Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1801-2019
https://doi.org/10.5194/tc-13-1801-2019
Research article
 | 
08 Jul 2019
Research article |  | 08 Jul 2019

Antarctic ice shelf thickness change from multimission lidar mapping

Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg

Data sets

Sutterley et al. TC (2019) Ice Shelf Estimates T. C. Sutterley, T. Markus, T. Neumann, M. van den Broeke, J. M. Wessem, and S. R. M. Ligtenberg https://doi.org/10.6084/m9.figshare.8159852

Model code and software

nsidc-earthdata T. C. Sutterley https://doi.org/10.6084/m9.figshare.7355063

read-ATM1b-QFIT-binary T. C. Sutterley https://doi.org/10.6084/m9.figshare.7355060

read-ATM2-icessn T. C. Sutterley https://doi.org/10.6084/m9.figshare.7355066

read-LVIS2-elevation T. C. Sutterley https://doi.org/10.6084/m9.figshare.7355057

Download
Short summary
Most of the Antarctic ice sheet is fringed by ice shelves, floating extensions of ice that help to modulate the flow of the glaciers that float into them. We use airborne laser altimetry data to measure changes in ice thickness of ice shelves around West Antarctica and the Antarctic Peninsula. Each of our target ice shelves is susceptible to short-term changes in ice thickness. The method developed here provides a framework for processing NASA ICESat-2 data over ice shelves.