and has the potential to be used in the practical seasonal prediction of summer sea ice cover instead of average melt onset. Detailed analysis of dynamic and thermodynamic processes related to different melt advance scenarios in this region imply considerable interannual and interdecadal variability in springtime conditions.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023, https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Short summary
In the last few decades, the region between Greenland and Svalbard has experienced the largest loss of Arctic sea ice in winter. We analyze how changes in air temperature, humidity and wind in this region differ for winds that originate from sea ice covered areas and from the open ocean. The largest impacts of sea ice cover are found for temperatures close to the ice edge and up to a distance of 500 km. Up to two-thirds of the observed temperature variability is related to sea ice changes.
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022, https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019, https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Short summary
The Arctic sea ice extent is diminishing, which is deemed an immediate response to a warmer Earth. However, quantitative estimates about the contribution due to transport and melt to the sea ice loss are still vague. This study mainly utilizes satellite observations to quantify the dynamic and thermodynamic aspects of ice loss for nearly 40 years (1979–2016). In addition, the potential impacts on ice reduction due to different atmospheric circulation pattern are highlighted.
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019, https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Short summary
Observed summer Arctic sea ice retreat has been faster than simulated by the average CMIP5 models, most of which exclude falling ice particles from their radiative calculations.
We use controlled CESM1-CAM5 simulations to show for the first time that snowflakes' radiative effects can accelerate sea ice retreat. September retreat rates are doubled above current CO2 levels, highlighting falling ice radiative effects as a high priority for inclusion in future modelling of the Arctic.
Elisabeth Schlosser, F. Alexander Haumann, and Marilyn N. Raphael
The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, https://doi.org/10.5194/tc-12-1103-2018, 2018
Short summary
Short summary
The atmospheric influence on the unusually early and strong decrease in Antarctic sea ice in the austral spring 2016 was investigated using data from the global forecast model of the European Centre for Medium-range Weather Forecasts. Weather situations related to warm, northerly flow conditions in the regions with large negative anomalies in sea ice extent and area were frequent and explain to a large part the observed melting. Additionally, oceanic influences might play a role.
Cited articles
Ballinger, T. J. and Rogers, J. C.: Climatic and atmospheric
teleconnection indices and western Arctic sea ice variability, Phys.
Geogr., 35, 459–477, https://doi.org/10.1080/02723646.2014.949338, 2014.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and
Bladé, I.: The effective number of spatial degrees of freedom of a
time-varying field, J. Climate, 12, 1990–2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999.
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic, B. Am. Meteorol. Soc., 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015.
Chen, H. W., Zhang, Q., Körnich, H., and Chen, D.: A robust mode of
climate variability in the Arctic: The Barents Oscillation, Geophys.
Res. Lett., 40, 2856–2861, https://doi.org/10.1002/grl.50551, 2013.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008.
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea ice-albedo climate
feedback mechanism, J. Climate, 8, 240–247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995.
Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A. K.: Sea Ice Index, Version 3, National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA, updated daily, https://doi.org/10.7265/N5K072F8, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kang, D., Lee, M. I., Im, J., Kim, D., Kim, H. M., Kang, H. S., Schubert, S. D., Arribas, A., and MacLachlan, C.: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems, Geophys. Res. Lett.,
41, 3577–3585, https://doi.org/10.1002/2014GL060011, 2014.
Kwon, M., Jhun, J. G., Wang, B., An, S. I., and Kug, J. S.: Decadal change
in relationship between east Asian and WNP summer monsoonss, Geophys. Res. Lett., 32, L16709, https://doi.org/10.1029/2005GL023026, 2005.
NSIDC (National Snow and Ice Data Center): All About Sea Ice, available at:
https://nsidc.org/cryosphere/seaice/index.html, last access: 5 May 2019a.
NSIDC (National Snow and Ice Data Center): SOTC: Sea Ice, available at:
https://nsidc.org/cryosphere/sotc/sea_ice.html, last access: 5 May 2019b.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.:
A Pacific interdecadal climate oscillation with impacts on salmon
production, B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Ogi, M. and Rigor, I. G.: Trends in Arctic sea ice and the role of
atmospheric circulation, Atmos. Sci. Lett., 14, 97–101,
https://doi.org/10.1002/asl2.423, 2013.
Ogi, M. and Wallace, J. M.: Summer minimum Arctic sea ice extent and the
associated summer atmospheric circulation, Geophys. Res. Lett.,
34, L12705, https://doi.org/10.1029/2007GL029897, 2007.
Ogi, M., Rigor, I. G., McPhee, M. G., and Wallace, J. M.: Summer retreat of
Arctic sea ice: Role of summer winds, Geophys. Res. Lett., 35, L24701,
https://doi.org/10.1029/2008GL035672, 2008.
Ogi, M., Yamazaki, K., and Wallace, J. M.: Influence of winter and summer
surface wind anomalies on summer Arctic sea ice extent, Geophys. Res. Lett., 37, L07701, https://doi.org/10.1029/2009GL042356, 2010.
Overland, J. E. and Wang, M.: The third Arctic climate pattern: 1930s and
early 2000s, Geophys. Res. Lett., 32, L23808, https://doi.org/10.1029/2005GL024254, 2005.
Overland, J. E. and Wang, M.: Large-scale atmospheric circulation changes
are associated with the recent loss of Arctic sea ice, Tellus A, 62, 1–9,
https://doi.org/10.1111/j.1600-0870.2009.00421.x, 2010.
Overland, J. E., Francis, J. A., Hanna, E., and Wang, M.: The recent shift
in early summer Arctic atmospheric circulation, Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268, 2012.
Park, H.-S. and Stewart, A. L.: An analytical model for wind-driven Arctic summer sea ice drift, The Cryosphere, 10, 227–244, https://doi.org/10.5194/tc-10-227-2016, 2016.
Park, H. S., Stewart, A. L., and Son, J. H.: Dynamic and thermodynamic
impacts of the winter Arctic Oscillation on summer sea ice extent, J. Climate, 31, 1483–1497, https://doi.org/10.1175/JCLI-D-17-0067.1, 2018.
Parkinson, C. L.: Spatially mapped reductions in the length of the Arctic
sea ice season, Geophys. Res. Lett., 41, 4316–4322, https://doi.org/10.1002/2014GL060434, 2014.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012,
2012.
Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice
cover: Combined impact of preconditioning and an August storm, Geophys. Res. Lett., 40, 1356–1361, https://doi.org/10.1002/grl.50349, 2013.
Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., and
Comiso, J. C.: Arctic sea ice extents, areas, and trends, 1978–1996, J. Geophys. Res., 104, 20837–20856, https://doi.org/10.1029/1999JC900082, 1999.
Polyakov, I. V., Beszczynska, A., Carmack, E. C., Dmitrenko, I. A.,
Fahrbach, E., Frolov, I. E., Gerdes, R., Hansen, E., Holfort, J., Ivanov, V. V., Johnson, M. A., Karcher, M., Kauker, F., Morison, J., Orvik, K. A., Schauer, U., Simmons, H. L., Skagseth, Ø., Sokolov, V. T., Steele, M., Timokhov, L. A., Walsh, D., and Walsh, J. E.: One more step toward a
warmer Arctic, Geophys. Res. Lett., 32, L17605, https://doi.org/10.1029/2005GL023740, 2005.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, 2002.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of sea ice to the
Arctic Oscillation, J. Climate, 15, 2648–2663, 2002.
Serreze, M. C., Stroeve, J., Barrett, A. P., and Boisvert, L. N.: Summer
atmospheric circulation anomalies over the Arctic Ocean and their influences
on September sea ice extent: A cautionary tale, J. Geophys.
Res.-Atmos., 121, 11463–11485, https://doi.org/10.1002/2016JD025161, 2016a.
Serreze, M. C., Crawford, A. D., Stroeve, J. C., Barrett, A. P., and Woodgate, R. A.: Variability, trends, and predictability of seasonal sea ice
retreat and advance in the Chukchi Sea, J. Geophys. Res.-Oceans, 121, 7308–7325, https://doi.org/10.1002/2016JC011977, 2016b
Shimada, K., Kamoshida, T., Itoh, M., Nishino, S., Carmack, E., McLaughlin,
F., Zimmermann, S., and Proshutinsky, A.: Pacific Ocean inflow: Influence on
catastrophic reduction of sea ice cover in the Arctic Ocean, Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624, 2006
Shuchman, R. A., Josberger, E. G., Russel, C. A., Fischer, K. W.,
Johannessen, O. M., Johannessen, J., and Gloersen, P.: Greenland Sea Odden
sea ice feature: Intra-annual and interannual variability, J. Geophys. Res., 103, 12709–12724, https://doi.org/10.1029/98JC00375, 1998.
Skeie, P.: Meridional flow variability over the Nordic seas in the Arctic
Oscillation framework, Geophys. Res. Lett., 27, 2569–2572,
https://doi.org/10.1029/2000GL011529, 2000.
Tang, Q., Zhang, X., and Francis, J. A.: Extreme summer weather in northern
mid-latitudes linked to a vanishing cryosphere, Nat. Clim. Change, 4, 45–50, 2014.
Thompson, D. W. J. and Wallace, J. M.: The Arctic Oscillation signature in
the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950, 1998.
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic
winds, J. Geophys. Res., 87, 5845–5852, https://doi.org/10.1029/JC087iC08p05845, 1982.
Tremblay, L.: Can we consider the Arctic Oscillation independently from the
Barents Oscillation?, Geophys. Res. Lett., 28, 4227–4230,
https://doi.org/10.1029/2000GL013740, 2001.
Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., and Meier, W.: EASE-Grid Sea Ice Age, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA,
https://doi.org/10.5067/PFSVFZA9Y85G, 2016.
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4, NASA National Snow and Ice Data Center, Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., and Wu, B.: Is the Dipole Anomaly a major driver to record lows in
Arctic summer sea ice extent?, Geophys. Res. Lett., 36, L05706,
https://doi.org/10.1029/2008GL036706, 2009.
Watanabe, E., Wang, J., Sumi, A., and Hasumi, H.: Arctic dipole anomaly and
its contribution to sea ice export from the Arctic Ocean in the 20th century, Geophys. Res. Lett., 33, L23703, https://doi.org/10.1029/2006GL028112, 2006.
Wernli, H. and Papritz, L.: Role of polar anticyclones and mid-latitude
cyclones for Arctic summertime sea-ice melting, Nat. Geosci., 11, 108–113, 2018.
Wettstein, J. J. and Deser, C.: Internal variability in projections of
twenty-first-century Arctic sea ice loss: Role of the large-scale
atmospheric circulation, J. Climate, 27, 527–550,
https://doi.org/10.1175/JCLI-D-12-00839.1, 2014.
Williams, J., Tremblay, B., Newton, R., and Allard, R.: Dynamic preconditioning of the minimum September sea-ice extent, J. Climate, 29, 5879–5891, https://doi.org/10.1175/JCLI-D-15-0515.1, 2016.
Woodgate, R. A., Weingartner, T., and Lindsay, R.: The 2007 Bering Strait
oceanic heat flux and anomalous Arctic sea-ice retreat, Geophys. Res. Lett., 37, L01602, https://doi.org/10.1029/2009GL041621, 2010.
Wu, B., Wang, J., and Walsh, J. E.: Dipole anomaly in the winter Arctic
atmosphere and its association with sea ice motion, J. Climate, 19, 210–225, https://doi.org/10.1175/JCLI3619.1, 2006.
Wu, Q., Zhang, J., Zhang, X., and Tao, W.: Interannual variability and
long-term changes of atmospheric circulation over the Chukchi and Beaufort
Seas, J. Climate, 27, 4871–4889, https://doi.org/10.1175/JCLI-D-13-00610.1, 2014.
Yang, X. and Yuan, X.: The early winter sea ice variability under the
recent Arctic climate shift, J. Climate, 27, 5092–5110,
https://doi.org/10.1175/JCLI-D-13-00536.1, 2014.
Yim, S.-Y., Jhun, J.-G., and Yeh, S.-W.: Decadal change in the relationship
between east Asian–western North Pacific summer monsoons and ENSO in the
mid-1990s, Geophys. Res. Lett., 35, L20711, https://doi.org/10.1029/2008GL035751,
2008.
Zhang, J. and Rothrock, D. A.: Modeling global sea ice with a thickness
and enthalpy distribution model in generalized curvilinear coordinates, Mon. Weather Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
Zhang, J., Steele, M., Runciman, K., Dewey, S., Morison, J., Lee, C., Rainville, L., Cole, S., Krishfield, R., Timmermans, M.-L., and Toole, J.: The B eaufort G yre intensification and stabilization: A
model-observation synthesis, J. Geophys. Res.-Oceans, 121, 7933–7952, https://doi.org/10.1002/2016JC012196, 2016.
Short summary
This study compares the decadal changes of the leading patterns of sea level pressure between the early (1982–1997) and the recent (1998–2017) periods as well as their influences on the Arctic sea ice extent (SIE) variability. The correlation between the Arctic Dipole (AD) mode and SIE becomes significant in the recent period, not in the past, due to its spatial pattern change. This tends to enhance meridional wind over the Fram Strait and sea ice discharge to the Atlantic.
This study compares the decadal changes of the leading patterns of sea level pressure between...
Similar articles
Dynamic and thermodynamic processes...
Liang et al.
Effects of Arctic sea-ice concentration...
Uhlíková et al.
Attributing near-surface atmospheric...
Schmitt et al.