Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1635-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1635-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost
Olga Makarieva
CORRESPONDING AUTHOR
Saint Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg, 199034, Russia
Melnikov Permafrost Institute, Merzlotnaya St., 36, Yakutsk, 677010, Russia
Nataliia Nesterova
Saint Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg, 199034, Russia
State Hydrological Institute, 23 2-ya liniya VO, St. Petersburg, 199053, Russia
David Andrew Post
Commonwealth Scientific and Industrial Research Organisation, GPO Box 1700, Canberra, Australia
Artem Sherstyukov
All-Russia Research Institute of Hydrometeorological Information – World Data Centre, 6 Korolyov St.,
Obninsk, Kaluga Region, 249035, Russia
Lyudmila Lebedeva
Melnikov Permafrost Institute, Merzlotnaya St., 36, Yakutsk, 677010, Russia
Related authors
Olga Makarieva, Andrey Shikhov, Nataliia Nesterova, and Andrey Ostashov
Earth Syst. Sci. Data, 11, 409–420, https://doi.org/10.5194/essd-11-409-2019, https://doi.org/10.5194/essd-11-409-2019, 2019
Short summary
Short summary
Aufeis is formed through a complex interconnection between river water and groundwater. The dynamics of aufeis assessed by the analysis of remote sensing data can be viewed as an indicator of groundwater changes in warming climate which are otherwise difficult to be observed naturally in remote arctic areas. The spatial geodatabase developed shows that aufeis formation conditions may have changed between the mid-20th century and the present in the Indigirka River basin.
Olga Makarieva, Nataliia Nesterova, Lyudmila Lebedeva, and Sergey Sushansky
Earth Syst. Sci. Data, 10, 689–710, https://doi.org/10.5194/essd-10-689-2018, https://doi.org/10.5194/essd-10-689-2018, 2018
Short summary
Short summary
This article describes the dataset of the Kolyma Water-Balance Station located at the upstreams of the Kolyma River (Russia). The dataset combines continuous long-term (1948–1997) observations of water balance, hydrological processes, and permafrost. It allows for study of permafrost hydrology interaction processes in a practically unexplored region. We highlight the main historical stages of the station's existence and its scientific significance, and outline the prospects for its future.
O. M. Semenova, L. S. Lebedeva, N. V. Nesterova, and T. A. Vinogradova
Proc. IAHS, 371, 157–162, https://doi.org/10.5194/piahs-371-157-2015, https://doi.org/10.5194/piahs-371-157-2015, 2015
L. S. Lebedeva, O. M. Semenova, T. A. Vinogradova, M. N. Kruchin, and N. V. Volkova
Proc. IAHS, 370, 161–165, https://doi.org/10.5194/piahs-370-161-2015, https://doi.org/10.5194/piahs-370-161-2015, 2015
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Jan Mudler, Andreas Hördt, Dennis Kreith, Madhuri Sugand, Kirill Bazhin, Lyudmila Lebedeva, and Tino Radić
The Cryosphere, 16, 4727–4744, https://doi.org/10.5194/tc-16-4727-2022, https://doi.org/10.5194/tc-16-4727-2022, 2022
Short summary
Short summary
The spectral electrical signal of ice exhibits a strong characteristic behaviour in the frequency range from 100 Hz to 100 kHz, due to polarization effects. With our geophysical method, we can analyse this characteristic to detect subsurface ice. Moreover, we use a model to quantify 2-D ground ice content based on our data. The potential of our new measurement device is showed up. Data were taken on a permafrost site in Yakutia, and the results are in agreement with other existing field data.
Olga Makarieva, Andrey Shikhov, Nataliia Nesterova, and Andrey Ostashov
Earth Syst. Sci. Data, 11, 409–420, https://doi.org/10.5194/essd-11-409-2019, https://doi.org/10.5194/essd-11-409-2019, 2019
Short summary
Short summary
Aufeis is formed through a complex interconnection between river water and groundwater. The dynamics of aufeis assessed by the analysis of remote sensing data can be viewed as an indicator of groundwater changes in warming climate which are otherwise difficult to be observed naturally in remote arctic areas. The spatial geodatabase developed shows that aufeis formation conditions may have changed between the mid-20th century and the present in the Indigirka River basin.
Yongqiang Zhang and David Post
Hydrol. Earth Syst. Sci., 22, 4593–4604, https://doi.org/10.5194/hess-22-4593-2018, https://doi.org/10.5194/hess-22-4593-2018, 2018
Short summary
Short summary
It is a critical step to gap-fill streamflow data for most hydrological studies, such as streamflow trend, flood, and drought analysis and predictions. However, quantitative evaluation of the gap-filled data accuracy is not available. Here we conducted the first comprehensive study, and found that when the missing data rate is less than 10 %, the gap-filled streamflow data using hydrological models are reliable for annual streamflow and its trend analysis.
Olga Makarieva, Nataliia Nesterova, Lyudmila Lebedeva, and Sergey Sushansky
Earth Syst. Sci. Data, 10, 689–710, https://doi.org/10.5194/essd-10-689-2018, https://doi.org/10.5194/essd-10-689-2018, 2018
Short summary
Short summary
This article describes the dataset of the Kolyma Water-Balance Station located at the upstreams of the Kolyma River (Russia). The dataset combines continuous long-term (1948–1997) observations of water balance, hydrological processes, and permafrost. It allows for study of permafrost hydrology interaction processes in a practically unexplored region. We highlight the main historical stages of the station's existence and its scientific significance, and outline the prospects for its future.
O. M. Semenova, L. S. Lebedeva, N. V. Nesterova, and T. A. Vinogradova
Proc. IAHS, 371, 157–162, https://doi.org/10.5194/piahs-371-157-2015, https://doi.org/10.5194/piahs-371-157-2015, 2015
L. S. Lebedeva, O. M. Semenova, T. A. Vinogradova, M. N. Kruchin, and N. V. Volkova
Proc. IAHS, 370, 161–165, https://doi.org/10.5194/piahs-370-161-2015, https://doi.org/10.5194/piahs-370-161-2015, 2015
Related subject area
Discipline: Other | Subject: Frozen ground hydrology
Brief communication: The hidden labyrinth: deep groundwater in Wright Valley, Antarctica
Numerical modelling of permafrost spring discharge and open-system pingo formation induced by basal permafrost aggradation
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022, https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys of Antarctica, a deep groundwater system has been hypothesized to connect Don Juan Pond and Lake Vanda, both surface waterbodies that contain very high concentrations of salt. This is unusual, since permafrost in polar landscapes is thought to prevent subsurface hydrologic connectivity. We show results from an airborne geophysical survey that reveals widespread unfrozen brine in Wright Valley and points to the potential for deep valley-wide brine conduits.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in
the arctic circulation, J. Geophys. Res., 94, 14485–14498, 1989.
AMAP: Snow, Water, Ice and Permafrost. Summary for Policy-makers, Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, 20 pp., 2017.
Ananicheva, M. D.: Estimation of the areas, volumes and heights of the
boundary of the feeding of glacier systems of the Northeast of Russia from
the space images of the beginning of the 21st century, Ice and Snow, 1,
35–48, 2014.
Anderson, L. G., Björk, G., Jutterström, S., Pipko, I., Shakhova, N.,
Semiletov, I., and Wåhlström, I.: East Siberian Sea, an Arctic region
of very high biogeochemical activity, Biogeosciences, 8, 1745–1754,
https://doi.org/10.5194/bg-8-1745-2011, 2011.
Arnell, N. W.: Implications of climate change for freshwater inflows to the
Arctic Ocean, J. Geophys. Res., 110, D07105, https://doi.org/10.1029/2004JD005348,
2005.
Arzhakova, S. K.: The winter flow of the rivers of the permafrost zone of
Russia. Gidrometeoizdat, St. Petersburg, 2001 (in Russian).
Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost degradation as
a control on hydrogeological regime shifts in a warming climate, J. Geophys.
Res., 117, F03036, https://doi.org/10.1029/2011JF002143, 2011.
Berezovskaya, S., Yang, D., and Kane, D. L.: Compatibility analysis of
precipitation and runoff trends over the large Siberian watersheds, Geophys.
Res. Lett., 31, L21502, https://doi.org/10.1029/2004GL021277, 2004.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift
from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, 2014.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change, J. Geophys. Res.-Earth, 119, 717–730,
https://doi.org/10.1002/2013JF002931, 2014.
Bring, A. and Destouni, G.: Arctic climate and water change: Model and
observation relevance for assessment and adaptation, Surv. Geophys., 35,
853–877, 2014.
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S.
H., Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M.-K.: Arctic
terrestrial hydrology: A synthesis of processes, regional effects, and
research challenges, J. Geophys. Res.-Biogeo., 121, 621–649,
https://doi.org/10.1002/2015JG003131, 2016.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E.S. (Eds.): Circum-Arctic map of permafrost and ground-ice conditions, U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Washington, DC, Circum-Pacific Map Series CP-45, scale , 1 sheet, https://doi.org/10.3133/cp45, 1997.
Buishand, T. A.: Some methods for testing the homogeneity of rainfall
records, J. Hydrol., 58, 11–27, 1982.
Callaghan, T. V., Johansson, M., Prowse, T. D., Olsen, M. S., and Reiersen,
L.-O.: Arctic Cryosphere: Changes and Impacts, Ambio, 40, 3–5,
https://doi.org/10.1007/s13280-011-0210-0, 2011.
Copernicus Climate Change Service: Project #C3S_422_LOT1_SMHI,
Swedish Meteorological and Hydrological Institute, 2017–2019.
Dyurgerov, M. B. and Carter, C. L.: Observational evidence of increases in
freshwater inflow to the Arctic Ocean, Arct. Antarct. Alp. Res., 36,
117–122, https://doi.org/10.1657/1523-0430(2004)036, 2004.
Jamalov, R. G., Krichevets, G. N., and Safronova, T. I.: Modern changes of water resources in the Lena River basin, Water Resour., 39, 131–145, 2012.
Explanatory note to the geocryological
map of the USSR, scale 1:2 500 000, edited by: Kondratieva, K. A., Dunaeva, E. N., Trush, N. A., Gavrilov, A. V., Afanasenko, V. E., Khrutsky, S. F., and Ershov, E. D., Ministry of Geology of the USSR, 125 pp., 1991 (in Russian).
Fedorov, A. N., Ivanova, R. N., Perk, H., Hiyama, T., and Iijima, Y.: Recent
air temperature changes in the permafrost landscapes of northeastern Eurasia,
Polar Sci., 8, 114–128, https://doi.org/10.1016/j.polar.2014.02.001, 2014.
Fedorov, A. N., Vasilyev, N. F., Torgovkin, Y. I., Shestakova, A. A.,
Varlamov, S. P., Zheleznyak, M. N., Shepelev, V. V., Konstantinov, P. Y.,
Kalinicheva, S. S., Basharin, N. I., Makarov, V. S., Ugarov, I. S., Efremov,
P. V., Argunov, R. N., Egorova, L. S., Samsonova, V. V., Shepelev, A. G.,
Vasiliev, A. I., Ivanova, R. N., Galanin, A. A., Lytkin, V. M., Kuzmin, G.
P., and Kunitsky, V. V.: Permafrost-Landscape Map of the Republic of Sakha
(Yakutia) on a Scale , Geosciences, 8, 465,
https://doi.org/10.3390/geosciences8120465, 2018.
Forman, S. L. and Johnson, J. L.: Reports of National Science Foundation
Arctic System Science sponsored workshops to define research priorities for
Eurasian Arctic land-shelf systems, Byrd Polar Research Center, Columbus,
Ohio State University, Miscellaneous Series M-397, 51 pp, 1996.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol. Process., 23, 169–182, 2009.
Ge, S., McKenzie, J., Voss, C., and Wu, Q.: Exchange of groundwater and
surface-water mediated by permafrost response to seasonal and long term air
temperature variation, Geophys. Res. Lett., 38, L14402,
https://doi.org/10.1029/2011GL047911, 2011.
Georgievsky, M.: Water resources of the Russian rivers and their changes,
Proc. IAHS, 374, 75–77, https://doi.org/10.5194/piahs-374-75-2016, 2016.
GLIMS and NSIDC: Global Land Ice Measurements from Space glacier database,
Compiled and made available by the international GLIMS community and the
National Snow and Ice Data Center, Boulder CO, USA, https://doi.org/10.7265/N5V98602,
2005 (updated 2017).
Glotov, V. E., Glotova, L. P., and Ushakov, M. V.: Abnormal changes in the
regime of the water flow of the Kolyma River in the winter low water.
Cryosphere of the Earth. XV, 1, 52-60, 2011.
Glotova, L. P. and Glotov, V. E.: General regularities of underground feeding
of rivers in the North-East Russia, News of Samara Scientific Center of the
Russian Academy of Sciences, 17, 63–69, 2015 (in Russian).
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A.
V., and Grigoriev, M. N.: Observing Muostakh disappear: permafrost thaw
subsidence and erosion of a ground-ice-rich island in response to arctic
summer warming and sea ice reduction, The Cryosphere, 9, 151–178,
https://doi.org/10.5194/tc-9-151-2015, 2015.
Grave, N., Gavrilova, M., Gravis, G., Katasonov, E., Klyukin, N., Koreysha,
G., Kornilov, B., and Chistotinov, L.: The freezing of the earth's surface
and glaciation on the ridge Suntar-Khayata (Eastern Yakutia), Nauka, Moscow,
1964 (in Russian).
Gurevich, E. V.: Influence of air temperature on the river runoff in winter
(the Aldan river catchment case study), Russ. Meteorol. Hydrol., 34,
628–633, 2009 (in Russian).
Hinzman, L. D., Deal, C. J., McGuire, A. D., Mernild, S. H., Polyakov, I. V.,
and Walsh, J. E.: Trajectory of the Arctic as an integrated system, Ecol.
Appl., 23, 1837–1868, https://doi.org/10.1890/11-1498.1, 2013.
Holland, M. M., Finnis, J., Barrett, A. P., and Serreze, M. C.: Projected
changes in Arctic Ocean freshwater budgets, J. Geophys. Res., 112, G04S55,
https://doi.org/10.1029/2006JG000354, 2007.
Holmes, R. M., Coe, M. T., Fiske, G. J., Gurtovaya, T., McClelland, J. W.,
Shiklomanov, A. I., Spencer, R. G. M., Tank, S. E., and Zhulidov, A. V.:
Climate change impacts on the hydrology and biogeochemistry of Arctic rivers,
in: Global impacts of climate change on inland waters: Impacts and mitigation
for ecosystems and societies, edited by: Goldman, C. R., Kumagai, M., and
Robarts, R. D., WileyBlackwell, Hoboken, New Jersey, 3–26, 2013.
Huntington, T. G.: Climate change, growing season length, and transpiration:
Plant response could alter hydrologic regime, Plant Biol., 6, 651–653, 2004.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Imaeva, L. P., Gusev, G. S., Imaev, V. S., Ashurkov, S. V., Melnikova, V. I.,
and Seredkina, A. I.: Geodynamic activity of advanced structures and tectonic
stress fields of northeast Asia, Geodynamics and Tectonophysics, 8,
737-–768, https://doi.org/10.5800/GT-2017-8-4-0315, 2017 (in Russian).
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, IPCC, Geneva, Switzerland, 151 pp., 2014.
Imaeva, L. P., Gusev, G. S., Imaev, V. S., Ashurkov, S. V., Melnikova, V. I., and Seredkina, A. I.: Geodynamic activity of advanced structures and tectonic stress fields of northeast Asia, Geodynamics and Tectonophysics, 8, 737-–768, https://doi.org/10.5800/GT-2017-8-4-0315, 2017 (in Russian).
Ivanova, R. N.: Extremely low air temperatures in Eurasia, Vestnik YSU, 3,
13–19, 2006 (in Russian).
Jamalov, R. G., Krichevets, G. N., and Safronova, T. I.: Modern changes of water resources in the Lena River basin, Water Resour., 39, 131–145, 2012.
Jepsen, S. M., Voss, C. I., Walvoord, M. A., Minsley, B. J., and Rover, J.:
Linkages between lake shrinkage/expansion and sublacustrine permafrost
distribution determined from remote sensing of interior Alaska, USA, Geophys.
Res. Lett., 40, 882–887, https://doi.org/10.1002/grl.50187, 2013.
Karlsson, J. M., Jaramillo, F., and Destouni, G.: Hydro-climatic and lake
change patterns in Arctic permafrost and non-permafrost areas, J. Hydrol.,
529, 134–145, https://doi.org/10.1016/j.jhydrol.2015.07.005, 2015.
Kendall, M. G.: Rank Correlation Methods, Griffin, London, UK, 1975.
Kirillina, K. S.: Current trends of climate change of the republic of Sakha
(Yakutia), Scientific memories of the Russian State Hydrometeorological
University, Russian State Hydrometeorological University, St. Petersburg,
ISSN: 2074-2762, 2013 (in Russian).
Kundzewicz, Z. W. and Robson, A. J.: Change detection in hydrological records
– a review of the methodology, Hydrolog. Sci. J., 49, 7–19, 2004.
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L., and Zipper, S. C.:
Changing groundwater discharge dynamics in permafrost regions, Environ. Res.
Lett., 13, 084017, https://doi.org/10.1088/1748-9326/aad404, 2018.
Lamoureux, S. F. and Lafrenière, M. J.: More than just snowmelt:
integrated watershed science for changing climate and permafrost at the Cape
Bounty Arctic Watershed Observatory, WIREs Water, 5, e1255,
https://doi.org/10.1002/wat2.1255, 2018.
Lebedeva, L.S., Makarieva, O.M., and Vinogradova, T.A.: Spatial variability
of the water balance elements in mountain catchments in the North-East Russia
(case study of the Kolyma Water Balance Station). Meteorology and Hydrology
J., 4, 90-101, 2017 (in Russian).
Lehmann, E. L.: Nonparametrics, Statistical methods based on ranks,
Holden-Day, Inc., California, USA, 1975.
Liljedahl, A. K., Gädeke, A., O'Neel, S., Gatesman, T. A., and Douglas,
T. A.: Glacierized headwater streams as aquifer recharge corridors, subarctic
Alaska, Geophys. Res. Lett., 44, 6876–6885, https://doi.org/10.1002/2017GL073834,
2017.
Lesack, L. F. W., Marsh, P., Hicks, F. E., and Forbes, D. L.: Timing,
duration, and magnitude of peak annual water-levels during ice breakup in the
Mackenzie Delta and the role of river discharge, Water Resour. Res., 49,
8234–8249, https://doi.org/10.1002/2012WR013198, 2013.
Lique, C., Holland, M. M., Dibike, Y. B., Lawrence, D. M., and Screen, J. A.:
Modeling the Arctic freshwater system and its integration in the global
system: Lessons learned and future challenges, J. Geophys. Res.-Biogeo., 121,
540–566, https://doi.org/10.1002/2015JG003120, 2016.
Lytkin, V. M. and Galanin, A. A.: Rock glaciers in the Suntar-Khayata Range,
Ice and Snow, 56, 511–524, https://doi.org/10.15356/2076-6734-2016-4-511-524, 2016 (in
Russian).
Magritsky, D. V., Mikhailov, V. N., Korotaev, V. N., and Babich, D. B.:
Changes in hydrological regime and morphology of river deltas in the Russian
Arctic, in: Proceedingsof HP1, IAHS-IAPSO-IASPEI Assembly, Gothenburg,
Sweden, July 2013, IAHS Publ. 358, 67–79, 2013.
Majhi, I. and Yang, D.: Cold Region Hydrology in a Changing Climate, IAHS
Publ. 346, 39–43, 2011.
Makarieva, O., Nesterova, N., Lebedeva, L., and Sushansky, S.: Water balance
and hydrology research in a mountainous permafrost watershed in upland
streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance
Station, 1948–1997, Earth Syst. Sci. Data, 10, 689–710,
https://doi.org/10.5194/essd-10-689-2018, 2018a.
Makarieva, O., Nesterova, N., and Sherstyukov, A.: Monthly hydro-climate
database for the Yana and Indigirka Rivers basins, Northern Eurasia, PANGAEA,
https://doi.org/10.1594/PANGAEA.892775, 2018b.
Makarieva, O., Shikhov, A., Nesterova, N., and Ostashov, A.: Historical and
recent aufeis in the Indigirka River basin (Russia), Earth Syst. Sci. Data,
11, 409–420, https://doi.org/10.5194/essd-11-409-2019, 2019a.
Makarieva, O., Nesterova, N., Lebedeva, L., and Vinogradova, T.: Modeling
runoff formation processes in the high-mountain permafrost zone of Eastern
Siberia (a case study of the Suntar-Khayata Range), Geography and Natural
Resources, 1, 178–186, https://doi.org/10.21782/GiPR0206-1619-2019-1(178-186), 2019b.
(in Russian)
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
1945.
McClelland, J. W., Holmes, R. M., Peterson, B. J., and Stieglitz, M.:
Increasing river discharge in the Eurasian Arctic: Consideration of dams,
permafrost thaw, and fires as potential agents of change, J. Geophys. Res.,
109, D18102, https://doi.org/10.1029/2004JD004583, 2004.
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and Wood,
E. F.: A pan-arctic evaluation of changes in river discharge during the
latter half of the 20th century, Geophys. Res. Lett., 33, L06715,
https://doi.org/10.1029/2006gl025753, 2006.
Mikhailov, V. M.: Floodplain taliks of North-East of Russia, Novosibirsk.
Geo., 244 pp., 2013 (in Russian).
Miller, J. R. and Russell, G. L.: Projected impact of climate change on the
freshwater and salt budgets of the Arctic Ocean by a glob al climate mode l,
Geophys. Res. Lett., 27, 1183–1186, https://doi.org/10.1029/1999GL007001, 2000.
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., and Smith, L.
C.: Climatic and anthropogenic factors affecting river discharge to the
global ocean, 1951–2000, Global Planet. Change, 62, 187–194,
https://doi.org/10.1016/j.gloplacha.2008.03.001, 2008.
Muskett, R. R. and Romanovsky, V. E.: Groundwater storage changes in arctic
permafrost watersheds from GRACE and in situ measurements, Environ. Res.
Lett., 4, 045009, https://doi.org/10.1088/1748-9326/4/4/045009, 2009.
Pavlov, A. V. and Malkova, G. V.: Small-scale mapping of trends of the
contemporary ground temperature changes in the Russian North, Earth's
Cryosphere, 13, 32–39, 2009.
Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J.,
Lammers, R. B., Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf C.:
Increasing river discharge to the Arctic Ocean, Science, 298, 2171–2173,
https://doi.org/10.1126/science.1077445, 2002.
Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., and
Aagaard, K.: Trajectory shifts in the Arctic and Subarctic freshwater cycle,
Science, 313, 1061–1066, 2006.
Pettitt, A. N.: A non-parametric approach to the change-point problem, J. R.
Stat. Soc. C-Appl., 28, 126–135, 1979.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E.,
Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D.
L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D. P.,
McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., Serreze, M. C.,
Shiklomanov, A., Skagseth, Ø., Troy, T. J., Vörösmarty, C. J.,
Wensnahan, M., Wood, E. F., Woodgate, R., Yang, D., Zhang, K., and Zhang, T.:
Analysis of the Arctic System for Freshwater Cycle Intensification:
Observations and Expectations, J. Climate, 23, 5715–5737,
https://doi.org/10.1175/2010JCLI3421.1, 2010.
Reedyk, S., Woo, M. K., and Prowse, T. D.: Contribution of icing ablation to
flow in a discontinuous permafrost area, Can. J. Earth Sci., 32, 13–20,
1995.
Rennermalm, A. K., Wood, E. F., and Troy, T. J.: Observed changes in
pan-arctic cold-season minimum monthly river discharge, Clim. Dynam., 35,
923–939, 2010.
Romanovsky, N. N.: Underground waters of cryolithozone, Moscow State University, Moscow, 1983 (in Russian).
Romanovsky, V. E., Sazonova, T. S., Balobaev, V. T., Shender, N. I., and
Sergueev, D. O.: Past and recent changes in air and permafrost temperatures
in eastern Siberia, Global Planet. Change, 56, 399–413,
https://doi.org/10.1016/j.gloplacha.2006.07.022, 2007.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal
state in the polar Northern Hemisphere during the International Polar Year
2007–2009: A synthesis, Permafrost Periglac., 21, 106–116,
https://doi.org/10.1002/ppp.689, 2010.
Rood, S. B., Kaluthota, S., Philipsen, L. J., Rood, N. J., and Zanewich, K.
P.: Increasing discharge from the Mackenzie River system to the Arctic Ocean,
Hydrol. Process., 31, 150–160, https://doi.org/10.1002/hyp.10986, 2017.
Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N., and Pugach, S. P.: A
climate shift in seasonal values of meteorological and hydrological
parameters for Northeastern Asia, Prog. Oceanogr., 47, 279–297, 2000.
Scrimgeour, G. J., Prowse, T. D., Culp, J. M., and Chambers, P. A.:
Ecological effects of river ice break-up: a review and perspective,
Freshwater Biol., 32, 261–275, 1994.
Semiletov, I., Pipko, I., Gustafsson, O., Anderson, L. G., Sergienko, V.,
Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L., Andersson,
A., Spivak, E., and Shakhova, N.: Acidification of East Siberian Arctic Shelf
waters through addition of freshwater and terrestrial carbon, Nat. Geosci.,
9, 361–365, 2016.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Statist. Assoc., 63, 1379–1389, 1968.
Serreze, M. C., Bromwich, D. H., Clark, M. P., Etringer, A. J., Zhang, T.,
and Lammers, R.: The large-scale hydroclimatology of the terrestrial Arctic
drainage, J. Geophys. Res., 108, 8160, https://doi.org/10.1029/2001JD000919, 2003.
Shepelev, V. V.: Suprapermafrost waters in the cryolithozone, Novosibirsk.
Geo., 169 pp., 2011 (in Russian).
Sherstyukov, A. B.: Correlation of soil temperature with air temperature and
snow cover depth in Russia, Earth's Cryosphere, XII, 79–87, 2008.
Sherstyukov, A. B. and Sherstyukov, B. G.: Spatial features and new trends in
thermal conditions of soil and depth of its seasonal thawing in the
permafrost zone, Russ. Meteorol. Hydrol., 40, 73–78,
https://doi.org/10.3103/S1068373915020016, 2015.
Shiklomanov, A. I. and Lammers, R. B.: Changing Discharge Patterns of
High-Latitude Rivers, in: Climate Vulnerability: Understanding and Addressing
Threats to Essential Resources, 5, 161–175,
https://doi.org/10.1016/B978-0-12-384703-4.00526-8, 2013.
Shiklomanov, A. I. and Lammers, R. B.: River ice responses to a warming
Arctic – recent evidence from Russian rivers, Environ. Res. Lett., 9,
035008, https://doi.org/10.1088/1748-9326/9/3/035008, 2014.
Shiklomanov, A. I., Yakovleva, T. I., Lammers, R. B., Karasev, I. Ph.,
Vörösmarty, C. J., and Linder, E.: Cold region river discharge
uncertainty – estimates from large Russian rivers, J. Hydrol., 326, 231–56,
https://doi.org/10.1016/j.jhydrol.2005.10.037, 2006.
Shiklomanov, A. I., Lammers, R. B., Rawlins, M. A., Smith, L. C., and
Pavelsky, T. M.: Temporal and spatial variations in maximum river discharge
from a new Russian dataset, J. Geophys. Res., 112, G04S53,
https://doi.org/10.1029/2006JG000352, 2007.
Shkolnik, I., Pavlova, T., Efimov, S., and Zhuravlev, S.: Future changes in
peak river flows across northern Eurasia as inferred from an ensemble of
regional climate projections under the IPCC RCP8.5 scenario, Clim. Dynam.,
50, 215–230, https://doi.org/10.1007/s00382-017-3600-6, 2017.
Simakov, A. S. and Shilnikovskaya, Z. G.: The map of the naleds of the
North-East of the USSR. A Brief Explanatory Note, The North-Eastern
Geological Survey of the Main Directorate of Geology and Subsoil Protection,
Magadan, 40 pp., 1958 (in Russian).
Smith, L. C.: Trends in Russian arctic river-ice formation and breakup, 1917
to 1994, Phys. Geogr., 21, 46–56, 2000.
Smith, L. C. and Alsdorf, D. E.: Control on sediment and organic carbon
delivery to the Arctic Ocean revealed with space-borne synthetic aperture
radar: Ob' River, Siberia, Geology, 26, 395–398, 1998.
Sokolov, B. L.: Aufeis (naleds) and river runoff, Leningrad, Gidrometeoizdat,
1975 (in Russian).
Spence, C., Kokelj, S. V., and Ehsanzadeh, E.: Precipitation trends
contribute to streamflow regime shifts in northern Canada, Cold Region
Hydrology in a Changing Climate, IAHS publication 346, 3–8, 2011.
State water cadastre: Main hydrological characteristics (for 1971–1975 and the whole period of observation), Volume 17, Leno-Indigirsky district, Leningrad, Gidrometeoizdat, 1979 (in Russian).
St. Jacques, J.-M., and Sauchyn, D. J.: Increasing winter baseflow and mean
annual streamflow from possible permafrost thawing in the northwest
territories, Canada, Geophys. Res. Lett., 36, 329–342, 2009.
Stieglitz, M., Déry, S. J., Romanovsky, V. E., and Osterkamp, T. E.: The
role of snow cover in the warming of arctic permafrost, Geophys. Res. Lett.,
30, 1721, https://doi.org/10.1029/2003GL017337, 2003.
Streletsky, D. A., Sherstiukov, A. B., Frauenfeld, O. W., and Nelson, F. E.:
Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost
regions, Environ. Res. Lett., 10, 125005,
https://doi.org/10.1088/1748-9326/10/12/125005, 2015.
Stuefer, S. L., Arp, C. D., Kane, D. L., and Liljedahl, A. K.: Recent Extreme
Runoff Observations From Coastal Arctic Watersheds in Alaska, Water Resour.
Res., 53, 9145–9163, https://doi.org/10.1002/2017WR020567, 2017.
Tan, A., Adam, J. C., and Lettenmaier, D. P.: Change in spring snowmelt
timing in eurasian arctic rivers, J. Geophys. Res., 116, D03101,
https://doi.org/10.1029/2010JD014337, 2001.
Tananaev, N. I., Makarieva, O. M., and Lebedeva, L. S.: Trends in annual and
extreme flows in the Lena River basin, Northern Eurasia,
https://doi.org/10.1002/2016GL070796, 2016.
Tolstikhin, O. N.: Aufeis and underground waters in the Northeast USSR,
Novosibirsk, Nauka, 1974
(in Russian).
Vasiliev, I. S. and Torgovkin, I. I.: Spatial distribution of precipitation
in Yakutia, Meteorology and Hydrology, 6, 23–32, 2002.
Velicogna, I., Tong, J., Zhang, T., and Kimball, J. S.: Increasing Subsurface
Water Storage in Discontinuous Permafrost Areas of the Lena River Basin,
Eurasia, Detected From GRACE, Geophys. Res. Lett., 39, L09403,
https://doi.org/10.1029/2012GL051623, 2012.
Walwoord, M. A. and Kurylyk, B.L.: Hydrologic impacts of thawing permafrost
– A review, Vadose Zone J., 15, 20 pp., https://doi.org/10.2136/vzj2016.01.0010, 2016.
Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost
distribution on groundwater flow in the context of climate-driven permafrost
thaw: Example from Yukon Flats Basin, Alaska, United States, Water Resour.
Res., 48, W07524, https://doi.org/10.1029/2011WR011595, 2012.
Weatherly, J. W. and Walsh, J. E.: The effects of precipitation and river
runoff in a coupled ice-ocean model of the Arctic, Clim. Dynam., 12,
785–798, 1996.
Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Hengchun Ye.:
Siberian Lena River hydrologic regime and recent change, J.
Geophys. Res., 107, 4694, https://doi.org/10.1029/2002JD002542, 2002.
Yang, D., Kane, D., Zhang, Z., Legates, D., and Goodison, B.: Bias
corrections of long-term (1973–2004) daily precipitation data over the
northern regions, Geophys. Res. Lett., 32, L19501,
https://doi.org/10.1029/2005GL024057, 2005
Yang, D., Shi, X., and Marsh, P.: Variability and extreme of Mackenzie River
daily discharge during 1973–2011, Quatern. Int., 380–381, 159–168,
https://doi.org/10.1016/j.quaint.2014.09.023, 2015
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater
dynamics in discontinuous permafrost near council, Alaska, Permafrost
Periglac., 14, 151–160, 2003.
Yue, S., Pilon, P., and Cavadias, G.: Power of the Mann–Kendall and
Spearman's rho tests for detecting monotonic trends in hydrological series,
J. Hydrol., 259, 254–271, 2002
Zhizhin, V. I., Zheleznyak, M. N., and Pulyaev, N. A.: Cryogenic processes in
the morphology formation of the mountain relief at the Suntar-Khayata Range,
Bulletin of the Ammosova North-Eastern Federal University, 9, 73–79, 2012
(in Russian).
Short summary
The streamflow of Arctic rivers is changing. We analyzed available data (22 gauges, 1936–2015) in the basins of the Yana and Indigirka rivers completely located within the continuous permafrost zone. The results show that the main factor of increasing low flows is the shift from snow to rain due to warming. Other factors related to the release of water from permafrost, glaciers, or aufeis may fractionally contribute to streamflow increase but cannot be quantified based on available data.
The streamflow of Arctic rivers is changing. We analyzed available data (22 gauges, 1936–2015)...