Articles | Volume 13, issue 8
https://doi.org/10.5194/tc-13-2203-2019
https://doi.org/10.5194/tc-13-2203-2019
Research article
 | 
19 Aug 2019
Research article |  | 19 Aug 2019

Water tracks intensify surface energy and mass exchange in the Antarctic McMurdo Dry Valleys

Tobias Linhardt, Joseph S. Levy, and Christoph K. Thomas

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (27 Jun 2019) by Philip Marsh
AR by Tobias Linhardt on behalf of the Authors (02 Jul 2019)  Author's response   Manuscript 
ED: Publish as is (16 Jul 2019) by Philip Marsh
AR by Tobias Linhardt on behalf of the Authors (24 Jul 2019)  Manuscript 
Download
Short summary
This study presents surface energy fluxes in an Antarctic polar desert in the summer season, comparing wetted soil at a water track with dominating dry soils. Elevated energy uptake, evaporation, and soil heat fluxes at the water track highlight the importance of wetted soils for water and energy cycling in polar deserts. This connection will grow more relevant, as wetted soils are expected to expand due to climate warming, with implications for landscape-scale hydrology and soil ecosystems.